Hereditary Colorectal Cancer Syndromes and Inflammatory Bowel Diseases: Risk Management and Surveillance Strategies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Overlapping Lynch Syndrome and IBD
3.1. IBD and Overlapped Lynch Syndrome
3.2. IBD and Overlapped FAP
4. Mechanisms of IBD-Associated CRC
4.1. Colitis-Associated Colorectal Cancer (CAC) Occurrence
4.2. Chromosomal Instability: The Adenoma–Carcinoma Sequence
4.3. Microsatellite Instability (MSI)
5. CRC Risk of Concomitant IBD and HCCS
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global Burden of Colorectal Cancer in 2020 and 2040: Incidence and Mortality Estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal Cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef]
- Brody, H. Colorectal Cancer. Nature 2015, 521, S1. [Google Scholar] [CrossRef] [PubMed]
- Le Berre, C.; Honap, S.; Peyrin-Biroulet, L. Ulcerative Colitis. Lancet 2023, 402, 571–584. [Google Scholar] [CrossRef]
- Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s Disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef]
- Syngal, S.; Brand, R.E.; Church, J.M.; Giardiello, F.M.; Hampel, H.L.; Burt, R.W. ACG Clinical Guideline: Genetic Testing and Management of Hereditary Gastrointestinal Cancer Syndromes. Am. J. Gastroenterol. 2015, 110, 223–262. [Google Scholar] [CrossRef]
- Kanth, P.; Grimmett, J.; Champine, M.; Burt, R.; Samadder, N.J. Hereditary Colorectal Polyposis and Cancer Syndromes: A Primer on Diagnosis and Management. Am. J. Gastroenterol. 2017, 112, 1509–1525. [Google Scholar] [CrossRef]
- Galiatsatos, P.; Foulkes, W.D. Familial Adenomatous Polyposis. Am. J. Gastroenterol. 2006, 101, 385–398. [Google Scholar] [CrossRef]
- Bisgaard, M.L.; Fenger, K.; Bülow, S.; Niebuhr, E.; Mohr, J. Familial Adenomatous Polyposis (FAP): Frequency, Penetrance, and Mutation Rate. Hum. Mutat. 1994, 3, 121–125. [Google Scholar] [CrossRef]
- Senter, L.; Clendenning, M.; Sotamaa, K.; Hampel, H.; Green, J.; Potter, J.D.; Lindblom, A.; Lagerstedt, K.; Thibodeau, S.N.; Lindor, N.M.; et al. The Clinical Phenotype of Lynch Syndrome Due to Germ-Line PMS2 Mutations. Gastroenterology 2008, 135, 419–428.e1. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.C.; Itzkowitz, S.H. Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology 2022, 162, 715–730.e3. [Google Scholar] [CrossRef] [PubMed]
- Eaden, J.A.; Abrams, K.R.; Mayberry, J.F. The Risk of Colorectal Cancer in Ulcerative Colitis: A Meta-Analysis. Gut 2001, 48, 526–535. [Google Scholar] [CrossRef]
- Herszényi, L.; Barabás, L.; Miheller, P.; Tulassay, Z. Colorectal Cancer in Patients with Inflammatory Bowel Disease: The True Impact of the Risk. Dig. Dis. 2015, 33, 52–57. [Google Scholar] [CrossRef]
- Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; Hindryckx, P.; et al. Third European Evidence-Based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-Intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-Anal Pouch Disorders. J. Crohn’s Colitis 2017, 11, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Barberio, B.; Massimi, D.; Cazzagon, N.; Zingone, F.; Ford, A.C.; Savarino, E.V. Prevalence of Primary Sclerosing Cholangitis in Patients with Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Gastroenterology 2021, 161, 1865–1877. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.J.; Crothers, H.; Mytton, J.; Bosch, S.; Iqbal, T.; Ferguson, J.; Hirschfield, G.M. Effects of Primary Sclerosing Cholangitis on Risks of Cancer and Death in People with Inflammatory Bowel Disease, Based on Sex, Race, and Age. Gastroenterology 2020, 159, 915–928. [Google Scholar] [CrossRef]
- Gordon, H.; Burisch, J.; Ellul, P.; Karmiris, K.; Katsanos, K.; Allocca, M.; Bamias, G.; De Acosta, M.B.; Braithwaite, T.; Greuter, T.; et al. ECCO Guidelines on Extraintestinal Manifestations in Inflammatory Bowel Disease. J. Crohn’s Colitis 2024, 18, 1–37. [Google Scholar] [CrossRef]
- Chazouilleres, O.; Beuers, U.; Bergquist, A.; Karlsen, T.H.; Levy, C.; Samyn, M.; Schramm, C.; Trauner, M. EASL Clinical Practice Guidelines on Sclerosing Cholangitis. J. Hepatol. 2022, 77, 761–806. [Google Scholar] [CrossRef]
- McNamara, K.L.; Aronson, M.D.; Cohen, Z. Is There a Role for Prophylactic Colectomy in Lynch Syndrome Patients with Inflammatory Bowel Disease? Int. J. Color. Dis 2016, 31, 9–13. [Google Scholar] [CrossRef]
- Derikx, L.A.A.P.; Smits, L.J.T.; van Vliet, S.; Dekker, E.; Aalfs, C.M.; van Kouwen, M.C.A.; Nagengast, F.M.; Nagtegaal, I.D.; Hoogerbrugge, N.; Hoentjen, F. Colorectal Cancer Risk in Patients with Lynch Syndrome and Inflammatory Bowel Disease. Clin. Gastroenterol. Hepatol. 2017, 15, 454–458.e1. [Google Scholar] [CrossRef] [PubMed]
- Faisal, M.S.; Burke, C.A.; Liska, D.; Lightner, A.L.; Leach, B.; O’Malley, M.; LaGuardia, L.; Click, B.; Achkar, J.; Kalady, M.; et al. Association of Cancer with Comorbid Inflammatory Conditions and Treatment in Patients with Lynch Syndrome. World J. Clin. Oncol. 2022, 13, 49–61. [Google Scholar] [CrossRef]
- Barberio, B.; Savarino, E.; Verstockt, B.; Fumery, M.; Pugliese, D.; Bertani, L.; Buda, A.; Dragoni, G.; Goren, I.; Laish, I.; et al. Hereditary Colorectal Cancer Syndromes and Inflammatory Bowel Diseases: An ECCO CONFER Multicentre Case Series. J. Crohn’s Colitis 2022, 16, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.; Brown, A.; Scott, F.; Doria, N.; Safadi, S.; Patel, S. Lynch Syndrome (LS) Patients with Inflammatory Bowel Disease (IBD) Have Significantly Higher Intestinal Neoplasia Risk than LS Patients without IBD. Digestive Disease Week, 20 May 2024. [Google Scholar]
- Moreira, L.; Balaguer, F.; Lindor, N.; de la Chapelle, A.; Hampel, H.; Aaltonen, L.A.; Hopper, J.L.; Le Marchand, L.; Gallinger, S.; Newcomb, P.A.; et al. Identification of Lynch Syndrome Among Patients with Colorectal Cancer. JAMA 2012, 308, 1555. [Google Scholar] [CrossRef] [PubMed]
- Vasen, H.F.; Watson, P.; Mecklin, J.P.; Lynch, H.T. New Clinical Criteria for Hereditary Nonpolyposis Colorectal Cancer (HNPCC, Lynch Syndrome) Proposed by the International Collaborative Group on HNPCC. Gastroenterology 1999, 116, 1453–1456. [Google Scholar] [CrossRef]
- Umar, A.; Boland, C.R.; Terdiman, J.P.; Syngal, S.; Chapelle, A.d.l.; Ruschoff, J.; Fishel, R.; Lindor, N.M.; Burgart, L.J.; Hamelin, R.; et al. Revised Bethesda Guidelines for Hereditary Nonpolyposis Colorectal Cancer (Lynch Syndrome) and Microsatellite Instability. JNCI J. Natl. Cancer Inst. 2004, 96, 261–268. [Google Scholar] [CrossRef]
- Peltomäki, P. Lynch Syndrome Genes. Fam Cancer 2005, 4, 227–232. [Google Scholar] [CrossRef]
- Win, A.K.; Jenkins, M.A.; Dowty, J.G.; Antoniou, A.C.; Lee, A.; Giles, G.G.; Buchanan, D.D.; Clendenning, M.; Rosty, C.; Ahnen, D.J.; et al. Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer. Cancer Epidemiol. Biomark. Prev. 2017, 26, 404–412. [Google Scholar] [CrossRef]
- Marinelli, C.; Zingone, F.; Inferrera, M.; Lorenzon, G.; Rigo, A.; Facchin, S.; Caccaro, R.; D’Incà, R.; Savarino, E.V. Factors Associated with Disability in Patients with Ulcerative Colitis: A Cross-sectional Study. J. Dig. Dis. 2020, 21, 81–87. [Google Scholar] [CrossRef]
- Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Bonovas, S. Inflammatory Bowel Disease: Estimates from the Global Burden of Disease 2017 Study. Aliment. Pharmacol. Ther. 2020, 51, 261–270. [Google Scholar] [CrossRef]
- Wang, R.; Li, Z.; Liu, S.; Zhang, D. Global, Regional and National Burden of Inflammatory Bowel Disease in 204 Countries and Territories from 1990 to 2019: A Systematic Analysis Based on the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e065186. [Google Scholar] [CrossRef]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef] [PubMed]
- Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; et al. Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases with Time, Based on Systematic Review. Gastroenterology 2012, 142, 46–54.e42. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, K.; Watanabe, T.; Shinozaki, M.; Yokoyama, T.; Sasaki, S.; Furukawa, Y.; Kanazawa, T.; Masaki, T.; Muto, T. Ulcerative Colitis Patients with a Family History of Colorectal Cancer Should Be Subjected to Close and Careful Surveillance. Jpn. J. Clin. Oncol. 1999, 29, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Vasen, H.F.A.; Mecklin, J.-P.; Meera Khan, P.; Lynch, H.T. The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis. Colon Rectum 1991, 34, 424–425. [Google Scholar] [CrossRef]
- Minami, N.; Yoshino, T.; Nakase, H. Unique Endoscopic Findings of Colitis-Associated Colorectal Cancer in a Patient with Ulcerative Colitis and Lynch Syndrome. J. Crohn’s Colitis 2014, 8, 336–337. [Google Scholar] [CrossRef]
- Ayeni, A.A.; Waterland, P.; Evans, M.; Singhal, S.; Patel, R.K.; Akingboye, A. Case Report: Multiple Colorectal Cancers in a Patient with Ulcerative Colitis and Lynch Syndrome: Is There a Role for Prophylactic Colectomy? A Short Report and Review of Literature. Front. Oncol. 2022, 12, 1031606. [Google Scholar] [CrossRef]
- Fukushima, K.; Funayama, Y.; Shibata, C.; Takahashi, K.; Ogawa, H.; Kinouchi, Y.; Noguchi, M.; Kato, E.; Sasaki, I. Familial Adenomatous Polyposis Complicated with Crohn’s Disease. Int. J. Colorectal. Dis. 2006, 21, 730–731. [Google Scholar] [CrossRef]
- Gentile, N.; Kane, S. Familial Adenomatous Polyposis, Suspected HNPCC, and Crohn’s Disease: Two Cases. Inflamm. Bowel Dis. 2012, 18, E1398. [Google Scholar] [CrossRef]
- Samadder, N.J.; Gornick, M.; Everett, J.; Greenson, J.K.; Gruber, S.B. Inflammatory Bowel Disease and Familial Adenomatous Polyposis. J. Crohn’s Colitis 2013, 7, e103–e107. [Google Scholar] [CrossRef]
- Schmitt, M.; Greten, F.R. The Inflammatory Pathogenesis of Colorectal Cancer. Nat. Rev. Immunol. 2021, 21, 653–667. [Google Scholar] [CrossRef]
- Ullman, T.A.; Itzkowitz, S.H. Intestinal Inflammation and Cancer. Gastroenterology 2011, 140, 1807–1816.e1. [Google Scholar] [CrossRef] [PubMed]
- Newmark, H.L.; Yang, K.; Kurihara, N.; Fan, K.; Augenlicht, L.H.; Lipkin, M. Western-Style Diet-Induced Colonic Tumors and Their Modulation by Calcium and Vitamin D in C57Bl/6 Mice: A Preclinical Model for Human Sporadic Colon Cancer. Carcinogenesis 2009, 30, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Kay, J.; Thadhani, E.; Samson, L.; Engelward, B. Inflammation-Induced DNA Damage, Mutations and Cancer. DNA Repair 2019, 83, 102673. [Google Scholar] [CrossRef] [PubMed]
- Canli, Ö.; Nicolas, A.M.; Gupta, J.; Finkelmeier, F.; Goncharova, O.; Pesic, M.; Neumann, T.; Horst, D.; Löwer, M.; Sahin, U.; et al. Myeloid Cell-Derived Reactive Oxygen Species Induce Epithelial Mutagenesis. Cancer Cell 2017, 32, 869–883.e5. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Wan, J.; Yu, J.; Wu, K. Molecular Pathogenesis of Colitis-Associated Colorectal Cancer: Immunity, Genetics, and Intestinal Microecology. Inflamm. Bowel Dis. 2023, 29, 1648–1657. [Google Scholar] [CrossRef]
- DuPont, A.W.; DuPont, H.L. The Intestinal Microbiota and Chronic Disorders of the Gut. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 523–531. [Google Scholar] [CrossRef]
- Schwitalla, S.; Fingerle, A.A.; Cammareri, P.; Nebelsiek, T.; Göktuna, S.I.; Ziegler, P.K.; Canli, O.; Heijmans, J.; Huels, D.J.; Moreaux, G.; et al. Intestinal Tumorigenesis Initiated by Dedifferentiation and Acquisition of Stem-Cell-like Properties. Cell 2013, 152, 25–38. [Google Scholar] [CrossRef]
- Fantini, M.C.; Guadagni, I. From Inflammation to Colitis-Associated Colorectal Cancer in Inflammatory Bowel Disease: Pathogenesis and Impact of Current Therapies. Dig. Liver Dis. 2021, 53, 558–565. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Karin, M. Dangerous Liaisons: STAT3 and NF-ΚB Collaboration and Crosstalk in Cancer. Cytokine Growth Factor Rev. 2010, 21, 11–19. [Google Scholar] [CrossRef]
- Bollrath, J.; Greten, F.R. IKK/NF-B and STAT3 Pathways: Central Signalling Hubs in Inflammation-Mediated Tumour Promotion and Metastasis. EMBO Rep. 2009, 10, 1314–1319. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Shen, S.; Sun, Z.; Shu, P.; Shen, X.; Bu, C.; Ai, F.; Zhang, X.; Tang, A.; Tian, L.; et al. Jak-STAT3 Pathway Triggers DICER1 for Proteasomal Degradation by Ubiquitin Ligase Complex of CUL4A DCAF1 to Promote Colon Cancer Development. Cancer Lett. 2016, 375, 209–220. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Wang, K.; Mucida, D.; Stewart, C.A.; Schnabl, B.; Jauch, D.; Taniguchi, K.; Yu, G.Y.; Österreicher, C.H.; Hung, K.E.; et al. Adenoma-Linked Barrier Defects and Microbial Products Drive IL-23/IL-17-Mediated Tumour Growth. Nature 2012, 491, 254–258. [Google Scholar] [CrossRef]
- Dmitrieva-Posocco, O.; Dzutsev, A.; Posocco, D.F.; Hou, V.; Yuan, W.; Thovarai, V.; Mufazalov, I.A.; Gunzer, M.; Shilovskiy, I.P.; Khaitov, M.R.; et al. Cell-Type-Specific Responses to Interleukin-1 Control Microbial Invasion and Tumor-Elicited Inflammation in Colorectal Cancer. Immunity 2019, 50, 166–180.e7. [Google Scholar] [CrossRef] [PubMed]
- Schwitalla, S.; Ziegler, P.K.; Horst, D.; Becker, V.; Kerle, I.; Begus-Nahrmann, Y.; Lechel, A.; Rudolph, K.L.; Langer, R.; Slotta-Huspenina, J.; et al. Loss of P53 in Enterocytes Generates an Inflammatory Microenvironment Enabling Invasion and Lymph Node Metastasis of Carcinogen-Induced Colorectal Tumors. Cancer Cell 2013, 23, 93–106. [Google Scholar] [CrossRef]
- Curtius, K.; Wright, N.A.; Graham, T.A. An Evolutionary Perspective on Field Cancerization. Nat. Rev. Cancer 2018, 18, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Shih, I.M.; Wang, T.L.; Traverso, G.; Romans, K.; Hamilton, S.R.; Ben-Sasson, S.; Kinzler, K.W.; Vogelstein, B. Top-down Morphogenesis of Colorectal Tumors. Proc. Natl. Acad. Sci. USA 2001, 98, 2640–2645. [Google Scholar] [CrossRef] [PubMed]
- Spaander, M.C.W.; Zauber, A.G.; Syngal, S.; Blaser, M.J.; Sung, J.J.; You, Y.N.; Kuipers, E.J. Young-Onset Colorectal Cancer. Nat. Rev. Dis. Primers 2023, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Fearon, E.R.; Vogelstein, B. A Genetic Model for Colorectal Tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Dulai, P.S.; Sandborn, W.J.; Gupta, S. Colorectal Cancer and Dysplasia in Inflammatory Bowel Disease: A Review of Disease Epidemiology, Pathophysiology, and Management. Cancer Prev. Res. 2016, 9, 887–894. [Google Scholar] [CrossRef]
- Aaltonen, L.A.; Peltomäki, P.; Leach, F.S.; Sistonen, P.; Pylkkänen, L.; Mecklin, J.-P.; Järvinen, H.; Powell, S.M.; Jen, J.; Hamilton, S.R.; et al. Clues to the Pathogenesis of Familial Colorectal Cancer. Science 1993, 260, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Söreide, K.; Janssen, E.A.M.; Söiland, H.; Körner, H.; Baak, J.P.A. Microsatellite Instability in Colorectal Cancer. Br. J. Surg. 2006, 93, 395–406. [Google Scholar] [CrossRef]
- Issa, J.-P. CpG Island Methylator Phenotype in Cancer. Nat. Rev. Cancer 2004, 4, 988–993. [Google Scholar] [CrossRef]
- Issa, J.P.; Ahuja, N.; Toyota, M.; Bronner, M.P.; Brentnall, T.A. Accelerated Age-Related CpG Island Methylation in Ulcerative Colitis. Cancer Res. 2001, 61, 3573–3577. [Google Scholar] [PubMed]
- Harada, S.; Morlote, D. Molecular Pathology of Colorectal Cancer. Adv. Anat. Pathol. 2020, 27, 20–26. [Google Scholar] [CrossRef]
- Boland, C.R.; Goel, A. Microsatellite Instability in Colorectal Cancer. Gastroenterology 2010, 138, 2073–2087.e3. [Google Scholar] [CrossRef]
- Kane, M.F.; Loda, M.; Gaida, G.M.; Lipman, J.; Mishra, R.; Goldman, H.; Jessup, J.M.; Kolodner, R. Methylation of the HMLH1 Promoter Correlates with Lack of Expression of HMLH1 in Sporadic Colon Tumors and Mismatch Repair-Defective Human Tumor Cell Lines. Cancer Res. 1997, 57, 808–811. [Google Scholar] [PubMed]
- Barras, D.; Missiaglia, E.; Wirapati, P.; Sieber, O.M.; Jorissen, R.N.; Love, C.; Molloy, P.L.; Jones, I.T.; McLaughlin, S.; Gibbs, P.; et al. BRAF V600E Mutant Colorectal Cancer Subtypes Based on Gene Expression. Clin. Cancer Res. 2017, 23, 104–115. [Google Scholar] [CrossRef]
- Ugai, T.; Haruki, K.; Harrison, T.A.; Cao, Y.; Qu, C.; Chan, A.T.; Campbell, P.T.; Akimoto, N.; Berndt, S.; Brenner, H.; et al. Molecular Characteristics of Early-Onset Colorectal Cancer According to Detailed Anatomical Locations: Comparison with Later-Onset Cases. Am. J. Gastroenterol. 2023, 118, 712–726. [Google Scholar] [CrossRef]
- Arif, A.A.; Chahal, D.; Ladua, G.K.; Bhang, E.; Salh, B.; Rosenfeld, G.; Loree, J.M.; Donnellan, F. Hereditary and Inflammatory Bowel Disease-Related Early Onset Colorectal Cancer Have Unique Characteristics and Clinical Course Compared with Sporadic Disease. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1785–1791. [Google Scholar] [CrossRef]
- Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The Consensus Molecular Subtypes of Colorectal Cancer. Nat. Med. 2015, 21, 1350–1356. [Google Scholar] [CrossRef] [PubMed]
- Dunne, P.D.; Arends, M.J. Molecular Pathological Classification of Colorectal Cancer—An Update. Virchows Arch. 2024, 484, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.; Yoshino, T.; Ruíz-García, E.; Mostafa, N.; Cann, C.G.; O’Brian, B.; Benny, A.; Perez, R.O.; Cremolini, C. Colorectal Cancer. Lancet 2024, 404, 294–310. [Google Scholar] [CrossRef] [PubMed]
- De’ Angelis, G.L.; Bottarelli, L.; Azzoni, C.; De’ Angelis, N.; Leandro, G.; Di Mario, F.; Gaiani, F.; Negri, F. Microsatellite Instability in Colorectal Cancer. Acta Biomed. 2018, 89, 97–101. [Google Scholar] [CrossRef]
- Abildgaard, A.B.; Nielsen, S.V.; Bernstein, I.; Stein, A.; Lindorff-Larsen, K.; Hartmann-Petersen, R. Lynch Syndrome, Molecular Mechanisms and Variant Classification. Br. J. Cancer 2023, 128, 726–734. [Google Scholar] [CrossRef]
- Abdel-Rahman, W.M.; Peltomaki, P. Lynch Syndrome and Related Familial Colorectal Cancers. Crit. Rev. Oncog. 2008, 14, 1–22. [Google Scholar] [CrossRef]
- Annese, V.; Daperno, M.; Rutter, M.D.; Amiot, A.; Bossuyt, P.; East, J.; Ferrante, M.; Götz, M.; Katsanos, K.H.; Kießlich, R.; et al. European Evidence Based Consensus for Endoscopy in Inflammatory Bowel Disease. J. Crohns Colitis 2013, 7, 982–1018. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network Genetic/Familial High-Risk Assessment: Colorectal. Available online: https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf (accessed on 7 July 2024).
- Kohonen-Corish, M.R.J.; Daniel, J.J.; te Riele, H.; Buffinton, G.D.; Dahlstrom, J.E. Susceptibility of Msh2-Deficient Mice to Inflammation-Associated Colorectal Tumors. Cancer Res. 2002, 62, 2092–2097. [Google Scholar]
- Caruso, M.L.; Cristofaro, G.; Lynch, H.T. HNPCC-Lynch Syndrome and Idiopathic Inflammatory Bowel Disease. A Hypothesis on Sharing of Genes. Anticancer Res. 1997, 17, 2647–2649. [Google Scholar] [PubMed]
- Sandborn, W.J. Inflammatory Bowel Disease and Hereditary Nonpolyposis Colorectal Cancer: Is There a Genetic Link? Gastroenterology 1998, 114, 608–609. [Google Scholar] [CrossRef]
- Pokorny, R.M.; Hofmeister, A.; Galandiuk, S.; Dietz, A.B.; Cohen, N.D.; Neibergs, H.L. Crohn’s Disease and Ulcerative Colitis Are Associated with the DNA Repair Gene MLH1. Ann. Surg. 1997, 225, 718–723, discussion 723–725. [Google Scholar] [CrossRef] [PubMed]
- Svrcek, M.; Fontugne, J.; Duval, A.; Fléjou, J.-F. Inflammatory Bowel Disease-Associated Colorectal Cancers and Microsatellite Instability: An Original Relationship. Am. J. Surg. Pathol. 2013, 37, 460–462. [Google Scholar] [CrossRef] [PubMed]
- Fleisher, A.S.; Esteller, M.; Harpaz, N.; Leytin, A.; Rashid, A.; Xu, Y.; Liang, J.; Stine, O.C.; Yin, J.; Zou, T.T.; et al. Microsatellite Instability in Inflammatory Bowel Disease-Associated Neoplastic Lesions Is Associated with Hypermethylation and Diminished Expression of the DNA Mismatch Repair Gene, HMLH1. Cancer Res. 2000, 60, 4864–4868. [Google Scholar] [PubMed]
Studies Investigating Clinical Outcomes of Patients with Co-Existing IBD and Lynch Syndrome (LS) | ||||||||
---|---|---|---|---|---|---|---|---|
Authors | Year | Country | IBD + LS (n) | LS (n) | CRCs (n) | IBD-LS Related CRC (%) | LS-Related CRC (%) | p-Value |
McNamara et al. [20] | 2016 | United States | 12 | 4 | 33.3% (4/12) | |||
Derikx et al. [21] | 2017 | Netherlands | 15 | 1031 | 315 | 26.7% (4/15) | 30.2% (15/1031) | 0.205 |
Faisal et al. [22] | 2022 | United States | 7 | 50 | 57.1% (4/7) | 53.5% (23/43) | 0.86 | |
Barberio et al. [23] | 2022 | Italy, France, Belgium, Israel, Germany, Malta | 16 | 50% (8/16) | ||||
Patel S et al. [24] | 2024 | United States | 568 | 24,016 | 1277 | 7.7% (44/567) | 4.9% (1183/25,306) | <0.001 |
CRC Location | Endoscopic Features | Histologic Features | Molecular Pathway | |
---|---|---|---|---|
HCCS | In LS, CRC are typycally located in the right colon | Poypoid and non-polypoid lesions; multiple/multifocal | CRC can display a poor differentiation, and exhibit a mucinous or signet ring histological type | In LS mostly via microsatellite instability (MSI) |
LS, FAP, aFAP, MAP | In polyposis, syndromes can be located in any segment (left > right) | In polyposis, syndromes displays chromosomal instability (via inactivation of APC, and overexpression of β-catenin) | ||
IBD (UC, CD) | Can be located in any segment, usually linked to disease extension (left > right) | Polypoid, non-polypoid, or invisible; inflammatory changes can be present; stricturing, ulcerated, irregular; multifocal | Mucinous, usually moderately differentiated to signet ring cell with/without inflammatory component | Inflammation-dysplasia-carcinoma sequence; aneuploidy, TP53, APC, and KRAS mutations |
HCCS + IBD | Can be located in any segment, can present multiple neoplasia (synchronous/metachronous) | Mixed and heterogeneous aspects; polypoid, non-polypoid, or invisible; multifocal | From mucinous (moderately differentiated) to partly signet ring cell carcinoma (poorly differentiated), or micropapillary, partly mucinous | Unknown; possible DNA damage linked to inflammation, with worsened impairment/suppression of MMR |
Surveillance Recommendations for Genetic and High-Risk CRC Individuals | ||||
---|---|---|---|---|
Age to Begin Surveillance (Years) | Surveillance Interval (Years) | Surveillance Procedures | Reference | |
Inflammatory Bowel Diseases | ||||
6–8 after symptoms onset | 1–3–5 according to risk stratification | Colonoscopy | [15,78] | |
Hereditary Colorectal Cancer Syndrome | ||||
Lynch Syndrome | ||||
MLH1 | 20–25 | 1–2 a | Colonoscopy | [7] |
20–25 b | 1–2 | Colonoscopy | [79] | |
MSH2 | 20–25 | 1–2 | Colonoscopy | [7] |
20–25 b | 1–2 | Colonoscopy | [79] | |
MSH6 | 25–30 | 1–2 | Colonoscopy | [7] |
30–35 c | 1–3 | Colonoscopy | [79] | |
PSM2 | 25–30 | 1–2 | Colonoscopy | [7] |
30–35 c | 1–3 | Colonoscopy | [79] | |
Familial Adenomatous Polyposis | ||||
APC | 10–15 | 1–2 | Flexible RSS or Colonoscopy d | [7] |
10–15 | 1 | Colonoscopy | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandaleone, L.; Dal Buono, A.; Gabbiadini, R.; Marcozzi, G.; Polverini, D.; Carvello, M.; Spinelli, A.; Hassan, C.; Repici, A.; Bezzio, C.; et al. Hereditary Colorectal Cancer Syndromes and Inflammatory Bowel Diseases: Risk Management and Surveillance Strategies. Cancers 2024, 16, 2967. https://doi.org/10.3390/cancers16172967
Brandaleone L, Dal Buono A, Gabbiadini R, Marcozzi G, Polverini D, Carvello M, Spinelli A, Hassan C, Repici A, Bezzio C, et al. Hereditary Colorectal Cancer Syndromes and Inflammatory Bowel Diseases: Risk Management and Surveillance Strategies. Cancers. 2024; 16(17):2967. https://doi.org/10.3390/cancers16172967
Chicago/Turabian StyleBrandaleone, Luca, Arianna Dal Buono, Roberto Gabbiadini, Giacomo Marcozzi, Davide Polverini, Michele Carvello, Antonino Spinelli, Cesare Hassan, Alessandro Repici, Cristina Bezzio, and et al. 2024. "Hereditary Colorectal Cancer Syndromes and Inflammatory Bowel Diseases: Risk Management and Surveillance Strategies" Cancers 16, no. 17: 2967. https://doi.org/10.3390/cancers16172967
APA StyleBrandaleone, L., Dal Buono, A., Gabbiadini, R., Marcozzi, G., Polverini, D., Carvello, M., Spinelli, A., Hassan, C., Repici, A., Bezzio, C., & Armuzzi, A. (2024). Hereditary Colorectal Cancer Syndromes and Inflammatory Bowel Diseases: Risk Management and Surveillance Strategies. Cancers, 16(17), 2967. https://doi.org/10.3390/cancers16172967