The Personalized Inherited Signature Predisposing to Non-Small-Cell Lung Cancer in Non-Smokers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Samples
2.2. DNA and RNA Extraction
2.3. Whole-Exome Sequencing and Data Analysis
2.4. RNA Sequencing and Data Analysis
3. Results
3.1. Exome Analysis of Constitutive DNA
3.2. Somatic Mutations in Tumor Lung Tissues
3.3. RNA-Seq Analysis of Tumors and Non-Involved Lung Tissues
3.4. Analysis of Tumor Loss of Heterozygosity
3.5. Protein–Protein Interaction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wild, C.; Weiderpass, E.; Stewart, B.W. World Cancer Report: Cancer Research for Cancer Prevention 2020; International Agency for Research on Cancer: Lyon, France, 2020.
- Peto, R.; Darby, S.; Deo, H.; Silcocks, P.; Whitley, E.; Doll, R. Smoking, smoking cessation, and lung cancer in the UK since 1950: Combination of national statistics with two case-control studies. BMJ 2000, 321, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Long, E.; Patel, H.; Byun, J.; Amos, C.I.; Choi, J. Functional studies of lung cancer GWAS beyond association. Hum. Mol. Genet. 2022, 31, R22–R36. [Google Scholar] [CrossRef]
- Wang, Y.; Broderick, P.; Webb, E.; Wu, X.; Vijayakrishnan, J.; Matakidou, A.; Qureshi, M.; Dong, Q.; Gu, X.; Chen, W.V.; et al. Common 5p15.33 and 6p21.33 variants influence lung cancer risk. Nat. Genet. 2008, 40, 1407–1409. [Google Scholar] [CrossRef]
- McKay, J.D.; Hung, R.J.; Gaborieau, V.; Boffetta, P.; Chabrier, A.; Byrnes, G.; Zaridze, D.; Mukeria, A.; Szeszenia-Dabrowska, N.; Lissowska, J.; et al. Lung cancer susceptibility locus at 5p15.33. Nat. Genet. 2008, 40, 1404–1406. [Google Scholar] [CrossRef]
- Landi, M.T.; Chatterjee, N.; Yu, K.; Goldin, L.R.; Goldstein, A.M.; Rotunno, M.; Mirabello, L.; Jacobs, K.; Wheeler, W.; Yeager, M.; et al. A genome-wide association study of lung cancer identifies a region of chromosome 5p15 associated with risk for adenocarcinoma. Am. J. Hum. Genet. 2009, 85, 679–691. [Google Scholar] [CrossRef]
- Wang, Y.; McKay, J.D.; Rafnar, T.; Wang, Z.; Timofeeva, M.N.; Broderick, P.; Zong, X.; Laplana, M.; Wei, Y.; Han, Y.; et al. Rare variants of large effect in BRCA2 and CHEK2 affect risk of lung cancer. Nat. Genet. 2014, 46, 736–741. [Google Scholar] [CrossRef] [PubMed]
- McKay, J.D.; Hung, R.J.; Han, Y.; Zong, X.; Carreras-Torres, R.; Christiani, D.C.; Caporaso, N.E.; Johansson, M.; Xiao, X.; Li, Y.; et al. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat. Genet. 2017, 49, 1126–1132. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Broderick, P.; Matakidou, A.; Vijayakrishnan, J.; Eisen, T.; Houlston, R.S. Variation in TP63 is associated with lung adenocarcinoma in the UK population. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1453–1462. [Google Scholar] [CrossRef]
- Hu, Z.; Wu, C.; Shi, Y.; Guo, H.; Zhao, X.; Yin, Z.; Yang, L.; Dai, J.; Hu, L.; Tan, W.; et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat. Genet. 2011, 43, 792–796. [Google Scholar] [CrossRef]
- Dong, J.; Hu, Z.; Wu, C.; Guo, H.; Zhou, B.; Lv, J.; Lu, D.; Chen, K.; Shi, Y.; Chu, M.; et al. Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population. Nat. Genet. 2012, 44, 895–899. [Google Scholar] [CrossRef]
- Dong, J.; Hu, Z.; Wu, C.; Guo, H.; Zhou, B.; Lv, J.; Lu, D.; Chen, K.; Shi, Y.; Chu, M.; et al. A genome-wide association study identifies two new susceptibility loci for lung adenocarcinoma in the Japanese population. Nat. Genet. 2012, 44, 900–903. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sheu, C.C.; Ye, Y.; de Andrade, M.; Wang, L.; Chang, S.C.; Aubry, M.C.; Aakre, J.A.; Allen, M.S.; Chen, F.; et al. Genetic variants and risk of lung cancer in never smokers: A genome-wide association study. Lancet Oncol. 2010, 11, 321–330. [Google Scholar] [CrossRef]
- Lan, Q.; Hsiung, C.A.; Matsuo, K.; Hong, Y.C.; Seow, A.; Wang, Z.; Hosgood, H.D., III; Chen, K.; Wang, J.C.; Chatterjee, N.; et al. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat. Genet. 2012, 44, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Lv, J.; Zhu, M.; Wang, Y.; Qin, N.; Ma, H.; He, Y.Q.; Zhang, R.; Tan, W.; Fan, J.; et al. Identification of risk loci and a polygenic risk score for lung cancer: A large-scale prospective cohort study in Chinese populations. Lancet Respir. Med. 2019, 7, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Lou, Y.; Pecot, C.V.; Tran, H.T.; DeVito, V.J.; Tang, X.M.; Heymach, J.V.; Luthra, R.; Wistuba, I.I.; Zuo, Z.; Tsao, A.S. Germline Mutation of T790M and Dual/Multiple EGFR Mutations in Patients With Lung Adenocarcinoma. Clin. Lung Cancer 2016, 17, e5–e11. [Google Scholar] [CrossRef]
- Thomas, A.; Xi, L.; Carter, C.A.; Rajan, A.; Khozin, S.; Szabo, E.; Dennis, P.A.; Giaccone, G.; Raffeld, M. Concurrent molecular alterations in tumors with germ line epidermal growth factor receptor T790M mutations. Clin. Lung Cancer. 2013, 14, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Gazdar, A.; Robinson, L.; Oliver, D.; Xing, C.; Travis, W.D.; Soh, J.; Toyooka, S.; Watumull, L.; Xie, Y.; Kernstine, K.; et al. Hereditary lung cancer syndrome targets never smokers with germline egfr gene T790M mutations. J. Thorac. Oncol. 2014, 9, 456–463. [Google Scholar] [CrossRef]
- Helena, A.Y.; Arcila, M.E.; Fleischut, M.H.; Stadler, Z.; Ladanyi, M.; Berger, M.F.; Robson, M.; Riely, G.J. Germline EGFR T790M mutation found in multiple members of a familial cohort. J. Thorac. Oncol. 2014, 9, 554–558. [Google Scholar]
- Oxnard, G.R.; Miller, V.A.; Robson, M.E.; Azzoli, C.G.; Pao, W.; Ladanyi, M.; Arcila, M.E. Screening for germline EGFR T790M mutations through lung cancer genotyping. J. Thorac. Oncol. 2012, 7, 1049–1052. [Google Scholar] [CrossRef] [PubMed]
- Tibaldi, C.; Giovannetti, E.; Vasile, E.; Boldrini, L.; Gallegos-Ruiz, M.I.; Bernardini, I.; Incensati, R.; Danesi, R.; Cappuzzo, F.; Peters, G.J.; et al. Inherited germline T790M mutation and somatic epidermal growth factor receptor mutations in non-small cell lung cancer patients. J. Thorac. Oncol. 2011, 6, 395–396. [Google Scholar] [CrossRef] [PubMed]
- Bell, D.W.; Gore, I.; Okimoto, R.A.; Godin-Heymann, N.; Sordella, R.; Mulloy, R.; Sharma, S.V.; Brannigan, B.W.; Mohapatra, G.; Settleman, J.; et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat. Genet. 2005, 37, 1315–1316. [Google Scholar] [CrossRef]
- Regales, L.; Balak, M.N.; Gong, Y.; Politi, K.; Sawai, A.; Le, C.; Koutcher, J.A.; Solit, D.B.; Rosen, N.; Zakowski, M.F.; et al. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors. PLoS ONE 2007, 2, e810. [Google Scholar] [CrossRef] [PubMed]
- Renieri, A.; Mencarelli, M.A.; Cetta, F.; Baldassarri, M.; Mari, F.; Furini, S.; Piu, P.; Ariani, F.; Dragani, T.A.; Frullanti, E. Oligogenic germline mutations identified in early non-smokers lung adenocarcinoma patients. Lung Cancer 2014, 85, 168–174. [Google Scholar] [CrossRef]
- Imperatore, V.; Mencarelli, M.A.; Fallerini, C.; Bianciardi, L.; Ariani, F.; Furini, S.; Renieri, A.; Mari, F.; Frullanti, E. Potentially Treatable Disorder Diagnosed Post Mortem by Exome Analysis in a Boy with Respiratory Distress. Int. J. Mol. Sci. 2016, 17, 306. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at UCSC. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; Van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef]
- Kim, D.; Salzberg, S.L. TopHat-Fusion: An algorithm for discovery of novel fusion transcripts. Genome Biol. 2011, 12, R72. [Google Scholar] [CrossRef]
- Stewart, D.A.; Cooper, C.R.; Sikes, R.A. Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod. Biol. Endocrinol. 2004. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Cao, L.; Smith, M.D.; Li, H.; Li, W.; Smith, J.C.; Quarles, L.D. Genetic interactions between polycystin-1 and Wwtr1 in osteoblasts define a novel mechanosensing mechanism regulating bone formation in mice. Bone Res. 2023, 11, 57. [Google Scholar] [CrossRef]
- Cai, Y.C.; Yang, H.; Wang, K.F.; Chen, T.H.; Jiang, W.Q.; Shi, Y.X. ANGPTL4 overexpression inhibits tumor cell adhesion and migration and predicts favorable prognosis of triple-negative breast cancer. BMC Cancer 2020, 20, 878. [Google Scholar] [CrossRef]
- Ratnapriya, R.; Zhan, X.; Fariss, R.N.; Branham, K.E.; Zipprer, D.; Chakarova, C.F.; Sergeev, Y.V.; Campos, M.M.; Othman, M.; Friedman, J.S.; et al. Rare and common variants in extracellular matrix gene Fibrillin 2 (FBN2) are associated with macular degeneration. Hum. Mol. Genet. 2014, 23, 5827–5837. [Google Scholar] [CrossRef] [PubMed]
- Niland, S.; Riscanevo, A.X.; Eble, J.A. Matrix Metalloproteinases Shape the Tumor Microenvironment in Cancer Progression. Int. J. Mol. Sci. 2021, 23, 146. [Google Scholar] [CrossRef]
- Dayal, S.; Zhou, J.; Manivannan, P.; Siddiqui, M.A.; Ahmad, O.F.; Clark, M.; Awadia, S.; Garcia-Mata, R.; Shemshedini, L.; Malathi, K. RNase L Suppresses Androgen Receptor Signaling, Cell Migration and Matrix Metalloproteinase Activity in Prostate Cancer Cells. Int. J. Mol. Sci. 2017, 18, 529. [Google Scholar] [CrossRef] [PubMed]
- Maeso-Alonso, L.; López-Ferreras, L.; Marques, M.M.; Marin, M.C. p73 as a Tissue Architect. Front. Cell Dev. Biol. 2021, 9, 716957. [Google Scholar] [CrossRef] [PubMed]
- Thines, L.; Roushar, F.J.; Hedman, A.C.; Sacks, D.B. The IQGAP scaffolds: Critical nodes bridging receptor activation to cellular signaling. J. Cell Biol. 2023, 222, e202205062. [Google Scholar] [CrossRef] [PubMed]
- Tsuzuki, T.; Fujii, Y.; Sakumi, K.; Tominaga, Y.; Nakao, K.; Sekiguchi, M.; Matsushiro, A.; Yoshimura, Y.; Morita, T. Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc. Natl. Acad. Sci. USA 1996, 93, 6236–6240. [Google Scholar] [CrossRef]
- Richardson, C. RAD51, genomic stability, and tumorigenesis. Cancer Lett. 2005, 218, 127–139. [Google Scholar] [CrossRef]
- Krishan, S.; Richardson, D.R.; Sahni, S. Gene of the month. AMP kinase (PRKAA1). J. Clin. Pathol. 2014, 67, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhu, X.; Lai, X.; Xiao, T.; Wen, A.; Zhang, J. Combined cancer therapy with non-conventional drugs: All roads lead to AMPK. Mini Rev. Med. Chem. 2014, 14, 642–654. [Google Scholar] [CrossRef] [PubMed]
Case 1 | Sib 1 | Case 2 | Sib 2 | Case 3 | Sib 3 | Case 4 | Sib 4 | |
---|---|---|---|---|---|---|---|---|
Gender | F | M | F | F | F | F | F | M |
Age at diagnosis, years | 52 | NA | 65 | NA | 69 | NA | 55 | NA |
Age at sampling, years | NA | 44 | NA | 64 | NA | 75 | NA | 54 |
Smoker status | Never | Never | Never | Never | Never | Never | Never | Never |
Histologic type | ADCA | NA | ADCA | NA | ADCA | NA | ADCA | NA |
Clinical stage | I | NA | I | NA | I | NA | II | NA |
Follow-up status | Alive | Alive | Alive | Alive | Alive | Alive | Alive | Alive |
Age at follow-up | 53 | 45 a | 66 | 65 a | 71 | 75 | 57 | 54 |
Exome sequence data, Mbp | 5.63 | 5.48 | 9.06 | 6.72 | 3.11 | 11.8 | 12.8 | 5.3 |
Number of reads, Mil | 38.3 | 37.5 | 49.9 | 36.8 | 17.1 | 65.1 | 69.0 | 28.3 |
Gene Symbol: Mutation | Case 1 | Case 2 | Case 3 | Case 4 | Gene Name | KEGG Pathway/Function |
---|---|---|---|---|---|---|
ACAP2:c.C976T:p.R326X | ✓ | ArfGAP with coiled-coil, ankyrin repeat, and PH domains 2 | Endocytosis/Arf6 signaling events | |||
ACTL6A: c.T673A:p.S225T | ✓ | Actin like 6A | Chromatin organization/DNA Double-Strand Break Repair | |||
BUB1B:c.T2609C:p.V870A | ✓ | Budding uninhibited by benzimidazoles 1 homolog beta | Cell cycle/Mitotic function (TS) | |||
DDX11: c.G814A:p.V272M | ✓ | DEAD/H-box helicase 11 | NA/(TS) | |||
EPB41::c.G1264A:p.E422K | ✓ | Erythrocyte membrane protein band 4.1 | Tight junction/Sertoli–Sertoli Cell Junction dynamics | |||
MEN1: c.G301A:p.V101I | ✓ | Menin 1 | Transcriptional misregulation in cancer/Putative TS associated with a syndrome known as multiple endocrine neoplasia type 1 | |||
ACACA:c.C1948T:p.R650W | ✓ | Acetyl-Coenzyme A carboxylase alpha | Fatty acid biosynthesis, pyruvate metabolism, propanoate metabolism, and insulin signaling pathway | |||
AMIGO3: c.C669A:p.C223X | ✓ | Adhesion molecule with Ig like domain 3 | NA | |||
AVL9: c.37_38del:p.R13fs | ✓ | AVL9 cell migration associated | NA/Late secretory pathway protein AVL9 homolog | |||
CTBP2: c.C2149T:p.R717C | ✓ | C-terminal binding protein 2 | Wnt signaling, notch signaling, and pathways in cancer | |||
CTSZ:c.G358A:p.V120M | ✓ | Cathepsin Z | Lysosome/Apoptosis (candidate O) | |||
DEPTOR: c.A631T:p.R211X | ✓ | DEP domain containing MTOR-interacting protein | mTOR signaling pathway/ | |||
ENO3: c.C642G:p.Y214X | ✓ | Enolase 3 | Glycolysis, gluconeogenesis, and RNA degradation/possible TS in lung cancer (17p13.3) | |||
GRM1:c.C2185A:p.P729T | ✓ | Glutamate receptor, metabotropic 1 | Calcium signaling pathway, neuroactive ligand–receptor interaction, and gap junction | |||
MYO10: c.C5690T:p.S1897F | ✓ | Myosin X | Fc gamma R-mediated phagocytosis/Epithelial adherens junctions, innate immune system, and RhoGDI (Putative O) | |||
PFKP:c.G311A:p.R104Q | ✓ | Phosphofructokinase, platelet | Glycolysis, gluconeogenesis, pentose phosphate pathway, fructose and mannose metabolism, and galactose metabolism | |||
PSCA:c.G326A:p.W109X | ✓ | Prostate stem cell antigen | NA/Overexpressed in prostate cancer | |||
ROCK1:c.C727T:p.P243S | ✓ | Rho-associated, coiled-coil containing protein kinase 1 | Chemokine signaling pathway, vascular smooth muscle contraction, Wnt signaling pathway, TGF-beta signaling pathway, axon guidance, focal adhesion, leukocyte transendothelial migration, and regulation of actin cytoskeleton/cytoskeleton remodeling | |||
WWTR1:c.1199_1200insTTTA:p.L400_X401delinsLX | ✓ | WW domain containing transcription regulator 1 | Hippo signaling pathway/Gene Expression (TS) | |||
CARS:c.G775A:p.G259S | ✓ | ✓ | Cysteinyl-tRNA synthetase | Aminoacyl-tRNA biosynthesis/Localized in an important tumor-suppressor gene region (11p15.5) | ||
ANGPTL4:c.637delC:p.P213fs | ✓ | Angiopoietin-Like 4 | PPAR signaling pathway. Also known as peroxisome proliferator-activated receptor (PPAR). PPAR activates gene expression. | |||
CUX1: c.2413dupC:p.G804fs | ✓ | Cut like homeobox 1 | NA/FGFR1 mutant receptor activation (TS) | |||
EPHB6: c.840delC:p.S280fs | ✓ | EPH receptor B6 | Axon guidance/(TS) | |||
FBN2:c.G3883A:p.D1295N | ✓ | Fibrillin 2 | NA/ ERK Signaling, and degradation of the extracellular matrix (TS) | |||
GANAB: c.C583T:p.R195C | ✓ | Glucosidase II alpha subunit | N-Glycan biosynthesis/Metabolism (TS) | |||
KDM4C:c.3110delG:p.S1037fs | ✓ | Lysine demethylase 4C | NA/Involved in signal transduction, signaling by Rho GTPases, and chromatin organization (Putative O) | |||
MMP14:c.C609A:p.Y203X | ✓ | Matrix metallopeptidase 14 | GnRH signaling pathway/Cell adhesion_ECM remodeling | |||
PTPN23:c.G4189T:p.G1397C | ✓ | Protein tyrosine phosphatase non-receptor type 23 | Involved in the regulation of small nuclear ribonucleoprotein assembly and pre-mRNA splicing (within a putative tumor suppressor region) | |||
RNASEL: c.G793T:p.E265X | ✓ | Ribonuclease L | Immune system/Mutations in this gene have been associated with predisposition to prostate cancer | |||
TP73:c.G749T:p.G250V | ✓ | Tumor protein p73 | p53 signaling pathway, neurotrophin signaling pathway/cell cycle (TS) | |||
ESRRA: c.C1162T:p.L388F | ✓ | ✓ | Estrogen-related receptor alpha | NA/Nuclear receptor transcription pathway (O) | ||
ESRRA: c.C1165T:p.R389C | ✓ | ✓ | Estrogen-related receptor alpha | NA/Nuclear receptor transcription pathway (O) | ||
ABHD5:c.G341T:p.R114L | ✓ | Abhydrolase domain containing 5 | Regulation of lipolysis in adipocytes/Metabolism of lipids and lipoproteins | |||
ACAD9:c.G976A:p.A326T | ✓ | Acyl-CoA dehydrogenase family member 9 | Mitochondrial biogenesis/Respiratory electron transport | |||
EPHA7: c.A2009C:p.Q670P | ✓ | EPH receptor A7 | Axon guidance | |||
EPN3:c.879delA:p.L293fs | ✓ | Epsin 3 | Endocytosis/Promoting senescence (O) | |||
FAM188A:c.1107delT:p.F369fs | ✓ | Family with sequence similarity 188 member A | NA (Novel TS in NSCLC) | |||
IQGAP2:c.G1135C:p.E379Q | ✓ | IQ motif containing GTPase activating protein 2 | Regulation of actin cytoskeleton | |||
ITIH5: c.1063delG:p.D355fs | ✓ | Inter-alpha-trypsin inhibitor heavy chain family member 5 | NA/RHO GTPase effectors (TS) | |||
PSAT1:c.G511C:p.A171P | ✓ | Phosphoserine aminotransferase 1 | Glycine, serine, and threonine metabolism, vitamin B6 metabolism/metabolism of amino acids and derivatives | |||
URI1:c.G1303T:p.E435X | ✓ | URI1, prefoldin like chaperone | NA/Scaffolding protein with roles in ubiquitination and transcription (Putative TS) |
Case 1 | Case 2 | Case 3 | Case 4 | |||||
---|---|---|---|---|---|---|---|---|
KEGG Pathway | p-Value | Count | p-Value | Count | p-Value | Count | p-Value | Count |
ECM–receptor interaction | 9.50 × 10−8 | 22 | 1.40 × 10−6 | 17 | 5.20 × 10−5 | 20 | 2.60 × 10−3 | 13 |
Focal adhesion | 4.20 × 10−3 | 25 | 1.80 × 10−4 | 23 | 3.10 × 10−2 | 26 | ||
ABC transporters | 8.30 × 10−3 | 9 | ||||||
Integrin signaling pathway | 3.70 × 10−2 | 26 | ||||||
Tight junction | 2.40 × 10−2 | 13 | ||||||
Cell adhesion molecules (CAMs) | 4.70 × 10−2 | 12 | ||||||
Calcium signaling pathway | 3.90 × 10−2 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serio, V.B.; Rosati, D.; Maffeo, D.; Rina, A.; Ghisalberti, M.; Bellan, C.; Spiga, O.; Mari, F.; Palmieri, M.; Frullanti, E. The Personalized Inherited Signature Predisposing to Non-Small-Cell Lung Cancer in Non-Smokers. Cancers 2024, 16, 2887. https://doi.org/10.3390/cancers16162887
Serio VB, Rosati D, Maffeo D, Rina A, Ghisalberti M, Bellan C, Spiga O, Mari F, Palmieri M, Frullanti E. The Personalized Inherited Signature Predisposing to Non-Small-Cell Lung Cancer in Non-Smokers. Cancers. 2024; 16(16):2887. https://doi.org/10.3390/cancers16162887
Chicago/Turabian StyleSerio, Viola Bianca, Diletta Rosati, Debora Maffeo, Angela Rina, Marco Ghisalberti, Cristiana Bellan, Ottavia Spiga, Francesca Mari, Maria Palmieri, and Elisa Frullanti. 2024. "The Personalized Inherited Signature Predisposing to Non-Small-Cell Lung Cancer in Non-Smokers" Cancers 16, no. 16: 2887. https://doi.org/10.3390/cancers16162887
APA StyleSerio, V. B., Rosati, D., Maffeo, D., Rina, A., Ghisalberti, M., Bellan, C., Spiga, O., Mari, F., Palmieri, M., & Frullanti, E. (2024). The Personalized Inherited Signature Predisposing to Non-Small-Cell Lung Cancer in Non-Smokers. Cancers, 16(16), 2887. https://doi.org/10.3390/cancers16162887