Association of Functional Polymorphisms in MSH3 and IL-6 Pathway Genes with Different Types of Microsatellite Instability in Sporadic Colorectal Cancer
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Microsatellite Instability Analysis
2.3. MSH3 Exon 1 Repeat Polymorphism Analysis
2.4. PCR and Restriction Fragment Length Polymorphism Analysis of the MSH3+3133A/G Polymorphism
2.5. Real-Time PCR SNP Analysis of the IL-6-174G/C Promoter Polymorphism
2.6. PCR and Restriction Fragment Length Polymorphism Analysis of IL-6R+48892A/C and gp130+148G/C Polymorphisms
2.7. Statistical Analysis
3. Results
3.1. Analysis of the MSH3 Exon 1 Polymorphism
3.2. Analysis of the MSH3+3133A/G Polymorphism
3.3. Analysis of IL-6-174G/C Promoter Polymorphism
3.4. Analysis of the IL-6R+48892A/C Polymorphism
3.5. Analysis of the gp130+148G/C Polymorphism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Rebuzzi, F.; Ulivi, P.; Tedaldi, G. Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test? Int. J. Mol. Sci. 2023, 24, 2137. [Google Scholar] [CrossRef]
- Carethers, J.M. Microsatellite instability pathway and EMAST in colorectal Cancer. Curr. Color. Cancer Rep. 2017, 13, 73–80. [Google Scholar] [CrossRef]
- Carethers, J.M.; Koi, M.; Tseng-Rogenski, S.S. EMAST is a form of microsatellite instability that is initiated by inflammation and modulates colorectal cancer progression. Genes 2015, 31, 185–205. [Google Scholar] [CrossRef]
- Haugen, A.C.; Goel, A.; Yamada, K.; Marra, G.; Nguyen, T.P.; Nagasaka, T.; Kanazawa, S.; Koike, J.; Kikuchi, Y.; Zhong, X.; et al. Genetic instability caused by loss of MutS homologue 3 in human colorectal cancer. Cancer Res. 2008, 68, 8465–8472. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.; Spier, I.; Zhao, B.; Kloth, M.; Marquez, J.; Hinrichsen, I.; Kirfel, J.; Tafazzoli, A.; Horpaopan, S.; Uhlhaas, S.; et al. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis. Am. J. Hum. Genet. 2016, 99, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Tseng-Rogenski, S.S.; Chung, H.; Wilk, M.B.; Zhang, S.; Iwaizumi, M.; Carethers, J.M. Oxidative stress induces nuclear-to-cytosol shift of hMSH3, a potential mechanism for EMAST in colorectal cancer cells. PLoS ONE 2012, 7, e50616. [Google Scholar] [CrossRef]
- Tseng-Rogenski, S.S.; Hamaya, Y.; Choi, D.Y.; Carethers, J.M. Interleukin 6 alters localization of hMSH3, leading to DNA mismatch repair defects in colorectal cancer cells. Gastroenterology 2015, 148, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, E.; Orimo, H.; Ikejima, M.; Shimada, T. Nine-bp repeat polymorphism in exon 1 of the hMSH3 gene. Jpn. J. Hum. Genet. 1995, 40, 343–345. [Google Scholar] [CrossRef]
- Tseng-Rogenski, S.S.; Munakata, K.; Choi, D.Y.; Martin, P.K.; Mehta, S.; Koi, M.; Zheng, W.; Zhang, Y.; Carethers, J.M. The Human DNA Mismatch Repair Protein MSH3 Contains Nuclear Localization and Export Signals That Enable Nuclear-Cytosolic Shuttling in Response to Inflammation. Mol. Cell. Biol. 2020, 40, e00029-20. [Google Scholar] [CrossRef]
- Miao, H.K.; Chen, L.P.; Cai, D.P.; Kong, W.J.; Xiao, L.; Lin, J. MSH3 rs26279 polymorphism increases cancer risk: A meta-analysis. Int. J. Clin. Exp. Pathol. 2015, 8, 11060–11067. [Google Scholar]
- Holmer, R.; Wätzig, G.H.; Tiwari, S.; Rose-John, S.; Kalthoff, H. Interleukin-6 trans-signaling increases the expression of carcinoembryonic antigen-related cell adhesion molecules 5 and 6 in colorectal cancer cells. BMC Cancer 2015, 15, 975. [Google Scholar] [CrossRef]
- Rose-John, S.; Jenkins, B.J.; Garbers, C.; Moll, J.M.; Scheller, J. Targeting IL-6 trans-signalling: Past, present and future prospects. Nat. Rev. Immunol. 2023, 23, 666–681. [Google Scholar] [CrossRef]
- Taher, M.Y.; Davies, D.M.; Maher, J. The role of the interleukin (IL)-6/IL-6 receptor axis in cancer. Biochem. Soc. Trans. 2018, 46, 1449–1462. [Google Scholar] [CrossRef]
- Jostock, T.; Müllberg, J.; Ozbek, S.; Atreya, R.; Blinn, G.; Voltz, N.; Fischer, M.; Neurath, M.F.; Rose-John, S. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur. J. Biochem. 2001, 268, 160–167. [Google Scholar] [CrossRef]
- Terry, C.F.; Loukaci, V.; Green, F.R. Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J. Biol. Chem. 2000, 275, 18138–18144. [Google Scholar] [CrossRef]
- Jones, K.G.; Brull, D.J.; Brown, L.C.; Sian, M.; Greenhalgh, R.M.; Humphries, S.E.; Powell, J.T. Interleukin-6 (IL-6) and the prognosis of abdominal aortic aneurysms. Circulation 2001, 103, 2260–2265. [Google Scholar] [CrossRef]
- Garbers, C.; Monhasery, N.; Aparicio-Siegmund, S.; Lokau, J.; Baran, P.; Nowell, M.A.; Jones, S.A.; Rose-John, S.; Scheller, J. The interleukin-6 receptor Asp358Ala single nucleotide polymorphism rs2228145 confers increased proteolytic conversion rates by ADAM proteases. Biochim. Biophys. Acta 2014, 1842, 1485–1494. [Google Scholar] [CrossRef]
- Wonnerth, A.; Katsaros, K.M.; Krychtiuk, K.A.; Speidl, W.S.; Kaun, C.; Thaler, K.; Huber, K.; Wojta, J.; Maurer, G.; Seljeflot, I.; et al. Glycoprotein 130 polymorphism predicts soluble glycoprotein 130 levels. Metabolism 2014, 63, 647–653. [Google Scholar] [CrossRef]
- Spaventi, R.; Pecur, L.; Pavelic, K.; Pavelic, Z.P.; Spaventi, S.; Stambrook, P.J. Human tumour bank in Croatia: A possible model for a small bank as part of the future European tumour bank network. Eur. J. Cancer 1994, 30A, 419. [Google Scholar] [CrossRef]
- Boland, C.R.; Thibodeau, S.N.; Hamilton, S.R.; Sidransky, D.; Eshleman, J.R.; Burt, R.W.; Meltzer, S.J.; Rodriguez-Bigas, M.A.; Fodde, R.; Ranzani, G.N.; et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998, 58, 5248–5257. [Google Scholar]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2021, 144, 646–674. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Becker, C.; Fantini, M.C.; Wirtz, S.; Nikolaev, A.; Lehr, H.A.; Galle, P.R.; Rose-John, S.; Neurath, M.F. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 2005, 4, 217–220. [Google Scholar] [CrossRef]
- Waldner, M.J.; Foersch, S.; Neurath, M.F. Interleukin-6-a key regulator of colorectal cancer development. Int. J. Biol. Sci. 2012, 8, 1248–1253. [Google Scholar] [CrossRef]
- Munakata, K.; Koi, M.; Kitajima, T.; Tseng-Rogenski, S.; Uemura, M.; Matsuno, H.; Kawai, K.; Sekido, Y.; Mizushima, T.; Toiyama, Y.; et al. Inflammation-Associated Microsatellite Alterations Caused by MSH3 Dysfunction Are Prevalent in Ulcerative Colitis and Increase With Neoplastic Advancement. Clin. Transl. Gastroenterol. 2019, 10, e00105. [Google Scholar] [CrossRef]
- Mas-Ponte, D.; McCullough, M.; Supek, F. Spectrum of DNA mismatch repair failures viewed through the lens of cancer genomics and implications for therapy. Clin. Sci. 2022, 136, 383–404. [Google Scholar] [CrossRef]
- Koi, M.; Tseng-Rogenski, S.S.; Carethers, J.M. Inflammation-associated microsatellite alterations: Mechanisms and significance in the prognosis of patients with colorectal cancer. World J. Gastrointest. Oncol. 2018, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- IL6R Genetics Consortium Emerging Risk Factors Collaboration. Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 studies. Lancet 2012, 379, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Atreya, R.; Mudter, J.; Finotto, S.; Müllberg, J.; Jostock, T.; Wirtz, S.; Schütz, M.; Bartsch, B.; Holtmann, M.; Becker, C.; et al. Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: Evidence in Crohn disease and experimental colitis in vivo. Nat. Med. 2000, 6, 583–588. [Google Scholar] [CrossRef] [PubMed]
n (%) | Group S (%) | Group M (%) | Group E (%) | ||
---|---|---|---|---|---|
Gender | M | 121 (62.1) | 71 (61.7) | 14 (53.8) | 36 (66.7) |
F | 74 (37.9) | 44 (38.3) | 12 (46.2) | 18 (33.3) | |
Age | ≥65 y | 127 (65.1) | 79 (68.7) | 15 (57.7) | 33 (61.1) |
<65 y | 68 (34.9) | 36 (31.3) | 11 (42.3) | 21 (38.9) | |
Dukes | A | 27 (13.8) | 18 (15.7) | 0 (0) | 9 (16.7) |
B | 75 (38.5) | 41 (35.7) | 14 (53.8) | 20 (37.0) | |
C | 78 (40.0) | 49 (42.6) | 11 (42.3) | 18 (33.3) | |
D | 15 (7.7) | 7 (6.1) | 1 (3.9) | 7 (13.0) | |
Grade | 1 | 62 (32.1) | 37 (32.5) | 9 (34.6) | 16 (30.2) |
2 | 111 (57.5) | 65 (57.0) | 13 (50.0) | 33 (62.3) | |
3 | 20 (10.4) | 12 (10.5) | 4 (15.4) | 4 (7.5) | |
Size | ≥5 cm | 106 (54.9) | 54 (47.8) | 20 (76.9) | 32 (59.3) |
<5 cm | 87 (45.1) | 59 (52.2) | 6 (23.1) | 22 (40.7) |
MSH3 Exon 1 | Group S | Group M | Group E |
---|---|---|---|
n = 115 | n = 26 | n = 55 | |
Genotype | n (%) | n (%) | n (%) |
FL/FL | 49 (42.6) | 13 (50) | 24 (43.6) |
FL/∆ | 28 (24.3) | 3 (11.5) | 13 (23.6) |
∆/∆ | 11 (9.6) | 5 (19.2) | 8 (14.5) |
FL/ins9 | 11 (9.6) | 3 (2.6) | 5 (4.3) |
FL/A5 | 3 (2.6) | 1 (0.9) | 1 (0.9) |
FL/∆/ins9 | 4 (3.5) | 0 (0) | 0 (0) |
∆/ins9 | 3 (2.6) | 0 (0) | 0 (0) |
FL/ins18 | 0 (0) | 0 (0) | 3 (2.6) |
ins9/ins9 | 2 (1.7) | 0 (0) | 1 (0.9) |
FL/ins4 | 1 (0.9) | 0 (0) | 0 |
ins9/ins18 | 1 (0.9) | 1 (0.9) | 0 |
ins18/ins18 | 1 (0.9) | 0 (0) | 0 |
A5/∆ | 1 (0.9) | 0 (0) | 0 |
Alleles | |||
FL | 145 (61.966) | 33 (63.462) | 33 (63.462) |
∆ | 58 (24.786) | 13 (25) | 13 (25) |
ins9 | 23 (9.829) | 4 (7.692) | 4 (7.692) |
ins18 | 3 (0.013) | 1 (0.004) | 1 (0.004) |
ins4 | 1 (0.004) | 0 | 0 |
A5 | 4 (0.017) | 1 (0.004) | 1 (0.004) |
Polymorphisms | Group S | Group E | p | Group S | Group M | p | Group E | Group M | p |
---|---|---|---|---|---|---|---|---|---|
n = 115 | n = 55 | n = 115 | n = 26 | n = 55 | n = 26 | ||||
MSH3+3133A/G | |||||||||
Genotype | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |||
AA | 56 (48.7) | 28 (50.9) | - | 56 (48.7) | 16 (61.5) | - | 28 (50.9) | 16 (61.5) | - |
AG | 52 (45.2) | 27 (49.1) | >0.999 | 52 (45.2) | 8 (30.8) | 0.257 | 27 (49.1) | 8 (30.8) | 0.226 |
GG | 7 (6.1) | 0 (0) | 0.095 | 7 (6.1) | 2 (7.7) | >0.999 | 0 (0) | 2 (7.7) | 0.148 |
Alleles | |||||||||
A | 164 (71.3) | 83 (75.5) | - | 164 (71.3) | 40 (76.9) | - | 83 (75.5) | 40 (76.9) | - |
G | 67 (28.7) | 27 (24.5) | 0.438 | 67 (28.7) | 12 (23.1) | 0.494 | 27 (24.5) | 12 (23.1) | >0.999 |
IL-6-174G/C | |||||||||
Genotype | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |||
GG | 37 (32.2) | 16 (29) | - | 37 (32.2) | 8 (30.8) | - | 16 (29) | 8 (30.8) | - |
GC | 66 (57.4) | 25 (45.5) | 0.848 | 66 (57.4) | 14 (53.8) | >0.999 | 25 (45.5) | 14 (53.8) | >0.999 |
CC | 12 (10.4) | 14 (25.5) | 0.051 | 12 (10.4) | 4 (15.4) | 0.715 | 14 (25.5) | 4 (15.4) | 0.506 |
Alleles | |||||||||
G | 140 (60.9) | 57 (51.8) | - | 140 (60.9) | 30 (57.7) | - | 57 (51.8) | 30 (57.7) | - |
C | 90 (39.1) | 53 (48.2) | 0.127 | 90 (39.1) | 22 (42.3) | 0.754 | 53 (48.2) | 22 (42.3) | 0.505 |
IL-6R+48892A/C | |||||||||
Genotype | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |||
AA | 48 (41.7) | 23 (41.8) | - | 48 (41.7) | 9 (34.6) | - | 23 (41.8) | 9 (34.6) | - |
AC | 54 (47) | 26 (47.2) | >0.999 | 54 (47) | 17 (65.4) | 0.278 | 26 (47.2) | 17 (65.4) | 0.336 |
CC | 13 (11.3) | 6 (11) | >0.999 | 13 (11.3) | 0 (0) | 0.193 | 6(11) | 0 (0) | 0.303 |
Alleles | |||||||||
A | 150 (65.2) | 72 (65.5) | - | 150 (65.2) | 35 (67.3) | - | 72 (65.5) | 35 (67.3) | - |
C | 80 (34.8) | 38 (34.5) | >0.999 | 80 (34.8) | 17 (32.7) | 0.872 | 38 (34.5) | 17 (32.7) | 0.860 |
gp130+148G/C | |||||||||
Genotype | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | |||
GG | 80 (69.6) | 47 (85.5) | - | 80 (69.6) | 22 (84.6) | - | 47 (85.5) | 22 (84.6) | - |
GC + CC | 35 (30.4) | 8 (14.5) | 0.037 * | 35 (30.4) | 4 (15.4) | 0.149 | 8 (14.5) | 4 (15.4) | >0.999 |
Alleles | |||||||||
G | 191 (83) | 101 (91.8) | - | 191 (83) | 47 (90.4) | - | 101 (91.8) | 47 (90.4) | - |
C | 39 (17) | 9 (8.2) | 0.031 * | 39 (17) | 5 (9.6) | 0.212 | 9 (8.2) | 5 (9.6) | 0.769 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salar, A.; Vuković Đerfi, K.; Pačić, A.; Škrtić, A.; Cacev, T.; Kapitanović, S. Association of Functional Polymorphisms in MSH3 and IL-6 Pathway Genes with Different Types of Microsatellite Instability in Sporadic Colorectal Cancer. Cancers 2024, 16, 2916. https://doi.org/10.3390/cancers16162916
Salar A, Vuković Đerfi K, Pačić A, Škrtić A, Cacev T, Kapitanović S. Association of Functional Polymorphisms in MSH3 and IL-6 Pathway Genes with Different Types of Microsatellite Instability in Sporadic Colorectal Cancer. Cancers. 2024; 16(16):2916. https://doi.org/10.3390/cancers16162916
Chicago/Turabian StyleSalar, Anamarija, Kristina Vuković Đerfi, Arijana Pačić, Anita Škrtić, Tamara Cacev, and Sanja Kapitanović. 2024. "Association of Functional Polymorphisms in MSH3 and IL-6 Pathway Genes with Different Types of Microsatellite Instability in Sporadic Colorectal Cancer" Cancers 16, no. 16: 2916. https://doi.org/10.3390/cancers16162916
APA StyleSalar, A., Vuković Đerfi, K., Pačić, A., Škrtić, A., Cacev, T., & Kapitanović, S. (2024). Association of Functional Polymorphisms in MSH3 and IL-6 Pathway Genes with Different Types of Microsatellite Instability in Sporadic Colorectal Cancer. Cancers, 16(16), 2916. https://doi.org/10.3390/cancers16162916