Recent Treatment Strategies and Molecular Pathways in Resistance Mechanisms of Antiangiogenic Therapies in Glioblastoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Mechanisms of Resistance to Antiangiogenic Therapies in GBM
2.1. Redundant Angiogenic Pathways
2.2. Increased Invasion and Metastasis
2.3. Hypoxia-Induced Resistance
2.4. Vascular Mimicry
2.5. Immune Modulation
3. Current Treatment Strategies to Overcome Antiangiogenic Resistance in GBM
3.1. Combination Therapies
3.2. Personalized Medicine
3.3. Novel Therapeutic Targets
3.4. Immunotherapy
3.5. Nanoparticle-Mediated Treatment Options
4. Limitations and Future Perspectives of Antiangiogenic Resistance in GBM
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roda, D.; Veiga, P.; Melo, J.B.; Carreira, I.M.; Ribeiro, I.P. Principles in the Management of Glioblastoma. Genes. 2024, 15, 501. [Google Scholar] [CrossRef] [PubMed]
- Obrador, E.; Moreno-Murciano, P.; Oriol-Caballo, M.; López-Blanch, R.; Pineda, B.; Gutiérrez-Arroyo, J.L.; Loras, A.; Gonzalez-Bonet, L.G.; Martinez-Cadenas, C.; Estrela, J.M. Glioblastoma therapy: Past, present and future. Int. J. Mol. Sci. 2024, 25, 2529. [Google Scholar] [CrossRef]
- Lan, Z.; Li, X.; Zhang, X. Glioblastoma: An Update in Pathology, Molecular Mechanisms and Biomarkers. Int. J. Mol. Sci. 2024, 25, 3040. [Google Scholar] [CrossRef] [PubMed]
- Vredenburgh, J.J.; Desjardins, A.; Herndon, J.E., 2nd; Dowell, J.M.; Reardon, D.A.; Quinn, J.A.; Rich, J.N.; Sathornsumetee, S.; Gururangan, S.; Wagner, M.; et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin. Cancer Res. 2007, 13, 1253–1259. [Google Scholar] [CrossRef]
- Jain, R.K.; Tong, R.T.; Munn, L.L. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: Insights from a mathematical model. Cancer Res. 2007, 67, 2729–2735. [Google Scholar] [CrossRef]
- Batchelor, T.T.; Sorensen, A.G.; di Tomaso, E.; Zhang, W.T.; Duda, D.G.; Cohen, K.S.; Kozak, K.R.; Cahill, D.P.; Chen, P.J.; Zhu, M.; et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007, 11, 83–95. [Google Scholar] [CrossRef]
- Jain, R.K. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 2005, 307, 58–62. [Google Scholar] [CrossRef]
- Tong, R.T.; Boucher, Y.; Kozin, S.V.; Winkler, F.; Hicklin, D.J.; Jain, R.K. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res. 2004, 64, 3731–3736. [Google Scholar] [CrossRef]
- Jain, R.K. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat. Med. 2001, 7, 987–989. [Google Scholar] [CrossRef]
- Salmaggi, A.; Eoli, M.; Frigerio, S.; Silvani, A.; Gelati, M.; Corsini, E.; Broggi, G.; Boiardi, A. Intracavitary VEGF, bFGF, IL-8, IL-12 levels in primary and recurrent malignant glioma. J. Neurooncol. 2003, 62, 297–303. [Google Scholar] [CrossRef]
- Lamszus, K.; Ulbricht, U.; Matschke, J.; Brockmann, M.A.; Fillbrandt, R.; Westphal, M. Levels of soluble vascular endothelial growth factor (VEGF) receptor 1 in astrocytic tumors and its relation to malignancy, vascularity, and VEGF-A. Clin. Cancer Res. 2003, 9, 1399–1405. [Google Scholar]
- Tripathy, D.K.; Panda, L.P.; Biswal, S.; Barhwal, K. Insights into the glioblastoma tumor microenvironment: Current and emerging therapeutic approaches. Front. Pharmacol. 2024, 15, 1355242. [Google Scholar] [CrossRef] [PubMed]
- Li, A.Q.; Fang, J.H. Anti-angiogenic therapy enhances cancer immunotherapy: Mechanism and clinical application. Interdiscip. Med. 2024, 2, e20230025. [Google Scholar] [CrossRef]
- Wang, L.; Liu, W.-Q.; Broussy, S.; Han, B.; Fang, H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front. Pharmacol. 2024, 14, 1307860. [Google Scholar] [CrossRef]
- Maccari, M.; Baek, C.; Caccese, M.; Mandruzzato, S.; Fiorentino, A.; Internò, V.; Bosio, A.; Cerretti, G.; Padovan, M.; Idbaih, A. Present and Future of Immunotherapy in Patients With Glioblastoma: Limitations and Opportunities. Oncol. 2024, 29, 289–302. [Google Scholar] [CrossRef]
- Sadowski, K.; Jażdżewska, A.; Kozłowski, J.; Zacny, A.; Lorenc, T.; Olejarz, W. Revolutionizing Glioblastoma Treatment: A Comprehensive Overview of Modern Therapeutic Approaches. Int. J. Mol. Sci. 2024, 25, 5774. [Google Scholar] [CrossRef]
- Mazarakis, N.K.; Robinson, S.D.; Sinha, P.; Koutsarnakis, C.; Komaitis, S.; Stranjalis, G.; Short, S.C.; Chumas, P.; Giamas, G. Management of glioblastoma in elderly patients: A review of the literature. Clin. Transl. Radiat. Oncol. 2024, 46, 100761. [Google Scholar] [CrossRef]
- Rios, S.A.; Oyervides, S.; Uribe, D.; Reyes, A.M.; Fanniel, V.; Vazquez, J.; Keniry, M. Emerging Therapies for Glioblastoma. Cancers 2024, 16, 1485. [Google Scholar] [CrossRef]
- Pathak, A.; Pal, A.K.; Roy, S.; Nandave, M.; Jain, K. Role of angiogenesis and its biomarkers in development of targeted tumor therapies. Stem Cells Int. 2024, 2024, 9077926. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Li, H.; Xia, Y.; Xing, M.; Xiao, C.; Cai, W.; Bu, L.; Li, Y.; Park, T.-E. Blockage of VEGF function by bevacizumab alleviates early-stage cerebrovascular dysfunction and improves cognitive function in a mouse model of Alzheimer’s disease. Transl. Neurodegener. 2024, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Vengoji, R.; Jain, M.; Batra, S.K.; Shonka, N. Pathophysiological role of histamine signaling and its implications in glioblastoma. Biochim. Biophys. Acta (BBA)-Rev. Cancer 2024, 1879, 189146. [Google Scholar] [CrossRef] [PubMed]
- Pinkiewicz, M.; Pinkiewicz, M.; Walecki, J.; Zaczyński, A.; Zawadzki, M. Breaking Barriers in Neuro-Oncology: A Scoping Literature Review on Invasive and Non-Invasive Techniques for Blood–Brain Barrier Disruption. Cancers 2024, 16, 236. [Google Scholar] [CrossRef] [PubMed]
- Bigos, K.J.; Quiles, C.G.; Lunj, S.; Smith, D.J.; Krause, M.; Troost, E.G.; West, C.M.; Hoskin, P.; Choudhury, A. Tumour response to hypoxia: Understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front. Oncol. 2024, 14, 1331355. [Google Scholar] [CrossRef]
- Yuan, X.; Ruan, W.; Bobrow, B.; Carmeliet, P.; Eltzschig, H.K. Targeting hypoxia-inducible factors: Therapeutic opportunities and challenges. Nat. Rev. Drug Discov. 2024, 23, 175–200. [Google Scholar] [CrossRef] [PubMed]
- Musleh Ud Din, S.; Streit, S.G.; Huynh, B.T.; Hana, C.; Abraham, A.-N.; Hussein, A. Therapeutic Targeting of Hypoxia-Inducible Factors in Cancer. Int. J. Mol. Sci. 2024, 25, 2060. [Google Scholar] [CrossRef]
- Dang, S.-M.; Yang, D.; Wang, Z.-Y.; Ding, X.-M.; Li, X.-L.; Li, D.-Y.; Li, D.-X. Vasculogenic mimicry: A pivotal mechanism contributing to drug resistance in antiangiogenic therapy. Oncol. Transl. Med. 2024, 10, 119–125. [Google Scholar]
- Kiran, N.S.; Yashaswini, C.; Maheshwari, R.; Bhattacharya, S.; Prajapati, B.G. Advances in Precision Medicine Approaches for Colorectal Cancer: From Molecular Profiling to Targeted Therapies. ACS Pharmacol. Transl. Sci. 2024, 7, 967–990. [Google Scholar] [CrossRef]
- Kang, W.; Xu, Z.; Lu, H.; Liu, S.; Li, J.; Ding, C.; Lu, Y. Advances in biomimetic nanomaterial delivery systems: Harnessing nature’s inspiration for targeted drug delivery. J. Mater. Chem. B 2024, 12, 7001–7019. [Google Scholar] [CrossRef]
- Khafaga, A.F.; Gaballa, M.M.; Karam, R.; Shoulah, S.A.; Shamma, R.N.; Khalifa, N.E.; Farrag, N.E.; Noreldin, A.E. Synergistic therapeutic strategies and engineered nanoparticles for anti-vascular endothelial growth factor therapy in cancer. Life Sci. 2024, 341, 122499. [Google Scholar] [CrossRef]
- Ballestín, A.; Armocida, D.; Ribecco, V.; Seano, G. Peritumoral brain zone in glioblastoma: Biological, clinical and mechanical features. Front. Immunol. 2024, 15, 1347877. [Google Scholar] [CrossRef]
- Arbab, A.S.; Ali, M.M. Glioblastoma: Targeting angiogenesis and tyrosine kinase pathways. Nov. Approaches Cancer Study 2020, 4, 398. [Google Scholar]
- Zhang, R.; Yao, Y.; Gao, H.; Hu, X. Mechanisms of angiogenesis in tumour. Front. Oncol. 2024, 14, 1359069. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Lin, T.; Wu, M.; Cai, G.; Wu, C.; Ding, Q.; Xu, J.; Chen, H.; Li, W.; Xu, G. Causal Association of Cytokines and Growth Factors with Stroke and Its Subtypes: A Mendelian Randomization Study. Mol. Neurobiol. 2024, 61, 3212–3222. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Xu, J. Cancer-associated fibroblasts: A versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev. 2024, 43, 1095–1116. [Google Scholar] [CrossRef]
- Abdullaeva, S.; Chubarev, V.; Valeeva, A.; Preferanskaya, N.; Neganova, M.; Smolyarchuk, E.; Liu, J.; Sukocheva, O.; Samsonov, M.; Alyautdin, R. Analysis of Clinical Success and Molecular Mechanisms of Action of Novel Anti-glioblastoma Drugs: A Review. Curr. Med. Chem. 2024. [Google Scholar] [CrossRef]
- Kuo, H.-Y.; Khan, K.A.; Kerbel, R.S. Antiangiogenic–immune-checkpoint inhibitor combinations: Lessons from phase III clinical trials. Nat. Rev. Clin. Oncol. 2024, 21, 468–482. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Tang, Y.; Zhang, J.; Huang, J.; Cheng, R.; Guo, Y.; Kleer, C.G.; Wang, Y.; Xue, L. Hypoxia makes EZH2 inhibitor not easy—Advances of crosstalk between HIF and EZH2. Life Metab. 2024, 3, loae017. [Google Scholar] [CrossRef]
- Wang, J.; Li, K. Antiangiogenic therapy: How far is it to upgrade? Holist. Integr. Oncol. 2024, 3, 14. [Google Scholar] [CrossRef]
- Guo, Z.; Ashrafizadeh, M.; Zhang, W.; Zou, R.; Sethi, G.; Zhang, X. Molecular profile of metastasis, cell plasticity and EMT in pancreatic cancer: A pre-clinical connection to aggressiveness and drug resistance. Cancer Metastasis Rev. 2024, 43, 29–53. [Google Scholar] [CrossRef]
- Bae, T.; Hallis, S.P.; Kwak, M.-K. Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp. Mol. Med. 2024, 56, 501–514. [Google Scholar] [CrossRef]
- Xu, C.; Hou, P.; Li, X.; Xiao, M.; Zhang, Z.; Li, Z.; Xu, J.; Liu, G.; Tan, Y.; Fang, C. Comprehensive understanding of glioblastoma molecular phenotypes: Classification, characteristics, and transition. Cancer Biol. Med. 2024, 21, 363. [Google Scholar] [CrossRef]
- Ribatti, D.; Tamma, R.; Annese, T. Epithelial-mesenchymal transition in cancer: A historical overview. Transl. Oncol. 2020, 13, 100773. [Google Scholar] [CrossRef]
- Mukerjee, N.; Nag, S.; Bhattacharya, B.; Alexiou, A.; Mirgh, D.; Mukherjee, D.; Adhikari, M.D.; Anand, K.; Muthusamy, R.; Gorai, S. Clinical impact of epithelial–mesenchymal transition for cancer therapy. Clin. Transl. Discov. 2024, 4, e260. [Google Scholar] [CrossRef]
- Yu, T.; Jiang, W.; Wang, Y.; Zhou, Y.; Jiao, J.; Wu, M. Chimeric antigen receptor T cells in the treatment of osteosarcoma. Int. J. Oncol. 2024, 64, 40. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.T.; Kim, M.; Lim, K. Immune Cell Migration to Cancer. Cells 2024, 13, 844. [Google Scholar] [CrossRef]
- Grasset, E.M.; Barillé-Nion, S.; Juin, P.P. Stress in the metastatic journey–the role of cell communication and clustering in breast cancer progression and treatment resistance. Dis. Models Mech. 2024, 17, dmm050542. [Google Scholar] [CrossRef]
- Feldman, L. Hypoxia within the glioblastoma tumor microenvironment: A master saboteur of novel treatments. Front. Immunol. 2024, 15, 1384249. [Google Scholar] [CrossRef]
- Misra, R.; Sharath, N.S. Red blood cells based nanotheranostics: A smart biomimetic approach for fighting against cancer. Int. J. Pharm. 2024, 661, 124401. [Google Scholar] [CrossRef]
- Ortmann, B.M. Hypoxia-inducible factor in cancer: From pathway regulation to therapeutic opportunity. BMJ Oncol. 2024, 3, e000154. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Brown, J.S.; Gatenby, R.A.; Ibrahim-Hashim, A. A gene for all seasons: The evolutionary consequences of HIF-1 in carcinogenesis, tumor growth and metastasis. Semin. Cancer Biol. 2024, 102–103, 17–24. [Google Scholar]
- Yang, M.; Mu, Y.; Yu, X.; Gao, D.; Zhang, W.; Li, Y.; Liu, J.; Sun, C.; Zhuang, J. Survival strategies: How tumor hypoxia microenvironment orchestrates angiogenesis. Biomed. Pharmacother. 2024, 176, 116783. [Google Scholar] [CrossRef]
- Lee, S.-A.; Cho, G.-J.; Kim, D.; Kim, D.-H. Biophysical interplay between extracellular matrix remodeling and hypoxia signaling in regulating cancer metastasis. Front. Cell Dev. Biol. 2024, 12, 1335636. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Cheng, Z.; Jiang, Z.; Gan, L.; Zhang, Z.; Xie, Z. Immunomodulatory Precision: A Narrative Review Exploring the Critical Role of Immune Checkpoint Inhibitors in Cancer Treatment. Int. J. Mol. Sci. 2024, 25, 5490. [Google Scholar] [CrossRef]
- Masoudi, M.; Moti, D.; Masoudi, R.; Auwal, A.; Hossain, M.M.; Pronoy, T.U.H.; Rashel, K.M.; Gopalan, V.; Islam, F. Metabolic adaptations in cancer stem cells: A key to therapy resistance. Biochim. Et. Biophys. Acta (BBA)-Mol. Basis Dis. 2024, 1870, 167164. [Google Scholar] [CrossRef]
- White, J.; White, M.P.; Wickremesekera, A.; Peng, L.; Gray, C. The tumour microenvironment, treatment resistance and recurrence in glioblastoma. J. Transl. Med. 2024, 22, 540. [Google Scholar] [CrossRef] [PubMed]
- Begagić, E.; Bečulić, H.; Džidić-Krivić, A.; Kadić Vukas, S.; Hadžić, S.; Mekić-Abazović, A.; Šegalo, S.; Papić, E.; Muchai Echengi, E.; Pugonja, R. Understanding the Significance of Hypoxia-Inducible Factors (HIFs) in Glioblastoma: A Systematic Review. Cancers 2024, 16, 2089. [Google Scholar] [CrossRef]
- Song, Z.; Xue, Z.; Wang, Y.; Imran, M.; Assiri, M.; Fahad, S. Insights into the roles of non-coding RNAs and angiogenesis in glioblastoma: An overview of current research and future perspectives. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2024, 1868, 130567. [Google Scholar] [CrossRef] [PubMed]
- Duswald, T.; Lima, E.A.; Oden, J.T.; Wohlmuth, B. Bridging scales: A hybrid model to simulate vascular tumor growth and treatment response. Comput. Methods Appl. Mech. Eng. 2024, 418, 116566. [Google Scholar] [CrossRef]
- Virtuoso, A.; D’Amico, G.; Scalia, F.; De Luca, C.; Papa, M.; Maugeri, G.; D’Agata, V.; Caruso Bavisotto, C.; D’Amico, A.G. The Interplay between Glioblastoma Cells and Tumor Microenvironment: New Perspectives for Early Diagnosis and Targeted Cancer Therapy. Brain Sci. 2024, 14, 331. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, Y.; Islam, K.; Paul, R.; Zhou, Y.; Qin, X.; Li, Q.; Liu, Y. Microphysiologically Engineered Vessel-Tumor Model to Investigate Vascular Transport Dynamics of Immune Cells. ACS Appl. Mater. Interfaces 2024, 16, 22839–22849. [Google Scholar] [CrossRef]
- Leone, P.; Malerba, E.; Susca, N.; Favoino, E.; Perosa, F.; Brunori, G.; Prete, M.; Racanelli, V. Endothelial cells in tumor microenvironment: Insights and perspectives. Front. Immunol. 2024, 15, 1367875. [Google Scholar] [CrossRef]
- Krishnan, A.; Ansari, H.K. Molecular Basis of Response to Hypoxia. In Adaptation under Stressful Environments through Biological Adjustments and Interventions; Springer: Berlin/Heidelberg, Germany, 2024; pp. 21–40. [Google Scholar]
- Ubaid, S.; Kashif, M.; Laiq, Y.; Nayak, A.K.; Kumar, V.; Singh, V. Targeting HIF-1α in sickle cell disease and cancer: Unravelling therapeutic opportunities and risks. Expert Opin. Ther. Targets 2024, 28, 357–373. [Google Scholar] [CrossRef]
- Nehal, M.; Khatoon, J.; Akhtar, S.; Khan, M.K.A. Exploring the potential of EphA2 receptor signaling pathway: A comprehensive review in cancer treatment. Mol. Biol. Rep. 2024, 51, 337. [Google Scholar] [CrossRef]
- Migulina, N. Mechanisms and Consequences of Disturbed Crosstalk between Cells and Extracellular Matrix in COPD. Ph.D. Thesis, University of Groningen, Groningen, The Netherlands, 2024. [Google Scholar]
- Shikalov, A.; Koman, I.; Kogan, N.M. Targeted glioma therapy—Clinical trials and future directions. Pharmaceutics 2024, 16, 100. [Google Scholar] [CrossRef]
- Jacobsen, A.; Siebler, J.; Grützmann, R.; Stürzl, M.; Naschberger, E. Blood Vessel-Targeted Therapy in Colorectal Cancer: Current Strategies and Future Perspectives. Cancers 2024, 16, 890. [Google Scholar] [CrossRef] [PubMed]
- Dasram, M.H.; Naidoo, P.; Walker, R.B.; Khamanga, S.M. Targeting the Endocannabinoid System Present in the Glioblastoma Tumour Microenvironment as a Potential Anti-Cancer Strategy. Int. J. Mol. Sci. 2024, 25, 1371. [Google Scholar] [CrossRef]
- Celià-Terrassa, T.; Kang, Y. How important is EMT for cancer metastasis? PLoS Biol. 2024, 22, e3002487. [Google Scholar] [CrossRef]
- Shahcheraghi, S.H.; Alimardani, M.; Lotfi, M.; Lotfi, M.; Uversky, V.N.; Guetchueng, S.T.; Palakurthi, S.S.; Charbe, N.B.; Hromić-Jahjefendić, A.; Aljabali, A.A. Advances in glioblastoma multiforme: Integrating therapy and pathology perspectives. Pathol. Res. Pract. 2024, 257, 155285. [Google Scholar] [CrossRef]
- Cui, J.-W.; Li, Y.; Yang, Y.; Yang, H.-K.; Dong, J.-M.; Xiao, Z.-H.; He, X.; Guo, J.-H.; Wang, R.-Q.; Dai, B. Tumor immunotherapy resistance: Revealing the mechanism of PD-1/PD-L1-mediated tumor immune escape. Biomed. Pharmacother. 2024, 171, 116203. [Google Scholar] [CrossRef]
- Hu, H.; Chen, Y.; Tan, S.; Wu, S.; Huang, Y.; Fu, S.; Luo, F.; He, J. The research progress of antiangiogenic therapy, immune therapy and tumor microenvironment. Front. Immunol. 2022, 13, 802846. [Google Scholar] [CrossRef]
- Khan, K.A.; Kerbel, R.S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 2018, 15, 310–324. [Google Scholar] [CrossRef]
- Khosravi, G.R.; Mostafavi, S.; Bastan, S.; Ebrahimi, N.; Gharibvand, R.S.; Eskandari, N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun. 2024, 44, 521–553. [Google Scholar] [CrossRef]
- Yang, F.; Lee, G.; Fan, Y. Navigating tumor angiogenesis: Therapeutic perspectives and myeloid cell regulation mechanism. Angiogenesis 2024, 27, 333–349. [Google Scholar] [CrossRef]
- Du, M.; Sun, L.; Guo, J.; Lv, H. Macrophages and tumor-associated macrophages in the senescent microenvironment: From immunosuppressive TME to targeted tumor therapy. Pharmacol. Res. 2024, 204, 107198. [Google Scholar] [CrossRef]
- Fattahi, A.S.; Jafari, M.; Farahavar, G.; Abolmaali, S.S.; Tamaddon, A.M. Expanding horizons in cancer therapy by immunoconjugates targeting tumor microenvironments. Crit. Rev. Oncol. Hematol. 2024, 201, 104437. [Google Scholar] [CrossRef]
- Lu, J.; Luo, Y.; Rao, D.; Wang, T.; Lei, Z.; Chen, X.; Zhang, B.; Li, Y.; Liu, B.; Xia, L. Myeloid-derived suppressor cells in cancer: Therapeutic targets to overcome tumor immune evasion. Exp. Hematol. Oncol. 2024, 13, 39. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, Y.; Chen, L.; Qian, Z.; Zhang, Y. Associations between HIFs and tumor immune checkpoints: Mechanism and therapy. Discov. Oncol. 2024, 15, 2. [Google Scholar] [CrossRef]
- Chang, W.H.; Lai, A.G. The hypoxic tumour microenvironment: A safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Lett. 2020, 487, 34–44. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y.; Hu, Q. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. Exploration 2022, 2, 20210106. [Google Scholar] [CrossRef]
- Aragon-Sanabria, V.; Kim, G.B.; Dong, C. From cancer immunoediting to new strategies in cancer immunotherapy: The roles of immune cells and mechanics in oncology. Biomech. Oncol. 2018, 113–138. [Google Scholar] [CrossRef]
- Shah, S.; Mansour, H.M.; Aguilar, T.M.; Lucke-Wold, B. Advances in Anti-Cancer Drug Development: Metformin as Anti-Angiogenic Supplemental Treatment for Glioblastoma. Int. J. Mol. Sci. 2024, 25, 5694. [Google Scholar] [CrossRef]
- Sherman, J.H.; Bobak, A.; Arsiwala, T.; Lockman, P.; Aulakh, S. Targeting drug resistance in glioblastoma. Int. J. Oncol. 2024, 65, 1–15. [Google Scholar] [CrossRef]
- Mir, M.A.; Jan, A.; Shabir, A.; Haq, B.U. The Antiangiogenic Basis of Metronomic Chemotherapy. In Novel Approaches in Metronomic Chemotherapy for Breast Cancer Treatment; CRC Press: Boca Raton, FL, USA, 2024; pp. 43–57. [Google Scholar]
- Ghosh, A.K.; Ghosh, A.; Das, P.K. Nanotechnology Meets Stem Cell Therapy for Treating Glioblastomas: A Review. ACS Appl. Nano Mater. 2024, 7, 2430–2460. [Google Scholar] [CrossRef]
- Al-Ostoot, F.H.; Salah, S.; Khanum, S.A. An Overview of Cancer Biology, Pathophysiological Development and It’s Treatment Modalities: Current Challenges of Cancer anti-Angiogenic Therapy. Cancer Investig. 2024, 42, 559–604. [Google Scholar] [CrossRef]
- Köry, J.; Narain, V.; Stolz, B.J.; Kaeppler, J.; Markelc, B.; Muschel, R.J.; Maini, P.K.; Pitt-Francis, J.M.; Byrne, H.M. Enhanced perfusion following exposure to radiotherapy: A theoretical investigation. PLOS Comput. Biol. 2024, 20, e1011252. [Google Scholar] [CrossRef]
- Haake, S.M.; Rios, B.L.; Pozzi, A.; Zent, R. Integrating integrins with the hallmarks of cancer. Matrix Biol. 2024, 130, 20–35. [Google Scholar] [CrossRef]
- Arbab, A.S.; Rashid, M.H.; Angara, K.; Borin, T.F.; Lin, P.-C.; Jain, M.; Achyut, B.R. Major challenges and potential microenvironment-targeted therapies in glioblastoma. Int. J. Mol. Sci. 2017, 18, 2732. [Google Scholar] [CrossRef]
- Chai, Y.; Liu, J.-L.; Zhang, S.; Li, N.; Xu, D.-Q.; Liu, W.-J.; Fu, R.-J.; Tang, Y.-P. The effective combination therapies with irinotecan for colorectal cancer. Front. Pharmacol. 2024, 15, 1356708. [Google Scholar] [CrossRef]
- Karve, A.S.; Desai, J.M.; Gadgil, S.N.; Dave, N.; Wise-Draper, T.M.; Gudelsky, G.A.; Phoenix, T.N.; DasGupta, B.; Yogendran, L.; Sengupta, S. A review of approaches to potentiate the activity of temozolomide against glioblastoma to overcome resistance. Int. J. Mol. Sci. 2024, 25, 3217. [Google Scholar] [CrossRef]
- Alemzadeh, E.; Allahqoli, L.; Mazidimoradi, A.; Alemzadeh, E.; Ghasemi, F.; Salehiniya, H.; Alkatout, I. Deciphering resistance mechanisms and novel strategies to overcome drug resistance in ovarian cancer: A comprehensive review. Oncol. Res. 2024, 32, 831. [Google Scholar] [CrossRef]
- Park, H.-J.; Jeong, J.-H.; Choi, Y.-H.; Park, S.-H. Hexane Fraction of Adenophora triphylla var. japonica Root Extract Inhibits Angiogenesis and Endothelial Cell-Induced Erlotinib Resistance in Lung Cancer Cells. Molecules 2024, 29, 597. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Sun, Q.; Xiang, Y.; Liu, A. Severe cutaneous adverse reactions associated with immune checkpoint inhibitors therapy and anti-VEGF combination therapy: A real-world study of the FDA adverse event reporting system. Expert Opin. Drug Saf. 2024, 23, 777–784. [Google Scholar] [CrossRef]
- Mohanty, P.; Pande, B.; Acharya, R.; Bhaskar, L.; Verma, H.K. Unravelling the Triad of Lung Cancer, Drug Resistance, and Metabolic Pathways. Diseases 2024, 12, 93. [Google Scholar] [CrossRef]
- Liu, J. Cancer Targeted Molecular Therapy. In Anesthesia for Oncological Surgery; Springer: Berlin/Heidelberg, Germany, 2024; pp. 27–34. [Google Scholar]
- Sarwar, F.; Ashhad, S.; Vimal, A.; Vishvakarma, R. Small molecule inhibitors of the VEGF and tyrosine kinase for the treatment of cervical cancer. Med. Oncol. 2024, 41, 199. [Google Scholar] [CrossRef]
- Li, Q.; Lin, J.; Hao, G.; Xie, A.; Liu, S.; Tang, B. Nephrotoxicity of targeted therapy used to treat lung cancer. Front. Immunol. 2024, 15, 1369118. [Google Scholar] [CrossRef]
- Magro, D.; Venezia, M.; Balistreri, C.R. The omics technologies and liquid biopsies: Advantages, limitations, applications. Med. Omics 2024, 11, 100039. [Google Scholar] [CrossRef]
- Mishra, M.; Ahmed, R.; Das, D.K.; Pramanik, D.D.; Dash, S.K.; Pramanik, A. Recent Advancements in the Application of Circulating Tumor DNA as Biomarkers for Early Detection of Cancers. ACS Biomater. Sci. Eng. 2024, 10, 4740–4756. [Google Scholar] [CrossRef]
- Mpekris, F.; Panagi, M.; Charalambous, A.; Voutouri, C.; Stylianopoulos, T. Modulating cancer mechanopathology to restore vascular function and enhance immunotherapy. Cell Rep. Med. 2024, 5, 101626. [Google Scholar] [CrossRef]
- Mu, Y.; Zhang, Z.; Zhou, H.; Ma, L.; Wang, D.-A. Applications of Nanotechnology in Remodeling Tumour Microenvironment for Glioblastoma Treatment. Biomater. Sci. 2024. [Google Scholar] [CrossRef]
- Onciul, R.; Brehar, F.-M.; Toader, C.; Covache-Busuioc, R.-A.; Glavan, L.-A.; Bratu, B.-G.; Costin, H.P.; Dumitrascu, D.-I.; Serban, M.; Ciurea, A.V. Deciphering Glioblastoma: Fundamental and Novel Insights into the Biology and Therapeutic Strategies of Gliomas. Curr. Issues Mol. Biol. 2024, 46, 2402–2443. [Google Scholar] [CrossRef]
- Han, J.W.; Lee, S.K.; Kwon, J.H.; Nam, S.W.; Yang, H.; Bae, S.H.; Kim, J.H.; Nam, H.; Kim, C.W.; Lee, H.L. A Machine Learning Algorithm Facilitates Prognosis Prediction and Treatment Selection for Barcelona Clinic Liver Cancer Stage C Hepatocellular Carcinoma. Clin. Cancer Res. 2024, 30, 2812–2821. [Google Scholar] [CrossRef]
- Anu, M.; Xavier, J.; Fathima, A.; Bisht, P.; Murti, K.; Ravichandiran, V.; Kumar, N. Epigenetic basis for PARP mutagenesis in glioblastoma: A review. Eur. J. Pharmacol. 2023, 938, 175424. [Google Scholar]
- Singh, N.; Miner, A.; Hennis, L.; Mittal, S. Mechanisms of temozolomide resistance in glioblastoma-a comprehensive review. Cancer Drug Resist. 2021, 4, 17. [Google Scholar] [CrossRef]
- Le, N.D.; Nguyen, B.L.; Patil, B.R.; Chun, H.; Kim, S.; Nguyen, T.O.O.; Mishra, S.; Tandukar, S.; Chang, J.-H.; Kim, D.Y. Antiangiogenic Therapeutic mRNA Delivery Using Lung-Selective Polymeric Nanomedicine for Lung Cancer Treatment. ACS Nano 2024, 18, 8392–8410. [Google Scholar] [CrossRef] [PubMed]
- Miramova, A.; Gartner, A.; Ivanov, D. How to sensitize glioblastomas to temozolomide chemotherapy: A gap-centered view. Front. Cell Dev. Biol. 2024, 12, 1436563. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, S.; Broege, A.; Sen, A.; Khan, S.; MacNeil, I.; Molden, J.; Kopher, R.; Schulz, S.; Laing, L. Gedatolisib shows superior potency and efficacy versus single-node PI3K/AKT/mTOR inhibitors in breast cancer models. NPJ Breast Cancer 2024, 10, 40. [Google Scholar] [CrossRef]
- Underwood, P.W.; Ruff, S.M.; Pawlik, T.M. Update on targeted therapy and immunotherapy for metastatic colorectal cancer. Cells 2024, 13, 245. [Google Scholar] [CrossRef]
- Sahoo, O.S.; Mitra, R.; Nagaiah, N.K. The hidden architects of glioblastoma multiforme: Glioma stem cells. MedComm–Oncol. 2024, 3, e66. [Google Scholar] [CrossRef]
- Chen, X.; Wu, X.; Li, L.; Zhu, X. Development of Proteasome Inhibitors for Cancer Therapy. Int. J. Drug Discov. Pharmacol. 2024, 3, 100004. [Google Scholar] [CrossRef]
- Martorana, F.; Sanò, M.V.; Valerio, M.R.; Fogli, S.; Vigneri, P.; Danesi, R.; Gebbia, V. Abemaciclib pharmacology and interactions in the treatment of HR+/HER2− breast cancer: A critical review. Ther. Adv. Drug Saf. 2024, 15, 20420986231224214. [Google Scholar] [CrossRef]
- Dorna, D.; Kleszcz, R.; Paluszczak, J. Triple Combinations of Histone Lysine Demethylase Inhibitors with PARP1 Inhibitor–Olaparib and Cisplatin Lead to Enhanced Cytotoxic Effects in Head and Neck Cancer Cells. Biomedicines 2024, 12, 1359. [Google Scholar] [CrossRef]
- Li, H. The PD-1 and PD-L1 checkpoint and the application of their inhibitors. In Proceedings of the Third International Conference on Biological Engineering and Medical Science (ICBioMed2023), Online, 2–9 September 2023; pp. 636–640. [Google Scholar]
- Stergiopoulos, G.M.; Concilio, S.C.; Galanis, E. An Update on the Clinical Status, Challenges, and Future Directions of Oncolytic Virotherapy for Malignant Gliomas. Curr. Treat. Options Oncol. 2024, 25, 952–991. [Google Scholar] [CrossRef]
- Li, S.; Sheng, J.; Zhang, D.; Qin, H. Targeting tumor-associated macrophages to reverse antitumor drug resistance. Aging (Albany NY) 2024, 16, 10165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Su, J.; Zhou, Y.; Lu, J. Evaluating the efficacy and safety of trebananib in treating ovarian cancer and non-ovarian cancer patients: A meta-analysis and systematic review. Expert. Rev. Anticancer. Ther. 2024, 24, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Imodoye, S.O.; Adedokun, K.A.; Bello, I.O. From complexity to clarity: Unravelling tumor heterogeneity through the lens of tumor microenvironment for innovative cancer therapy. Histochem. Cell Biol. 2024, 161, 299–323. [Google Scholar] [CrossRef]
- El-Tanani, M.; Rabbani, S.A.; Babiker, R.; Rangraze, I.; Kapre, S.; Palakurthi, S.S.; Alnuqaydan, A.M.; Aljabali, A.A.; Rizzo, M.; El-Tanani, Y. Unraveling the tumor microenvironment: Insights into cancer metastasis and therapeutic strategies. Cancer Lett. 2024, 591, 216894. [Google Scholar] [CrossRef] [PubMed]
- Varma, N.R.S.; Barton, K.N.; Janic, B.; Shankar, A.; Iskander, A.; Ali, M.M.; Arbab, A.S. Monitoring adenoviral based gene delivery in rat glioma by molecular imaging. World J. Clin. Oncol. 2013, 4, 91. [Google Scholar] [CrossRef]
- Wei, S.; Chang, L.; Zhong, Y. The efficacy and adverse events of bevacizumab combined with temozolomide in the treatment of glioma: A systemic review and meta-analysis of randomized controlled trials. Front. Med. 2024, 11, 1419038. [Google Scholar] [CrossRef]
- Birnboim-Perach, R.; Benhar, I. Using Combination therapy to overcome diverse challenges of Immune Checkpoint Inhibitors treatment. Int. J. Biol. Sci. 2024, 20, 3911. [Google Scholar] [CrossRef]
- Ansari, M.J.; Bokov, D.; Markov, A.; Jalil, A.T.; Shalaby, M.N.; Suksatan, W.; Chupradit, S.; Al-Ghamdi, H.S.; Shomali, N.; Zamani, A. Cancer combination therapies by angiogenesis inhibitors; a comprehensive review. Cell Commun. Signal. 2022, 20, 49. [Google Scholar] [CrossRef]
- Al-Ghabkari, A.; Huang, B.; Park, M. Aberrant MET receptor tyrosine kinase signaling in glioblastoma: Targeted therapy and future directions. Cells 2024, 13, 218. [Google Scholar] [CrossRef] [PubMed]
- Ezaki, T.; Tanaka, T.; Tamura, R.; Ohara, K.; Yamamoto, Y.; Takei, J.; Morimoto, Y.; Imai, R.; Kuranai, Y.; Akasaki, Y. Status of alternative angiogenic pathways in glioblastoma resected under and after bevacizumab treatment. Brain Tumor Pathol. 2024, 41, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, K.; Zhu, Q.; Zhang, Y.; Chen, Y.; Lou, Z.; Yuan, J. USP19 regulates DNA methylation damage repair and confers temozolomide resistance through MGMT stabilization. CNS Neurosci. Ther. 2024, 30, e14711. [Google Scholar] [CrossRef]
- Fan, Q.; Wu, G.; Chen, M.; Luo, G.; Wu, Z.; Huo, H.; Li, H.; Zheng, L.; Luo, M. Cediranib ameliorates portal hypertensive syndrome via inhibition of VEGFR-2 signaling in cirrhotic rats. Eur. J. Pharmacol. 2024, 964, 176278. [Google Scholar] [CrossRef]
- Ng, W.H.; Soo, K.C.; Huynh, H. Vinorelbine Improves the Efficacy of Sorafenib against Hepatocellular Carcinoma: A Promising Therapeutic Approach. Int. J. Mol. Sci. 2024, 25, 1563. [Google Scholar] [CrossRef] [PubMed]
- Soudi, A.; Abdelhafez, S.; Aly, O.M.; Ali, T.F. Indolin-2-one based scaffold for the development of multi-kinase inhibitor: Focus on sunitinib as an anticancer agent. Octahedron Drug Res. 2024, 4, 1–10. [Google Scholar] [CrossRef]
- Nam, Y.W.; Shin, J.-H.; Kim, S.; Hwang, C.H.; Lee, C.-S.; Hwang, G.; Kim, H.-R.; Roe, J.-S.; Song, J. EGFR inhibits TNF-α-mediated pathway by phosphorylating TNFR1 at tyrosine 360 and 401. Cell Death Differ. 2024, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-W.; Hou, X.-L.; Koo, H.-M.; Chao, W.-T. Dasatinib suppresses collective cell migration through the coordination of focal adhesion and E-cadherin in colon cancer cells. Heliyon 2024, 10, E23501. [Google Scholar] [CrossRef]
- Zeng, J.; Deng, Q.; Chen, Z.; Yan, S.; Dong, Q.; Zhang, Y.; Cui, Y.; He, Y.; Li, L.; Shi, J. Recent development of VEGFR small molecule inhibitors as anticancer agents: A patent review (2021–2023). Bioorganic Chem. 2024, 146, 107278. [Google Scholar] [CrossRef]
- Mongiardi, M.P.; Pallini, R.; D’Alessandris, Q.G.; Levi, A.; Falchetti, M.L. Regorafenib and glioblastoma: A literature review of preclinical studies, molecular mechanisms and clinical effectiveness. Expert Rev. Mol. Med. 2024, 26, e5. [Google Scholar] [CrossRef]
- Bakri, S.J.; Lynch, J.; Howard-Sparks, M.; Saint-Juste, S.; Saim, S. Vorolanib, sunitinib, and axitinib: A comparative study of vascular endothelial growth factor receptor inhibitors and their anti-angiogenic effects. PLoS ONE 2024, 19, e0304782. [Google Scholar] [CrossRef] [PubMed]
- Adhikaree, J.; Moreno-Vicente, J.; Kaur, A.P.; Jackson, A.M.; Patel, P.M. Resistance mechanisms and barriers to successful immunotherapy for treating glioblastoma. Cells 2020, 9, 263. [Google Scholar] [CrossRef] [PubMed]
- Ser, M.H.; Webb, M.J.; Sener, U.; Campian, J.L. Immune Checkpoint Inhibitors and Glioblastoma: A Review on Current State and Future Directions. J. Immunother. Precis. Oncol. 2024, 7, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.W.; Achyut, B.R.; Fulzele, S.; Mondal, A.K.; Kolhe, R.; Arbab, A.S. Delineating pro-angiogenic myeloid cells in cancer therapy. Int. J. Mol. Sci. 2018, 19, 2565. [Google Scholar] [CrossRef]
- Singh, R.; Srivastava, P.; Manna, P.P. Evaluation of regulatory T-cells in cancer immunotherapy: Therapeutic relevance of immune checkpoint inhibition. Med. Oncol. 2024, 41, 59. [Google Scholar] [CrossRef]
- Agosti, E.; Garaba, A.; Antonietti, S.; Ius, T.; Fontanella, M.M.; Zeppieri, M.; Panciani, P.P. CAR-T Cells Therapy in Glioblastoma: A Systematic Review on Molecular Targets and Treatment Strategies. Int. J. Mol. Sci. 2024, 25, 7174. [Google Scholar] [CrossRef]
- Choudhery, M.S.; Arif, T.; Mahmood, R.; Harris, D.T. CAR-T-Cell-Based Cancer Immunotherapies: Potentials, Limitations, and Future Prospects. J. Clin. Med. 2024, 13, 3202. [Google Scholar] [CrossRef]
- Xiong, Z.; Raphael, I.; Olin, M.; Okada, H.; Li, X.; Kohanbash, G. Glioblastoma vaccines: Past, present, and opportunities. EBioMedicine 2024, 100, 104963. [Google Scholar] [CrossRef]
- D’Aniello, A.; Del Bene, A.; Mottola, S.; Mazzarella, V.; Cutolo, R.; Campagna, E.; Di Maro, S.; Messere, A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J. Pept. Sci. 2024, 30, e3596. [Google Scholar] [CrossRef]
- Pulivarthi, J. EGFR Mutations and Signaling Pathways in Glioblastoma: Implications for Pathogenesis and Therapeutic Targeting. UC Merced Undergrad. Res. J. 2024, 16, 1–23. [Google Scholar] [CrossRef]
- Liu, Y.; Li, S.; Chen, L.; Lin, L.; Xu, C.; Qiu, H.; Li, X.; Cao, H.; Liu, K. Global trends in tumor microenvironment-related research on tumor vaccine: A review and bibliometric analysis. Front. Immunol. 2024, 15, 1341596. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, Z. Oncolytic Viruses in Cancer Immunotherapy. Adv. Ther. 2024, 7, 2300445. [Google Scholar] [CrossRef]
- Volovat, S.R.; Scripcariu, D.V.; Vasilache, I.A.; Stolniceanu, C.R.; Volovat, C.; Augustin, I.G.; Volovat, C.C.; Ostafe, M.-R.; Andreea-Voichița, S.-G.; Bejusca-Vieriu, T. Oncolytic virotherapy: A new paradigm in cancer immunotherapy. Int. J. Mol. Sci. 2024, 25, 1180. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Liao, X.; Tao, Y.; Chen, Y. Advances in oncolytic herpes simplex virus and adenovirus therapy for recurrent glioma. Front. Immunol. 2023, 14, 1285113. [Google Scholar]
- Jain, S.; Chalif, E.J.; Aghi, M.K. Interactions between anti-angiogenic therapy and immunotherapy in glioblastoma. Front. Oncol. 2022, 11, 812916. [Google Scholar] [CrossRef]
- Gane, E.; Verdon, D.J.; Brooks, A.E.; Gaggar, A.; Nguyen, A.H.; Subramanian, G.M.; Schwabe, C.; Dunbar, P.R. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: A pilot study. J. Hepatol. 2019, 71, 900–907. [Google Scholar] [CrossRef]
- Barta, S.K.; Zain, J.; MacFarlane IV, A.W.; Smith, S.M.; Ruan, J.; Fung, H.C.; Tan, C.R.; Yang, Y.; Alpaugh, R.K.; Dulaimi, E. Phase II study of the PD-1 inhibitor pembrolizumab for the treatment of relapsed or refractory mature T-cell lymphoma. Clin. Lymphoma Myeloma Leuk. 2019, 19, 356–364.e353. [Google Scholar] [CrossRef]
- Huang, Y.-J.; Ho, K.-W.; Cheng, T.-L.; Wang, Y.-T.; Chao, S.-W.; Huang, B.-C.; Chao, Y.-S.; Lin, C.-Y.; Hsu, Y.-H.; Chen, F.-M. Selective activation of IFNγ–ipilimumab enhances the therapeutic effect and safety of ipilimumab. Int. J. Biol. Macromol. 2024, 265, 130945. [Google Scholar] [CrossRef]
- Javed, S.A.; Najmi, A.; Ahsan, W.; Zoghebi, K. Targeting PD-1/PD-L-1 immune checkpoint inhibition for cancer immunotherapy: Success and challenges. Front. Immunol. 2024, 15, 1383456. [Google Scholar] [CrossRef]
- Firoozi, M.R.; Sadeghi-Mohammadi, S.; Asadi, M.; Shekari, N.; Seyed Nejad, F.; Alizade-Harakiyan, M.; Soleimani, Z.; Zarredar, H. Durvalumab and taxane family combination therapy enhances the antitumoral effects for NSCLC: An in vitro study. Cell Biochem. Funct. 2024, 42, e3919. [Google Scholar] [CrossRef]
- Shahmoradi, Z.; Khalili-Tembi, R.-S.; Faghihi, G.; Feizi, A.; Afshar, K.; Abtahi-Naeini, B. Bevacizumab as Adjuvant Therapy in the Treatment of Keloid: A Randomized Clinical Trial. Dermatol. Ther. 2024, 2024, 1744375. [Google Scholar] [CrossRef]
- Weller, M.; Butowski, N.; Tran, D.D.; Recht, L.D.; Lim, M.; Hirte, H.; Ashby, L.; Mechtler, L.; Goldlust, S.A.; Iwamoto, F. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017, 18, 1373–1385. [Google Scholar] [CrossRef] [PubMed]
- Gorodilova, A.V.; Kitaeva, K.V.; Filin, I.Y.; Mayasin, Y.P.; Kharisova, C.B.; Issa, S.S.; Solovyeva, V.V.; Rizvanov, A.A. The Potential of Dendritic Cell Subsets in the Development of Personalized Immunotherapy for Cancer Treatment. Curr. Issues Mol. Biol. 2023, 45, 8053–8070. [Google Scholar] [CrossRef]
- Burton, E.C.; Ozer, B.H.; Boris, L.; Brown, D.; Theeler, B. Imipridones and Dopamine Receptor Antagonism in the Therapeutic Management of Gliomas. Adv. Oncol. 2024, 4, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Londhe, V.Y.; Date, V. Personalized neoantigen vaccines: A glimmer of hope for glioblastoma. Expert Rev. Vaccines 2020, 19, 407–417. [Google Scholar] [CrossRef]
- Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed. Technol. 2024, 5, 109–122. [Google Scholar] [CrossRef]
- Zha, S.; Liu, H.; Li, H.; Li, H.; Wong, K.-L.; All, A.H. Functionalized nanomaterials capable of crossing the blood–brain barrier. ACS Nano 2024, 18, 1820–1845. [Google Scholar] [CrossRef]
- Al-Thani, A.N.; Jan, A.G.; Abbas, M.; Geetha, M.; Sadasivuni, K.K. Nanoparticles in cancer theragnostic and drug delivery: A comprehensive review. Life Sci. 2024, 352, 122899. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhu, X.; Tan, J.; Mei, C.; Cai, X.; Kong, F. Lipid-based nanoparticles to address the limitations of GBM therapy by overcoming the blood-brain barrier, targeting glioblastoma stem cells, and counteracting the immunosuppressive tumor microenvironment. Biomed. Pharmacother. 2024, 171, 116113. [Google Scholar] [CrossRef]
- Koula, G.; Yakati, V.; Rachamalla, H.K.; Bhamidipati, K.; Kathirvel, M.; Banerjee, R.; Puvvada, N. Integrin receptor-targeted, doxorubicin-loaded cerium oxide nanoparticles delivery to combat glioblastoma. Nanomedicine 2024, 19, 1389–1406. [Google Scholar] [CrossRef]
- Branco, F.; Cunha, J.; Mendes, M.; Vitorino, C.; Sousa, J.J. Peptide-Hitchhiking for the Development of Nanosystems in Glioblastoma. ACS Nano 2024, 18, 16359–16394. [Google Scholar] [CrossRef] [PubMed]
- Sandbhor, P.; Palkar, P.; Bhat, S.; John, G.; Goda, J.S. Nanomedicine as a multimodal therapeutic paradigm against cancer: On the way forward in advancing precision therapy. Nanoscale 2024. [Google Scholar] [CrossRef]
- Fatima, I.; Zeinalilathori, S.; Qindeel, M.; Kharab, Z.; Sahebzade, M.S.; Rahdar, A.; Zeinali, S.; Fathi-karkan, S.; Khan, A.; Ghazy, E. Advances in Targeted Nano-Delivery of Bevacizumab Using Nanoparticles: Current Insights, Innovations, and Future Perspectives. J. Drug Deliv. Sci. Technol. 2024, 98, 105850. [Google Scholar] [CrossRef]
- Szwed, M.; Marczak, A. Application of nanoparticles for magnetic hyperthermia for cancer treatment—The current state of knowledge. Cancers 2024, 16, 1156. [Google Scholar] [CrossRef] [PubMed]
- Rajput, S.; Sharma, P.K.; Malviya, R.; Kaushik, N. Curcumin-Enclosed Nanoparticles for Cancer Therapy. Curr. Nutr. Food Sci. 2024, 20, 615–635. [Google Scholar] [CrossRef]
- Samaei, S.S.; Daryab, M.; Gholami, S.; Rezaee, A.; Fatehi, N.; Roshannia, R.; Hashemi, S.; Javani, N.; Rahmanian, P.; Amani-Beni, R. Multifunctional and stimuli-responsive liposomes in hepatocellular carcinoma diagnosis and therapy. Transl. Oncol. 2024, 45, 101975. [Google Scholar] [CrossRef]
- Shetty, K.; Yadav, K.S. Temozolomide nano-in-nanofiber delivery system with sustained release and enhanced cellular uptake by U87MG cells. Drug Dev. Ind. Pharm. 2024, 50, 420–431. [Google Scholar] [CrossRef]
- Peasah-Darkwah, G. Influence of Paclitaxel Nanomedicine on the Pancreatic Tumor Immune Components. Master’s Thesis, The University of Texas Rio Grande Valley, Edinburg, TX, USA, 2022. [Google Scholar]
- Acharya, R.; Saha, S.; Ray, S.; Hazra, S.; Mitra, M.K.; Chakraborty, J. siRNA-nanoparticle conjugate in gene silencing: A future cure to deadly diseases? Mater. Sci. Eng. C 2017, 76, 1378–1400. [Google Scholar] [CrossRef]
- Ngamcherdtrakul, W.; Castro, D.J.; Gu, S.; Morry, J.; Reda, M.; Gray, J.W.; Yantasee, W. Current development of targeted oligonucleotide-based cancer therapies: Perspective on HER2-positive breast cancer treatment. Cancer Treat. Rev. 2016, 45, 19–29. [Google Scholar] [CrossRef]
- Mohanty, A.; Uthaman, S.; Park, I.-K. Utilization of polymer-lipid hybrid nanoparticles for targeted anti-cancer therapy. Molecules 2020, 25, 4377. [Google Scholar] [CrossRef]
- Ma, Y.-Y.; Mou, X.-Z.; Ding, Y.-H.; Zou, H.; Huang, D.-S. Delivery systems of ceramide in targeted cancer therapy: Ceramide alone or in combination with other anti-tumor agents. Expert Opin. Drug Deliv. 2016, 13, 1397–1406. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020, 25, 2193. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Yee, G.T.; Khang, D. Nanoparticle-Based Combinational Strategies for Overcoming the Blood-Brain Barrier and Blood-Tumor Barrier. Int. J. Nanomed. 2024, 19, 2529–2552. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.f.; Li, M.J.; Liang, B.; Sun, W.; Shao, Y.; Hu, X.; Xing, D. Breaking the barrier: Nanoparticle-enhanced radiotherapy as the new vanguard in brain tumor treatment. Front. Pharmacol. 2024, 15, 1394816. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, T.; Liu, X.; Fang, X.; Mo, Y.; Xie, N.; Nie, G.; Zhang, B.; Fan, X. Smart Nanoplatforms Responding to the Tumor Microenvironment for Precise Drug Delivery in Cancer Therapy. Int. J. Nanomed. 2024, 19, 6253–6277. [Google Scholar] [CrossRef]
- Solipuram, V.; Soltani, R.; Venkatesulu, B.; Annam, S.; Alavian, F.; Ghasemi, S. Efficacy of Anti-VEGF Drugs Based Combination Therapies in Recurrent Glioblastoma: Systematic Review and Meta-Analysis. Curr. Rev. Clin. Exp. Pharmacol. Former. Curr. Clin. Pharmacol. 2024, 19, 173–183. [Google Scholar] [CrossRef]
- Maleki, E.H.; Bahrami, A.R.; Matin, M.M. Cancer cell cycle heterogeneity as a critical determinant of therapeutic resistance. Genes Dis. 2024, 11, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Macapagal Foliaki, J. The Role of Stromal Cells in the Establishment of Glioblastoma Tumour Microenvironment Immunosuppression. ResearchSpace@ Auckland. Ph.D. Thesis, The University of Auckland, Auckland, New Zealand, 2024. [Google Scholar]
- Zhao, K.; Zeng, Z.; He, Y.; Zhao, R.; Niu, J.; Sun, H.; Li, S.; Dong, J.; Jing, Z.; Zhou, J. Recent advances in targeted therapy for inflammatory vascular diseases. J. Control. Release 2024, 372, 730–750. [Google Scholar] [CrossRef]
- Shen, K.-Y.; Zhu, Y.; Xie, S.-Z.; Qin, L.-X. Immunosuppressive tumor microenvironment and immunotherapy of hepatocellular carcinoma: Current status and prospectives. J. Hematol. Oncol. 2024, 17, 25. [Google Scholar] [CrossRef]
- Sunakawa, Y.; Kuboki, Y.; Watanabe, J.; Terazawa, T.; Kawakami, H.; Yokota, M.; Nakamura, M.; Kotaka, M.; Sugimoto, N.; Ojima, H. Exploratory biomarker analysis using plasma angiogenesis-related factors and cell-free DNA in the TRUSTY study: A randomized, phase II/III study of trifluridine/tipiracil plus bevacizumab as second-line treatment for metastatic colorectal cancer. Target. Oncol. 2024, 19, 59–69. [Google Scholar] [CrossRef]
- Lan, L.Y.-L.; Kumar, W.M.; Liu, L.S.; Roberts, A.K.; Chen, S.; Snyder, M. Biomarkers in precision medicine. In Biosensors in Precision Medicine; Elsevier: Amsterdam, The Netherlands, 2024; pp. 35–57. [Google Scholar]
- Liu, J.; Yang, F.; Hu, J.; Zhang, X. Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci. Ther. 2024, 30, e14715. [Google Scholar] [CrossRef]
- Aghajani, M.; Jalilzadeh, N.; Aghebati-Maleki, A.; Yari, A.; Tabnak, P.; Mardi, A.; Saeedi, H.; Aghebati-Maleki, L.; Baradaran, B. Current approaches in glioblastoma multiforme immunotherapy. Clin. Transl. Oncol. 2024, 26, 1584–1612. [Google Scholar] [CrossRef] [PubMed]
- Sierra, J.R.; Cepero, V.; Giordano, S. Molecular mechanisms of acquired resistance to tyrosine kinase targeted therapy. Mol. Cancer 2010, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Norden, A.D.; Drappatz, J.; Wen, P.Y. Novel anti-angiogenic therapies for malignant gliomas. Lancet Neurol. 2008, 7, 1152–1160. [Google Scholar] [CrossRef]
- Norden, A.D.; Young, G.S.; Setayesh, K.; Muzikansky, A.; Klufas, R.; Ross, G.L.; Ciampa, A.S.; Ebbeling, L.G.; Levy, B.; Drappatz, J.; et al. Bevacizumab for recurrent malignant gliomas: Efficacy, toxicity, and patterns of recurrence. Neurology 2008, 70, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Świątek, W.; Kłodziński, O.; Ciesielski, M.; a Adamkiewicz, Z.; Podolak, M.; Mozdziak, P.E.; Kranc, W. Glioblastoma: A molecular insight into current discoveries and treatment directions. Med. J. Cell Biol. 2024, 12, 1–20. [Google Scholar] [CrossRef]
- Ali, M.M.; Janic, B.; Babajani-Feremi, A.; Varma, N.R.; Iskander, A.; Anagli, J.; Arbab, A.S. Changes in vascular permeability and expression of different angiogenic factors following anti-angiogenic treatment in rat glioma. PLoS ONE 2010, 5, e8727. [Google Scholar] [CrossRef]
- Ali, M.M.; Yoo, B.; Pagel, M.D. Tracking the relative in vivo pharmacokinetics of nanoparticles with PARACEST MRI. Mol. Pharm. 2009, 6, 1409–1416. [Google Scholar] [CrossRef]
Drug Name | Molecular Signaling | Target Cells | Doses and Effects | Current Application in GBM | References |
---|---|---|---|---|---|
Bevacizumab + irinotecan | VEGF inhibition, topoisomerase I inhibition | Endothelial cells, tumor cells | Bevacizumab: 10 mg/kg; irinotecan: 125 mg/m2 | Used in recurrent GBM; aims to inhibit angiogenesis and tumor growth | [91] |
Temozolomide + bevacizumab | DNA alkylation, VEGF inhibition | Tumor cells, endothelial cells | Temozolomide: 150–200 mg/m2; bevacizumab: 10 mg/kg | Used in newly diagnosed and recurrent GBM; targets DNA and angiogenesis | [92] |
Bevacizumab + lomustine | VEGF inhibition, DNA alkylation | Endothelial cells, tumor cells | Bevacizumab: 10 mg/kg; lomustine: 110 mg/m2 | Used in recurrent GBM; aims to combine antiangiogenic and cytotoxic effects | [35] |
Nivolumab + bevacizumab | PD-1 inhibition, VEGF inhibition | Immune cells, endothelial cells | Nivolumab: 3 mg/kg; bevacizumab: 10 mg/kg | Used in clinical trials for recurrent GBM; aims to enhance immune response | [36] |
Bevacizumab + carboplatin | VEGF inhibition, DNA crosslinking | Endothelial cells, tumor cells | Bevacizumab: 10 mg/kg; carboplatin: AUC 5-6 | Investigated in recurrent GBM; aims to enhance DNA damage and inhibit angiogenesis | [93] |
Pembrolizumab + bevacizumab | PD-1 inhibition, VEGF inhibition | Immune cells, endothelial cells | Pembrolizumab: 200 mg; bevacizumab: 10 mg/kg | Used in clinical trials for recurrent GBM; aims to boost immune system and inhibit angiogenesis | [36] |
Bevacizumab + erlotinib | VEGF inhibition, EGFR inhibition | Endothelial cells, tumor cells | Bevacizumab: 10 mg/kg; erlotinib: 150 mg daily | Investigated in recurrent GBM; targets both angiogenesis and EGFR signaling | [94] |
Bevacizumab + temsirolimus | VEGF inhibition, mTOR inhibition | Endothelial cells, tumor cells | Bevacizumab: 10 mg/kg; temsirolimus: 25 mg weekly | Used in clinical trials for recurrent GBM; aims to inhibit angiogenesis and mTOR pathway | [14] |
Cediranib + lomustine | VEGFR inhibition, DNA alkylation | Endothelial cells, tumor cells | Cediranib: 30 mg daily; lomustine: 110 mg/m2 | Investigated in recurrent GBM; aims to inhibit angiogenesis and enhance cytotoxicity | [66] |
Bevacizumab + ipilimumab | VEGF inhibition, CTLA-4 inhibition | Endothelial cells, immune cells | Bevacizumab: 10 mg/kg; ipilimumab: 3 mg/kg | Used in clinical trials for recurrent GBM; aims to enhance immune response and inhibit angiogenesis | [95] |
Drug Name | Molecular Action | Target Cells | Doses | Current Application in GBM | References |
---|---|---|---|---|---|
Bevacizumab (Avastin) | VEGF inhibitor, blocks angiogenesis | Endothelial cells | 10 mg/kg IV every 2 weeks | Approved for recurrent GBM, reduces edema | [108] |
Temozolomide (TMZ) | Alkylating agent, induces DNA damage | Tumor cells | 150–200 mg/m2/day for 5 days every 28 days | Standard chemotherapy for newly diagnosed GBM | [109] |
Everolimus (Afinitor) | mTOR inhibitor, inhibits cell growth and proliferation | Tumor cells | 10 mg orally once daily | Under investigation, potential to target mTOR pathway | [110] |
Larotrectinib (Vitrakvi) | TRK fusion inhibitor, blocks TRK signaling | Tumor cells with NTRK fusions | 100 mg/m2 twice daily | Experimental, targeting NTRK fusion-positive GBM | [111] |
Enzastaurin (LY317615) | PKC-β inhibitor, induces apoptosis | Tumor cells | 500 mg orally once daily | Under investigation, potential anti-tumor activity | [112] |
Marizomib (NPI-0052) | Proteasome inhibitor, induces apoptosis | Tumor cells | 0.7 mg/m2 IV once weekly | Clinical trials, targeting proteasome in GBM | [113] |
Abemaciclib (Verzenio) | CDK4/6 inhibitor, inhibits cell cycle progression | Tumor cells | 150 mg orally twice daily | Experimental, targeting CDK4/6 pathway in GBM | [114] |
Olaparib (Lynparza) | PARP inhibitor, impairs DNA repair | Tumor cells | 300 mg orally twice daily | Investigational, for tumors with DNA repair deficiencies | [115] |
Nivolumab (Opdivo) | PD-1 inhibitor, boosts immune response | Tumor cells, immune cells | 3 mg/kg IV every 2 weeks | Under investigation, potential in immunotherapy | [116] |
Toca 511 and Toca FC | Gene therapy, converts prodrug to active chemotherapy | Tumor cells | Toca 511: intratumoral injection; Toca FC: 220 mg/m2 orally every 6 weeks | Experimental, gene therapy approach in GBM | [117] |
Compound Name | Molecular Mechanism | Target Cells | Current Application in GBM | References |
---|---|---|---|---|
Bevacizumab | VEGF inhibitor | Endothelial cells | Approved for recurrent GBM; reduces tumor blood supply | [127] |
Temozolomide | DNA methylation/damage | Tumor cells | Standard chemotherapy for GBM; induces cell death | [128] |
Cediranib | VEGFR tyrosine kinase inhibitor | Endothelial and tumor cells | Experimental; inhibits angiogenesis | [129] |
Sorafenib | Multi-kinase inhibitor (VEGFR, PDGFR, Raf kinases) | Tumor and endothelial cells | Experimental; inhibits cell proliferation and angiogenesis | [130] |
Sunitinib | Multi-kinase inhibitor (VEGFR, PDGFR) | Endothelial cells | Experimental; inhibits angiogenesis | [131] |
Erlotinib | EGFR tyrosine kinase inhibitor | Tumor cells | Experimental; inhibits tumor cell growth | [132] |
Dasatinib | Src family kinase inhibitor | Tumor cells | Experimental; inhibits cell migration and invasion | [133] |
Pazopanib | Multi-kinase inhibitor (VEGFR, PDGFR) | Tumor and endothelial cells | Experimental; inhibits angiogenesis and tumor growth | [134] |
Regorafenib | Multi-kinase inhibitor (VEGFR, PDGFR, FGFR) | Tumor and endothelial cells | Experimental; inhibits angiogenesis and tumor cell growth | [135] |
Axitinib | VEGFR tyrosine kinase inhibitor | Endothelial cells | Experimental; inhibits angiogenesis | [136] |
Drug Name | Molecular Action | Target Cells | Doses | Application in GBM | References |
---|---|---|---|---|---|
Nivolumab (Opdivo) | PD-1 inhibitor | T cells | 240 mg every 2 weeks | Investigational; ongoing clinical trials | [151] |
Pembrolizumab (Keytruda) | PD-1 inhibitor | T cells | 200 mg every 3 weeks | Investigational; ongoing clinical trials | [152] |
Ipilimumab (Yervoy) | CTLA-4 inhibitor | T cells | 3 mg/kg every 3 weeks for 4 doses | Investigational; combination trials with PD-1 inhibitors | [153] |
Avelumab (Bavencio) | PD-L1 inhibitor | Tumor cells, T cells | 10 mg/kg every 2 weeks | Investigational; ongoing clinical trials | [154] |
Durvalumab (Imfinzi) | PD-L1 inhibitor | Tumor cells, T cells | 10 mg/kg every 2 weeks | Investigational; ongoing clinical trials | [155] |
Bevacizumab (Avastin) | VEGF inhibitor | Endothelial cells | 10 mg/kg every 2 weeks | Approved for recurrent GBM | [156] |
Rindopepimut | EGFRvIII-targeted peptide vaccine | Tumor cells | Variable; typically administered intradermally | Phase II/III clinical trials | [157] |
DCVax-L | Dendritic cell-based vaccine | Dendritic cells | Personalized; dose varies | Phase III clinical trials | [158] |
ONC201 | Imipridone; induces TRAIL and DRD2 pathway activation | Tumor cells | 625 mg once a week | Phase II clinical trials | [159] |
CDX-110 (Rindopepimut) | EGFRvIII-targeted peptide vaccine | Tumor cells | Variable; typically administered intradermally | Phase II/III clinical trials | [160] |
Treatment Name | Nanoparticle Type | Mechanism of Action | Target/Focus | References |
---|---|---|---|---|
Bevacizumab-loaded nanoparticles | Lipid-based | Inhibits VEGF, reducing blood vessel formation | VEGF pathway | [168] |
Iron oxide nanoparticles | Magnetic | Targets tumor cells via magnetic fields, improving delivery | Hyperthermia, drug delivery | [169] |
Curcumin-loaded nanoparticles | Polymeric | Anti-inflammatory and antiangiogenic effects | NF-κB pathway | [170] |
Doxorubicin-loaded nanoparticles | Liposome-based | Improves drug accumulation in tumor, reducing angiogenesis | DNA intercalation, inhibiting topoisomerase | [171] |
Temozolomide-loaded nanoparticles | Polymeric | Enhances drug delivery and overcomes drug resistance | DNA alkylation, increasing tumor cell death | [172] |
Paclitaxel-loaded nanoparticles | Micelle-based | Enhances antiproliferative effects, targeting microtubules | Microtubule stabilization | [173] |
siRNA-loaded nanoparticles | Gold nanoparticles | Silences genes involved in angiogenesis and resistance | Gene expression inhibition | [174] |
HER2-targeted nanoparticles | Polymer-based | Targets HER2 receptor, enhancing specificity and reducing resistance | HER2 receptor | [175] |
Dual drug-loaded nanoparticles | Hybrid (e.g., polymer/lipid) | Combines different mechanisms to enhance therapeutic effects | Multiple targets | [176] |
Ceramide-loaded nanoparticles | Lipid-based | Induces apoptosis in resistant cancer cells | Sphingolipid metabolism | [177] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.A.; Ali, M.M. Recent Treatment Strategies and Molecular Pathways in Resistance Mechanisms of Antiangiogenic Therapies in Glioblastoma. Cancers 2024, 16, 2975. https://doi.org/10.3390/cancers16172975
Rahman MA, Ali MM. Recent Treatment Strategies and Molecular Pathways in Resistance Mechanisms of Antiangiogenic Therapies in Glioblastoma. Cancers. 2024; 16(17):2975. https://doi.org/10.3390/cancers16172975
Chicago/Turabian StyleRahman, Md Ataur, and Meser M. Ali. 2024. "Recent Treatment Strategies and Molecular Pathways in Resistance Mechanisms of Antiangiogenic Therapies in Glioblastoma" Cancers 16, no. 17: 2975. https://doi.org/10.3390/cancers16172975
APA StyleRahman, M. A., & Ali, M. M. (2024). Recent Treatment Strategies and Molecular Pathways in Resistance Mechanisms of Antiangiogenic Therapies in Glioblastoma. Cancers, 16(17), 2975. https://doi.org/10.3390/cancers16172975