Implication of Capillary Morphogenesis Gene 2 (CMG2) in the Disease Progression and Peritoneal Metastasis of Pancreatic Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Cell Culture
2.2. Pancreatic Tissue Sample Collection
2.3. Public Datasets
2.4. Immunohistochemical Staining of CMG2 in Pancreatic Cancer Tissue Microarray
2.5. CMG2 Knockdown and Overexpression
2.6. RNA Extraction, PCR and QPCR
2.7. Protein Extraction and Western Blotting
2.8. In Vitro Cell Proliferation Assay
2.9. In Vitro Invasion Assay
2.10. In Vitro Migration Assay
2.11. Cell–Matrix Adhesion Assay
2.12. Adhesion to Mesothelial Cells
2.13. Cell Aggregation Assay
2.14. Hoechst Staining to Detect Apoptotic Cells
2.15. Cell Viability Test with CCK8
2.16. Flow Cytometric Apoptosis Assay
2.17. Proteomic Analysis Using Mass Spectrometry
2.18. Kinexus Protein Array Analysis
2.19. Immunoprecipitation (IP)
2.20. Statistical Analysis
3. Results
3.1. Upregulated CMG2 in Pancreatic Cancer and Disease Progression
3.2. Influence of CMG2 on Cellular Functions of Pancreatic Cancer Cells
3.3. CMG2 and Adhesion of Pancreatic Cancer Cells to Mesothelial Cells
3.4. Influence of CMG2 on Survival and Aggregation of Suspended Pancreatic Cancer Cells
3.5. Regulation of Other Adhesion Molecules in Pancreatic Cancer by CMG2
3.6. CMG2 Upregulated Other Adhesion Molecules through Both EGFR and FAK Pathways
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Dunn, J.A.; Stocken, D.D.; Almond, J.; Link, K.; Beger, H.; Bassi, C.; Falconi, M.; Pederzoli, P.; Dervenis, C.; et al. Adjuvant Chemoradiotherapy and Chemotherapy in Resectable Pancreatic Cancer: A Randomised Controlled Trial. Lancet 2001, 358, 1576–1585. [Google Scholar] [CrossRef]
- Jemal, A.; Siegel, R.; Ward, E.; Hao, Y.; Xu, J.; Thun, M.J. Cancer Statistics, 2009. CA Cancer J. Clin. 2009, 59, 225–249. [Google Scholar] [CrossRef] [PubMed]
- Ilic, M.; Ilic, I. Epidemiology of Pancreatic Cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef]
- Bell, S.E.; Mavila, A.; Salazar, R.; Bayless, K.J.; Kanagala, S.; Maxwell, S.A.; Davis, G.E. Differential Gene Expression during Capillary Morphogenesis in 3D Collagen Matrices: Regulated Expression of Genes Involved in Basement Membrane Matrix Assembly, Cell Cycle Progression, Cellular Differentiation and G-Protein Signaling. J. Cell Sci. 2001, 114 Pt 15, 2755–2773. [Google Scholar] [CrossRef] [PubMed]
- Scobie, H.M.; Rainey, G.J.; Bradley, K.A.; Young, J.A. Human Capillary Morphogenesis Protein 2 Functions as an Anthrax Toxin Receptor. Proc. Natl. Acad. Sci. USA 2003, 100, 5170–5174. [Google Scholar] [CrossRef]
- Bradley, K.A.; Mogridge, J.; Mourez, M.; Collier, R.J.; Young, J.A. Identification of the Cellular Receptor for Anthrax Toxin. Nature 2001, 414, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Reeves, C.V.; Dufraine, J.; Young, J.A.; Kitajewski, J. Anthrax Toxin Receptor 2 Is Expressed in Murine and Tumor Vasculature and Functions in Endothelial Proliferation and Morphogenesis. Oncogene 2010, 29, 789–801. [Google Scholar] [CrossRef]
- Ye, L.; Sun, P.H.; Malik, M.F.; Mason, M.D.; Jiang, W.G. Capillary Morphogenesis Gene 2 Inhibits Growth of Breast Cancer Cells and Is Inversely Correlated with the Disease Progression and Prognosis. J. Cancer Res. Clin. Oncol. 2014, 140, 957–967. [Google Scholar] [CrossRef]
- Ye, L.; Sanders, A.J.; Sun, P.H.; Mason, M.D.; Jiang, W.G. Capillary Morphogenesis Gene 2 Regulates Adhesion and Invasiveness of Prostate Cancer Cells. Oncol. Lett. 2014, 7, 2149–2153. [Google Scholar] [CrossRef]
- Fang, Z.; Killick, C.; Halfpenny, C.; Frewer, N.; Frewer, K.A.; Ruge, F.; Jiang, W.G.; Ye, L. Sex Hormone-Regulated Cmg2 Is Involved in Breast and Prostate Cancer Progression. Cancer Genom. Proteom. 2022, 19, 703–710. [Google Scholar] [CrossRef]
- Xu, Y.; He, Y.; Xu, W.; Lu, T.; Liang, W.; Jin, W. Promotive Effects of Capillary Morphogenetic Protein 2 on Glioma Cell Invasion and the Molecular Mechanism. Folia Neuropathol. 2019, 57, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Yang, L.; Yi, W.; Xiang, D.; Wang, Y.; Zhou, Z.; Qian, F.; Ren, Y.; Cui, W.; Zhang, X.; et al. Capillary Morphogenesis Gene 2 Maintains Gastric Cancer Stem-Like Cell Phenotype by Activating a Wnt/Beta-Catenin Pathway. Oncogene 2018, 37, 3953–3966. [Google Scholar] [CrossRef]
- Greither, T.; Wedler, A.; Rot, S.; Kessler, J.; Kehlen, A.; Holzhausen, H.J.; Bache, M.; Wurl, P.; Taubert, H.; Kappler, M. Cmg2 Expression Is an Independent Prognostic Factor for Soft Tissue Sarcoma Patients. Int. J. Mol. Sci. 2017, 18, 2648. [Google Scholar] [CrossRef]
- Dart, D.A.; Arisan, D.E.; Owen, S.; Hao, C.; Jiang, W.G.; Uysal-Onganer, P. Wnt-11 Expression Promotes Invasiveness and Correlates with Survival in Human Pancreatic Ductal Adeno Carcinoma. Genes 2019, 10, 921. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, R.A.; Marayati, R.; Flate, E.L.; Volmar, K.E.; Loeza, S.G.; Hoadley, K.A.; Rashid, N.U.; Williams, L.A.; Eaton, S.C.; Chung, A.H.; et al. Virtual Microdissection Identifies Distinct Tumor- and Stroma-Specific Subtypes of Pancreatic Ductal Adenocarcinoma. Nat. Genet. 2015, 47, 1168–1178. [Google Scholar] [CrossRef]
- Badea, L.; Herlea, V.; Dima, S.O.; Dumitrascu, T.; Popescu, I. Combined Gene Expression Analysis of Whole-Tissue and Microdissected Pancreatic Ductal Adenocarcinoma Identifies Genes Specifically Overexpressed in Tumor Epithelia. Hepatogastroenterology 2008, 55, 2016–2027. [Google Scholar] [PubMed]
- Gyorffy, B. Integrated Analysis of Public Datasets for the Discovery and Validation of Survival-Associated Genes in Solid Tumors. Innovation 2024, 5, 100625. [Google Scholar] [CrossRef]
- Liang, C.-C.; Park, A.Y.; Guan, J.-L. In Vitro Scratch Assay: A Convenient and Inexpensive Method for Analysis of Cell Migration in Vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef]
- Nagy, A.; Munkacsy, G.; Gyorffy, B. Pancancer Survival Analysis of Cancer Hallmark Genes. Sci. Rep. 2021, 11, 6047. [Google Scholar] [CrossRef]
- Soliman, F.; Ye, L.; Jiang, W.; Hargest, R. Targeting Hyaluronic Acid and Peritoneal Dissemination in Colorectal Cancer. Clin. Color. Cancer 2022, 21, e126–e134. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, S.; Fleishman, J.S.; Chen, J.; Tang, H.; Chen, Z.S.; Chen, W.; Ding, M. Targeting Anoikis Resistance as a Strategy for Cancer Therapy. Drug Resist. Updat. 2024, 75, 101099. [Google Scholar] [CrossRef] [PubMed]
- Yachida, S.; Iacobuzio-Donahue, C.A. The Pathology and Genetics of Metastatic Pancreatic Cancer. Arch. Pathol. Lab. Med. 2009, 133, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Fagman, J.B.; Ma, Y.; Liu, J.; Vihav, C.; Engstrom, C.; Liu, B.; Chen, C. A Comprehensive Review of Pancreatic Cancer and Its Therapeutic Challenges. Aging 2022, 14, 7635–7649. [Google Scholar] [CrossRef] [PubMed]
- Avula, L.R.; Hagerty, B.; Alewine, C. Molecular Mediators of Peritoneal Metastasis in Pancreatic Cancer. Cancer Metastasis Rev. 2020, 39, 1223–1243. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Hashimoto, T.; Sugino, T.; Soeda, S.; Nishiyama, H.; Morimura, Y.; Yamada, H.; Goodison, S.; Fujimori, K. Production of Il1-Beta by Ovarian Cancer Cells Induces Mesothelial Cell Beta1-Integrin Expression Facilitating Peritoneal Dissemination. J. Ovarian Res. 2012, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Ziprin, P.; Alkhamesi, N.A.; Ridgway, P.F.; Peck, D.H.; Darzi, A.W. Tumour-Expressed Cd43 (Sialophorin) Mediates Tumourmesothelial Cell Adhesion. Biol. Chem. 2004, 385, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Frisch, S.M.; Francis, H. Disruption of Epithelial Cell-Matrix Interactions Induces Apoptosis. J. Cell Biol. 1994, 124, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Douma, S.; Van Laar, T.; Zevenhoven, J.; Meuwissen, R.; Van Garderen, E.; Peeper, D.S. Suppression of Anoikis and Induction of Metastasis by the Neurotrophic Receptor Trkb. Nature 2004, 430, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Woods, N.T.; Yamaguchi, H.; Lee, F.Y.; Bhalla, K.N.; Wang, H.G. Anoikis, Initiated by Mcl-1 Degradation and Bim Induction, Is Deregulated during Oncogenesis. Cancer Res. 2007, 67, 10744–10752. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, E.; Eaves, C.J. Paradoxical Roles of Caspase-3 in Regulating Cell Survival, Proliferation, and Tumorigenesis. J. Cell Biol. 2022, 221, e202201159. [Google Scholar] [CrossRef]
- Guha, D.; Saha, T.; Bose, S.; Chakraborty, S.; Dhar, S.; Khan, P.; Adhikary, A.; Das, T.; Sa, G. Integrin-Egfr Interaction Regulates Anoikis Resistance in Colon Cancer Cells. Apoptosis 2019, 24, 958–971. [Google Scholar] [CrossRef]
- Taftaf, R.; Liu, X.; Singh, S.; Jia, Y.; Dashzeveg, N.K.; Hoffmann, A.D.; El-Shennawy, L.; Ramos, E.K.; Adorno-Cruz, V.; Schuster, E.J.; et al. Icam1 Initiates Ctc Cluster Formation and Trans-Endothelial Migration in Lung Metastasis of Breast Cancer. Nat. Commun. 2021, 12, 4867. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Huang, J.; Wang, L.; Jia, D.; Yang, J.; Dillon, D.A.; Zurakowski, D.; Mao, H.; Moses, M.A.; Auguste, D.T. Icam-1 as a Molecular Target for Triple Negative Breast Cancer. Proc. Natl. Acad. Sci. USA 2014, 111, 14710–14715. [Google Scholar] [CrossRef] [PubMed]
- Melis, M.; Spatafora, M.; Melodia, A.; Pace, E.; Gjomarkaj, M.; Merendino, A.M.; Bonsignore, G. Icam-1 Expression by Lung Cancer Cell Lines: Effects of Upregulation by Cytokines on the Interaction with Lak Cells. Eur. Respir. J. 1996, 9, 1831–1838. [Google Scholar] [CrossRef] [PubMed]
- Schardt, C.; Heymanns, J.; Schardt, C.; Rotsch, M.; Havemann, K. Differential Expression of the Intercellular Adhesion Molecule-1 (Icam-1) in Lung Cancer Cell Lines of Various Histological Types. Eur. J. Cancer 1993, 29A, 2250–2255. [Google Scholar] [CrossRef]
- Legate, K.R.; Fassler, R. Mechanisms That Regulate Adaptor Binding to Beta-Integrin Cytoplasmic Tails. J. Cell Sci. 2009, 122 Pt 2, 187–198. [Google Scholar] [CrossRef]
- Legate, K.R.; Wickstrom, S.A.; Fassler, R. Genetic and Cell Biological Analysis of Integrin Outside-in Signaling. Genes Dev. 2009, 23, 397–418. [Google Scholar] [CrossRef]
- Lim, M.; Xia, Y.; Bettegowda, C.; Weller, M. Current State of Immunotherapy for Glioblastoma. Nat. Rev. Clin. Oncol. 2018, 15, 422–442. [Google Scholar] [CrossRef]
- Cordes, N.; Meineke, V. Cell Adhesion-Mediated Radioresistance (Cam-Rr). Extracellular Matrix-Dependent Improvement of Cell Survival in Human Tumor and Normal Cells in Vitro. Strahlenther. Onkol. 2003, 179, 337–344. [Google Scholar] [CrossRef]
- Damiano, J.S.; Hazlehurst, L.A.; Dalton, W.S. Cell Adhesion-Mediated Drug Resistance (Cam-Dr) Protects the K562 Chronic Myelogenous Leukemia Cell Line from Apoptosis Induced by Bcr/Abl Inhibition, Cytotoxic Drugs, and Gamma-Irradiation. Leukemia 2001, 15, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Park, C.C.; Zhang, H.; Pallavicini, M.; Gray, J.W.; Baehner, F.; Park, C.J.; Bissell, M.J. Beta1 Integrin Inhibitory Antibody Induces Apoptosis of Breast Cancer Cells, Inhibits Growth, and Distinguishes Malignant from Normal Phenotype in Three Dimensional Cultures and in Vivo. Cancer Res. 2006, 66, 1526–1535. [Google Scholar] [CrossRef]
- Eke, I.; Deuse, Y.; Hehlgans, S.; Gurtner, K.; Krause, M.; Baumann, M.; Shevchenko, A.; Sandfort, V.; Cordes, N. Beta(1)Integrin/Fak/Cortactin Signaling Is Essential for Human Head and Neck Cancer Resistance to Radiotherapy. J. Clin. Investig. 2012, 122, 1529–1540. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.M.; Onodera, Y.; Bissell, M.J.; Park, C.C. Breast Cancer Cells in Three-Dimensional Culture Display an Enhanced Radioresponse after Coordinate Targeting of Integrin Alpha5beta1 and Fibronectin. Cancer Res. 2010, 70, 5238–5248. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Guo, Q. EGFR Signaling Pathway Occupies an Important Position in Cancer-Related Downstream Signaling Pathways of Pyk2. Cell Biol. Int. 2020, 44, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Hynes, N.E.; Lane, H.A. Erbb Receptors and Cancer: The Complexity of Targeted Inhibitors. Nat. Rev. Cancer 2005, 5, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.K.; Schlaepfer, D.D. Integrin-Regulated Fak-Src Signaling in Normal and Cancer Cells. Curr. Opin. Cell Biol. 2006, 18, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Brakebusch, C.; Fassler, R. Beta 1 Integrin Function in Vivo: Adhesion, Migration and More. Cancer Metastasis Rev. 2005, 24, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Hehlgans, S.; Haase, M.; Cordes, N. Signalling Via Integrins: Implications for Cell Survival and Anticancer Strategies. Biochim. Biophys. Acta 2007, 1775, 163–180. [Google Scholar] [CrossRef]
- Ross, T.D.; Coon, B.G.; Yun, S.; Baeyens, N.; Tanaka, K.; Ouyang, M.; Schwartz, M.A. Integrins in Mechanotransduction. Curr. Opin. Cell Biol. 2013, 25, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Burkin, H.R.; Rice, M.; Sarathy, A.; Thompson, S.; Singer, C.A.; Buxton, I.L. Integrin Upregulation and Localization to Focal Adhesion Sites in Pregnant Human Myometrium. Reprod. Sci. 2013, 20, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Ciardiello, F.; Tortora, G. Egfr Antagonists in Cancer Treatment. N. Engl. J. Med. 2008, 358, 1160–1174. [Google Scholar] [CrossRef]
- Nanba, D.; Toki, F.; Asakawa, K.; Matsumura, H.; Shiraishi, K.; Sayama, K.; Matsuzaki, K.; Toki, H.; Nishimura, E.K. Egfr-Mediated Epidermal Stem Cell Motility Drives Skin Regeneration through Col17a1 Proteolysis. J. Cell Biol. 2021, 220, e202012073. [Google Scholar] [CrossRef]
- Rao, T.C.; Ma, V.P.; Blanchard, A.; Urner, T.M.; Grandhi, S.; Salaita, K.; Mattheyses, A.L. Egfr Activation Attenuates the Mechanical Threshold for Integrin Tension and Focal Adhesion Formation. J. Cell Sci. 2020, 133, jcs238840. [Google Scholar] [CrossRef]
Clinical Samples | N | Median (IQR) | p-Value |
---|---|---|---|
Tumour | 153 | 4 (0~568) | 0.002 |
Normal | 175 | 0 (0–54) | |
Gender | |||
Male | 93 | 3 (0~283) | 0.5474 |
Female | 60 | 5 (0~1093) | |
Node status | |||
Node negative | 60 | 21 (0~929) | 0.4694 |
Node positive | 81 | 2 (0–157.9) | |
Differentiation | |||
High | 7 | 47 (1~15,659) | |
Moderate high | 13 | 2 (0~2005) | 0.428 vs. High |
Moderate | 56 | 2 (0~247) | 0.765 vs. High |
Moderate low | 59 | 3 (0~584) | 0.847 vs. High |
low | 10 | 284 (0~5209) | 0.24 vs. High |
TNM staging | |||
1–2 | 111 | 20 (0~1109) | 0.483 |
3–4 | 24 | 2 (0~154) | |
T staging | |||
1–2 | 20 | 11 (0~209) | 0.459 |
3–4 | 107 | 19 (0~1554) | |
Clinical outcomes | |||
Dead | 36 | 132 (0~1697) | 0.093 |
Alive | 108 | 2 (0~454) | |
Metastasis | |||
No | 140 | 6 (0~913) | 0.4697 |
Yes | 13 | 0 (0~107) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Z.; Bunston, C.; Xu, Y.; Ruge, F.; Sui, L.; Liu, M.; Al-Sarireh, B.; Griffiths, P.; Murphy, K.; Pugh, M.R.; et al. Implication of Capillary Morphogenesis Gene 2 (CMG2) in the Disease Progression and Peritoneal Metastasis of Pancreatic Cancer. Cancers 2024, 16, 2893. https://doi.org/10.3390/cancers16162893
Fang Z, Bunston C, Xu Y, Ruge F, Sui L, Liu M, Al-Sarireh B, Griffiths P, Murphy K, Pugh MR, et al. Implication of Capillary Morphogenesis Gene 2 (CMG2) in the Disease Progression and Peritoneal Metastasis of Pancreatic Cancer. Cancers. 2024; 16(16):2893. https://doi.org/10.3390/cancers16162893
Chicago/Turabian StyleFang, Ziqian, Carly Bunston, Yali Xu, Fiona Ruge, Laijian Sui, Ming Liu, Bilal Al-Sarireh, Paul Griffiths, Kate Murphy, Matthew R. Pugh, and et al. 2024. "Implication of Capillary Morphogenesis Gene 2 (CMG2) in the Disease Progression and Peritoneal Metastasis of Pancreatic Cancer" Cancers 16, no. 16: 2893. https://doi.org/10.3390/cancers16162893
APA StyleFang, Z., Bunston, C., Xu, Y., Ruge, F., Sui, L., Liu, M., Al-Sarireh, B., Griffiths, P., Murphy, K., Pugh, M. R., Hao, C., Jiang, W. G., & Ye, L. (2024). Implication of Capillary Morphogenesis Gene 2 (CMG2) in the Disease Progression and Peritoneal Metastasis of Pancreatic Cancer. Cancers, 16(16), 2893. https://doi.org/10.3390/cancers16162893