Effects of Selective and Nonselective Beta Blockers on Bone Mineral Density in Mexican Patients with Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Trial Oversight
2.2. Patients
2.3. Study Procedures and Outcomes
2.4. Statistical Analysis
3. Results
3.1. Clinical and Demographic Data
3.2. Follow-Up and Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arzanova, E.; Mayrovitz, H. Breast Cancer. In The Epidemiology of Breast Cancer; Mayrovitz, H.N., Ed.; Exon Publications: Brisbane, Australia, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK583818/pdf/Bookshelf_NBK583818.pdf (accessed on 6 August 2024).
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- IARC-WHO Cancer Tomorrow. Available online: https://gco.iarc.fr/tomorrow/en/dataviz/tables?cancers=20 (accessed on 21 June 2024).
- Pescia, C.; Guerini-Rocco, E.; Viale, G.; Fusco, N. Advances in Early Breast Cancer Risk Profiling: From Histopathology to Molecular Technologies. Cancers 2023, 15, 5430. [Google Scholar] [CrossRef]
- Wang, Y.; Goliwas, K.F.; Severino, P.E.; Hough, K.P.; Van Vessem, D.; Wang, H.; Tousif, S.; Koomullil, R.P.; Frost, A.R.; Ponnazhagan, S.; et al. Mechanical strain induces phenotypic changes in breast cancer cells and promotes immunosuppression in the tumor microenvironment. Lab. Investig. 2020, 100, 1503–1516. [Google Scholar] [CrossRef]
- Tseng, L.J.; Matsuyama, A.; MacDonald-Dickinson, V. Histology: The gold standard for diagnosis? Can. Vet. J. 2023, 64, 389–391. [Google Scholar]
- Cserni, G. Histological type and typing of breast carcinomas and the WHO classification changes over time. Pathologica 2020, 112, 25–41. [Google Scholar] [CrossRef]
- Rej, R.K.; Roy, J.; Allu, S.R. Therapies for the Treatment of Advanced/Metastatic Estrogen Receptor-Positive Breast Cancer: Current Situation and Future Directions. Cancers 2024, 16, 552. [Google Scholar] [CrossRef] [PubMed]
- Cerulli, C.; Moretti, E.; Grazioli, E.; Emerenziani, G.P.; Murri, A.; Tranchita, E.; Minganti, C.; Di Cagno, A.; Parisi, A. Protective role of exercise on breast cancer-related osteoporosis in women undergoing aromatase inhibitors: A narrative review. Bone Rep. 2024, 21, 101756. [Google Scholar] [CrossRef]
- Martinez, P.; Galve, E.; Arrazubi, V.; Sala, M.A.; Fernandez, S.; Perez, C.E.; Arango, J.F.; Torre, I. Impact of an osteoporosis specialized unit on bone health in breast cancer survivals treated with aromatase inhibitors. Reumatol. Clin. 2019, 15, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Cucciniello, L.; Garufi, G.; Di Rienzo, R.; Martinelli, C.; Pavone, G.; Giuliano, M.; Arpino, G.; Montemurro, F.; Del Mastro, L.; De Laurentiis, M.; et al. Estrogen deprivation effects of endocrine therapy in breast cancer patients: Incidence, management and outcome. Cancer Treat. Rev. 2023, 120, 102624. [Google Scholar] [CrossRef]
- Zhong, X.P.; Xia, W.F. Regulation of bone metabolism mediated by beta-adrenergic receptor and its clinical application. World J. Clin. Cases 2021, 9, 8967–8973. [Google Scholar] [CrossRef]
- JE, L.L.; Gil, C.; Amatya, N.; Lagalwar, S.; Possidente, B.; Vashishth, D. Degradation of Bone Quality in a Transgenic Mouse Model of Alzheimer’s Disease. J. Bone Miner. Res. 2022, 37, 2548–2565. [Google Scholar]
- Lam, R.W.; Wong, H.K.; Kumarsing, R.A.; Chua, A.N.; Ho, R.C.; McIntyre, R.S.; Ho, C.S. Fluoxetine improves bone microarchitecture and mechanical properties in rodents undergoing chronic mild stress—An animal model of depression. Transl. Psychiatry 2022, 12, 339. [Google Scholar] [CrossRef]
- Wendel, J.; Verma, A.; Dhevan, V.; Chauhan, S.C.; Tripathi, M.K. Stress and Molecular Drivers for Cancer Progression: A Longstanding Hypothesis. Biomed. J. Sci. Tech. Res. 2021, 37, 29134–29138. [Google Scholar]
- Nazari, M.A.; Hasan, R.; Haigney, M.; Maghsoudi, A.; Lenders, J.W.M.; Carey, R.M.; Pacak, K. Catecholamine-induced hypertensive crises: Current insights and management. Lancet Diabetes Endocrinol. 2023, 11, 942–954. [Google Scholar] [CrossRef]
- Yanagisawa, Y.; Suzuki, H.; Gamada, H.; Yamazaki, M. Atypical tibial fracture in breast cancer patient with bone metastasis receiving denosumab therapy: A case report and review of the literature. J. Med. Case Rep. 2023, 17, 257. [Google Scholar] [CrossRef] [PubMed]
- Siregar, Z.; Usman, A.N.; Ahmad, M.; Ariyandy, A.; Ilhamuddin, I.; Takko, A.B. Massage on the prevention of breast cancer through stress reduction and enhancing immune system. Breast Dis. 2024, 43, 119–126. [Google Scholar] [CrossRef]
- Lourenco, C.; Conceicao, F.; Jeronimo, C.; Lamghari, M.; Sousa, D.M. Stress in Metastatic Breast Cancer: To the Bone and Beyond. Cancers 2022, 14, 1881. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Shu, Y.; Bao, H.; Han, S.; Liu, Z.; Zhao, N.; Yuan, W.; Jian, C.; Shu, X. Stress-induced epinephrine promotes epithelial-to-mesenchymal transition and stemness of CRC through the CEBPB/TRIM2/P53 axis. J. Transl. Med. 2022, 20, 262. [Google Scholar] [CrossRef] [PubMed]
- Sousa, D.M.; Fernandes, V.; Lourenco, C.; Carvalho-Maia, C.; Estevao-Pereira, H.; Lobo, J.; Cantante, M.; Couto, M.; Conceicao, F.; Jeronimo, C.; et al. Profiling the Adrenergic System in Breast Cancer and the Development of Metastasis. Cancers 2022, 14, 5518. [Google Scholar] [CrossRef]
- Dai, S.; Mo, Y.; Wang, Y.; Xiang, B.; Liao, Q.; Zhou, M.; Li, X.; Li, Y.; Xiong, W.; Li, G.; et al. Chronic Stress Promotes Cancer Development. Front. Oncol. 2020, 10, 1492. [Google Scholar] [CrossRef]
- Worton, L.E.; Srinivasan, S.; Threet, D.; Ausk, B.J.; Huber, P.; Kwon, R.Y.; Bain, S.D.; Gross, T.S.; Gardiner, E.M. Beta 2 Adrenergic Receptor Selective Antagonist Enhances Mechanically Stimulated Bone Anabolism in Aged Mice. JBMR Plus 2023, 7, e10712. [Google Scholar] [CrossRef] [PubMed]
- Pierce, J.L.; Ding, K.H.; Xu, J.; Sharma, A.K.; Yu, K.; Del Mazo Arbona, N.; Rodriguez-Santos, Z.; Bernard, P.; Bollag, W.B.; Johnson, M.H.; et al. The glucocorticoid receptor in osteoprogenitors regulates bone mass and marrow fat. J. Endocrinol. 2019, 243, 27–42. [Google Scholar] [CrossRef]
- Xu, H.K.; Liu, J.X.; Zheng, C.X.; Liu, L.; Ma, C.; Tian, J.Y.; Yuan, Y.; Cao, Y.; Xing, S.J.; Liu, S.Y.; et al. Region-specific sympatho-adrenergic regulation of specialized vasculature in bone homeostasis and regeneration. iScience 2023, 26, 107455. [Google Scholar] [CrossRef]
- Kim, B.J.; Kwak, M.K.; Ahn, S.H.; Kim, H.; Lee, S.H.; Song, K.H.; Suh, S.; Kim, J.H.; Koh, J.M. Lower Bone Mass and Higher Bone Resorption in Pheochromocytoma: Importance of Sympathetic Activity on Human Bone. J. Clin. Endocrinol. Metab. 2017, 102, 2711–2718. [Google Scholar] [CrossRef] [PubMed]
- Alves Barreto, A.E.; Balera Brito, V.G.; Patrocinio, M.S.; Ballassoni, B.B.; Tfaile Frasnelli, S.C.; Penha Oliveira, S.H. beta1-adrenergic receptor but not beta2 mediates osteogenic differentiation of bone marrow mesenchymal stem cells in normotensive and hypertensive rats. Eur. J. Pharmacol. 2021, 911, 174515. [Google Scholar] [CrossRef] [PubMed]
- Arai, M.; Nagasawa, T.; Koshihara, Y.; Yamamoto, S.; Togari, A. Effects of beta-adrenergic agonists on bone-resorbing activity in human osteoclast-like cells. Biochim. Biophys. Acta 2003, 1640, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Pierroz, D.D.; Bonnet, N.; Bianchi, E.N.; Bouxsein, M.L.; Baldock, P.A.; Rizzoli, R.; Ferrari, S.L. Deletion of beta-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation. J. Bone Miner. Res. 2012, 27, 1252–1262. [Google Scholar] [CrossRef]
- Sun, Z.; Hou, D.; Liu, S.; Fu, W.; Wang, J.; Liang, Z. Norepinephrine inhibits the cytotoxicity of NK92-MI cells via the beta2-adrenoceptor/cAMP/PKA/p-CREB signaling pathway. Mol. Med. Rep. 2018, 17, 8530–8535. [Google Scholar]
- Mahfoud, F.; Wang, J.; Ray, S. The current position of beta-blockers in hypertension: Guidelines and clinical practice. Curr. Med. Res. Opin. 2024, 40, 25–32. [Google Scholar] [CrossRef]
- Vojvodic, A.; Vojvodic, P.; Vlaskovic-Jovicevic, T.; Sijan, G.; Dimitrijevic, S.; Peric-Hajzler, Z.; Matovic, D.; Wollina, U.; Tirant, M.; Thuong, N.V.; et al. Beta Blockers and Melanoma. Open Access Maced. J. Med. Sci. 2019, 7, 3110–3112. [Google Scholar] [CrossRef]
- Amato, R.; Lucchesi, M.; Marracci, S.; Filippi, L.; Dal Monte, M. beta-Adrenoceptors in Cancer: Old Players and New Perspectives. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar]
- Cavalu, S.; Saber, S.; Amer, A.E.; Hamad, R.S.; Abdel-Reheim, M.A.; Elmorsy, E.A.; Abdelhamid, A.M. The multifaceted role of beta-blockers in overcoming cancer progression and drug resistance: Extending beyond cardiovascular disorders. FASEB J. 2024, 38, e23813. [Google Scholar] [CrossRef]
- Talo Yildirim, T.; Dundar, S.; Bozoglan, A.; Karaman, T.; Tekin, S.; Kahraman, O.E. Evaluation of the Effects of ss-Adrenergic Receptor-Propranolol on Osseointegration of the Titanium Implants. J. Craniofac. Surg. 2021, 32, 783–786. [Google Scholar] [CrossRef]
- Al-Subaie, A.E.; Laurenti, M.; Abdallah, M.N.; Tamimi, I.; Yaghoubi, F.; Eimar, H.; Makhoul, N.; Tamimi, F. Propranolol enhances bone healing and implant osseointegration in rats tibiae. J. Clin. Periodontol. 2016, 43, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Arai, M.; Goto, S.; Togari, A. Effects of propranolol on bone metabolism in spontaneously hypertensive rats. J. Pharmacol. Exp. Ther. 2010, 334, 99–105. [Google Scholar] [CrossRef]
- Rodrigues, W.F.; Madeira, M.F.; da Silva, T.A.; Clemente-Napimoga, J.T.; Miguel, C.B.; Dias-da-Silva, V.J.; Barbosa-Neto, O.; Lopes, A.H.; Napimoga, M.H. Low dose of propranolol down-modulates bone resorption by inhibiting inflammation and osteoclast differentiation. Br. J. Pharmacol. 2012, 165, 2140–2151. [Google Scholar] [CrossRef] [PubMed]
- Trost, S.; Tesfaye, N.; Harindhanavudhi, T. The interplay between bone and heart health as reflected in medication effects: A narrative review. Womens Health 2023, 19, 17455057231165549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lee, A.V.; Rosen, J.M. The Cellular Origin and Evolution of Breast Cancer. Cold Spring Harb. Perspect. Med. 2017, 7, a027128. [Google Scholar] [CrossRef]
- Yavuz Keles, B.; Vural, M.; Onder, B.; Ones, K. Evaluation of the effects of beta1-selective beta-blockers on bone mineral density and fracture risk in postmenopausal women. Turk. J. Med. Sci. 2020, 50, 994–998. [Google Scholar] [CrossRef]
- Khosla, S.; Drake, M.T.; Volkman, T.L.; Thicke, B.S.; Achenbach, S.J.; Atkinson, E.J.; Joyner, M.J.; Rosen, C.J.; Monroe, D.G.; Farr, J.N. Sympathetic beta1-adrenergic signaling contributes to regulation of human bone metabolism. J. Clin. Investig. 2018, 128, 4832–4842. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.F.; Tan, Q.C.; Bai, H.; Wang, J.; Bergman, M.; Wu, Z. Bone mineral density, osteopenia and osteoporosis among US adults with cancer. QJM 2022, 115, 653–660. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.Y.; Jung, Y.J.; Kang, S.K.; Kim, J.Y.; Yun, M.S. Is bone mineral density a prognostic factor in postmenopausal women with luminal A breast cancer? Korean J. Clin. Oncol. 2023, 19, 27–31. [Google Scholar] [CrossRef]
- Bradley, J.A.; Liang, X.; Mailhot Vega, R.B.; Liu, C.; Brooks, E.D.; Burchianti, T.; Viviers, E.; Dagan, R.; Oladeru, O.T.; Morris, C.G.; et al. Incidence of Rib Fracture following Treatment with Proton Therapy for Breast Cancer. Int. J. Part. Ther. 2023, 9, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Galvano, A.; Gristina, V.; Scaturro, D.; Bazan Russo, T.D.; Tomasello, S.; Vitagliani, F.; Carita, F.; La Mantia, M.; Fulfaro, F.; Bazan, V.; et al. The role of bone modifying agents for secondary osteoporosis prevention and pain control in postpost-menopausal osteopenic breast cancer patients undergoing adjuvant aromatase inhibitors. Front. Endocrinol. 2023, 14, 1297950. [Google Scholar] [CrossRef]
- de Sire, A.; Gallelli, L.; Marotta, N.; Lippi, L.; Fusco, N.; Calafiore, D.; Cione, E.; Muraca, L.; Maconi, A.; De Sarro, G.; et al. Vitamin D Deficiency in Women with Breast Cancer: A Correlation with Osteoporosis? A Machine Learning Approach with Multiple Factor Analysis. Nutrients 2022, 14, 1586. [Google Scholar] [CrossRef]
- Lin, S.T.; Li, Y.Z.; Sun, X.Q.; Chen, Q.Q.; Huang, S.F.; Lin, S.; Cai, S.Q. Update on the Role of Neuropeptide Y and Other Related Factors in Breast Cancer and Osteoporosis. Front. Endocrinol. 2021, 12, 705499. [Google Scholar] [CrossRef] [PubMed]
- de Pinho, I.S.; Abreu, C.; Gomes, I.; Casimiro, S.; Pacheco, T.R.; de Sousa, R.T.; Costa, L. Exploring new pathways in endocrine-resistant breast cancer. Explor. Target. Anti-Tumor Ther. 2022, 3, 337–361. [Google Scholar] [CrossRef] [PubMed]
- De Leon-Oliva, D.; Barrena-Blazquez, S.; Jimenez-Alvarez, L.; Fraile-Martinez, O.; Garcia-Montero, C.; Lopez-Gonzalez, L.; Torres-Carranza, D.; Garcia-Puente, L.M.; Carranza, S.T.; Alvarez-Mon, M.A.; et al. The RANK-RANKL-OPG System: A Multifaceted Regulator of Homeostasis, Immunity, and Cancer. Medicina 2023, 59, 1752. [Google Scholar] [CrossRef]
- Konno, T.; Murachi, H.; Otsuka, K.; Kimura, Y.; Sampei, C.; Arasaki, Y.; Kohara, Y.; Hayata, T. Ctdnep1 phosphatase is required for negative regulation of RANKL-induced osteoclast differentiation in RAW264.7 cells. Biochem. Biophys. Res. Commun. 2024, 719, 150063. [Google Scholar] [CrossRef] [PubMed]
- Parada-Huerta, E.; Alvarez-Dominguez, T.; Uribe-Escamilla, R.; Rodriguez-Joya, J.; Ponce-Medrano, J.D.; Padron-Lucio, S.; Alfaro-Rodriguez, A.; Bandala, C. Metastasis Risk Reduction Related with Beta-Blocker Treatment in Mexican Women with Breast Cancer. Asian Pac. J. Cancer Prev. 2016, 17, 2953–2957. [Google Scholar]
- Madel, M.B.; Elefteriou, F. Mechanisms Supporting the Use of Beta-Blockers for the Management of Breast Cancer Bone Metastasis. Cancers 2021, 13, 2887. [Google Scholar] [CrossRef]
- Cui, B.; Luo, Y.; Tian, P.; Peng, F.; Lu, J.; Yang, Y.; Su, Q.; Liu, B.; Yu, J.; Luo, X.; et al. Stress-induced epinephrine enhances lactate dehydrogenase A and promotes breast cancer stem-like cells. J. Clin. Investig. 2019, 129, 1030–1046. [Google Scholar] [CrossRef]
- Surman, M.; Janik, M.E. Stress and its molecular consequences in cancer progression. Postep. Hig. I Med. Dosw. 2017, 71, 485–499. [Google Scholar] [CrossRef]
- Anton, S.; Gugic, D.; Vrlic, K. Psychotraumatization and Treatment of Posttraumatic Stress Disorder in Patients with Newly Diagnosed Breast Cancer. Psychiatr. Danub. 2022, 34, 120–130. [Google Scholar] [PubMed]
- Lacourt, T.E.; Heijnen, C.J. Mechanisms of Neurotoxic Symptoms as a Result of Breast Cancer and Its Treatment: Considerations on the Contribution of Stress, Inflammation, and Cellular Bioenergetics. Curr. Breast Cancer Rep. 2017, 9, 70–81. [Google Scholar] [CrossRef]
- Taub, C.J.; Lippman, M.E.; Hudson, B.I.; Blomberg, B.B.; Diaz, A.; Fisher, H.M.; Nahin, E.R.; Lechner, S.C.; Kwak, T.; Hwang, G.H.; et al. The effects of a randomized trial of brief forms of stress management on RAGE-associated S100A8/A9 in patients with breast cancer undergoing primary treatment. Cancer 2019, 125, 1717–1725. [Google Scholar] [CrossRef]
- Li, J.; Gao, W.; Yang, Q.; Cao, F. Perceived stress, anxiety, and depression in treatment-naive women with breast cancer: A case—control study. Psychooncology 2021, 30, 231–239. [Google Scholar] [CrossRef]
- Hijazi, N.; Alourfi, Z. Association between Hypertension, Antihypertensive Drugs, and Osteoporosis in Postmenopausal Syrian Women: A Cross-Sectional Study. Adv. Med. 2020, 2020, 7014212. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri-Tehrani, M.R.; Alemzadeh, S.A.; Marzbali, F.A.; Nasserisina, S.; Hosnan, F.; Naghghash, A.; Hamidieh, A.A.; Behfar, M.; Mohseni, F.; Rashidian, H.; et al. How Age, Sex and Transfusion Affects the Incidence of Endocrine and Bone Density Disorders in Major Thalassemic Patients. Iran. J. Public Health 2024, 53, 433–442. [Google Scholar]
- Obeid, E.I.; Conzen, S.D. The role of adrenergic signaling in breast cancer biology. Cancer Biomark. 2013, 13, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, N.; Pierroz, D.D.; Ferrari, S.L. Adrenergic control of bone remodeling and its implications for the treatment of osteoporosis. J. Musculoskelet. Neuronal Interact. 2008, 8, 94–104. [Google Scholar]
- Zhang, R.; Yin, H.; Yang, M.; Lei, X.; Zhen, D.; Zhang, Z. Advanced Progress of the Relationship Between Antihypertensive Drugs and Bone Metabolism. Hypertension 2023, 80, 2255–2264. [Google Scholar] [CrossRef] [PubMed]
- Uchibori, S.; Sekiya, T.; Sato, T.; Hayashi, K.; Takeguchi, A.; Muramatsu, R.; Ishizuka, K.; Kondo, H.; Miyazawa, K.; Togari, A.; et al. Suppression of tooth movement-induced sclerostin expression using beta-adrenergic receptor blockers. Oral Dis. 2020, 26, 621–629. [Google Scholar] [CrossRef]
- U.S. National Library of Medicine. Clinical Tryals.gov. Clinical Study Evaluating Beta Blockers Use and Fracture Risk in Patients with Primary Osteoporosis. Available online: https://clinicaltrials.gov/study/NCT04704947?cond=NCT04704947&rank=1 (accessed on 1 August 2024).
- U.S. National Library of Medicine. Clinical Tryals.gov. Dose Response and Receptor Selectivity of Beta-Blocker Effects on Bone Metabolism. Available online: https://clinicaltrials.gov/study/NCT02467400?cond=NCT02467400&rank=1 (accessed on 1 August 2024).
- U.S. National Library of Medicine. Clinical Tryals.gov. Atenolol for the Prevention of Osteoporosis (APO). Available online: https://clinicaltrials.gov/study/NCT04905277?cond=NCT04905277&rank=1 (accessed on 1 August 2024).
- Anumas, S.; Thitisuriyarax, S.; Tantiyavarong, P.; Pholsawatchai, W.; Pattharanitima, P. The Association of Beta-Blocker Use and Bone Mineral Density Level in Hemodialysis Patients: A Cross-Sectional Study. Medicina 2023, 59, 129. [Google Scholar] [CrossRef] [PubMed]
- Sumida, K.; Shrestha, P.; Mallisetty, Y.; Surbhi, S.; Thomas, F.; Streja, E.; Kalantar-Zadeh, K.; Kovesdy, C.P. Incident Diuretic Use and Subsequent Risk of Bone Fractures: A Large Nationwide Observational Study of US Veterans. Mayo Clin. Proc. 2024, 99, 913–926. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, T.; Guo, P.; Gong, W.; Zhu, H.; Zhao, M.; Yuan, Z. Association of antihypertensive drugs with fracture and bone mineral density: A comprehensive drug-target Mendelian randomization study. Front. Endocrinol. 2023, 14, 1164387. [Google Scholar] [CrossRef]
- Telegdy, G.; Adamik, A. Neurotransmitter-mediated anxiogenic action of PACAP-38 in rats. Behav. Brain Res. 2015, 281, 333–338. [Google Scholar] [CrossRef]
- Luo, C.; Qin, S.X.; Wang, Q.Y.; Li, Y.F.; Qu, X.L.; Yue, C.; Hu, L.; Sheng, Z.F.; Wang, X.B.; Wan, X.M. Cost-effectiveness analysis of five drugs for treating postmenopausal women in the United States with osteoporosis and a very high fracture risk. J. Endocrinol. Investig. 2023, 46, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Klein, P.; Tiersten, A.; Sparano, J.A. An emerging generation of endocrine therapies in breast cancer: A clinical perspective. NPJ Breast Cancer 2023, 9, 20. [Google Scholar] [CrossRef]
- Tchivileva, I.E.; Hadgraft, H.; Lim, P.F.; Di Giosia, M.; Ribeiro-Dasilva, M.; Campbell, J.H.; Willis, J.; James, R.; Herman-Giddens, M.; Fillingim, R.B.; et al. Efficacy and safety of propranolol for treatment of temporomandibular disorder pain: A randomized, placebo-controlled clinical trial. Pain 2020, 161, 1755–1767. [Google Scholar] [CrossRef]
- Li, Y.Y.; Gao, L.J.; Zhang, Y.X.; Liu, S.J.; Cheng, S.; Liu, Y.P.; Jia, C.X. Bisphosphonates and risk of cancers: A systematic review and meta-analysis. Br. J. Cancer 2020, 123, 1570–1581. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Sun, H.; Zhao, S.; Zhang, Y.; Li, D.; Zhang, Q.; Zhao, Y. Bisphosphonates and primary breast cancer risk: An updated systematic review and meta-analysis involving 963,995 women. Clin. Epidemiol. 2019, 11, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Mbese, Z.; Aderibigbe, B.A. Bisphosphonate-Based Conjugates and Derivatives as Potential Therapeutic Agents in Osteoporosis, Bone Cancer and Metastatic Bone Cancer. Int. J. Mol. Sci. 2021, 22, 6869. [Google Scholar] [CrossRef] [PubMed]
- Morizio, P.; Burkhart, J.I.; Ozawa, S. Denosumab: A Unique Perspective on Adherence and Cost-effectiveness Compared with Oral Bisphosphonates in Osteoporosis Patients. Ann. Pharmacother. 2018, 52, 1031–1041. [Google Scholar] [CrossRef]
- Santini, D.; Stumbo, L.; Spoto, C.; D’Onofrio, L.; Pantano, F.; Iuliani, M.; Fioramonti, M.; Zoccoli, A.; Ribelli, G.; Virzi, V.; et al. Bisphosphonates as anticancer agents in early breast cancer: Preclinical and clinical evidence. Breast Cancer Res. 2015, 17, 121. [Google Scholar] [CrossRef]
- Kouba, B.R.; Camargo, A.; Gil-Mohapel, J.; Rodrigues, A.L.S. Molecular Basis Underlying the Therapeutic Potential of Vitamin D for the Treatment of Depression and Anxiety. Int. J. Mol. Sci. 2022, 23, 7077. [Google Scholar] [CrossRef]
- Torres, A.; Cameselle, C.; Otero, P.; Simal-Gandara, J. The Impact of Vitamin D and Its Dietary Supplementation in Breast Cancer Prevention: An Integrative Review. Nutrients 2024, 16, 573. [Google Scholar] [CrossRef] [PubMed]
- Voulgaridou, G.; Papadopoulou, S.K.; Detopoulou, P.; Tsoumana, D.; Giaginis, C.; Kondyli, F.S.; Lymperaki, E.; Pritsa, A. Vitamin D and Calcium in Osteoporosis, and the Role of Bone Turnover Markers: A Narrative Review of Recent Data from RCTs. Diseases 2023, 11, 29. [Google Scholar] [CrossRef]
- Zemlin, C.; Altmayer, L.; Stuhlert, C.; Schleicher, J.T.; Wormann, C.; Lang, M.; Scherer, L.S.; Thul, I.C.; Spenner, L.S.; Simon, J.A.; et al. Prevalence and Relevance of Vitamin D Deficiency in Newly Diagnosed Breast Cancer Patients: A Pilot Study. Nutrients 2023, 15, 1450. [Google Scholar] [CrossRef]
Study Group | |||||
---|---|---|---|---|---|
nsBB Mean ± SD | sBB Mean ± SD | Diuretics Mean ± SD | No SAH Mean ± SD | p Value | |
Age (range) | 56.17 ± 9.1 (41–79) | 59.32 ± 9.6 (46–74) | 63.54 ± 6.9 (53–79) | 57.36 ± 10.9 (34–83) | 0.13 |
Body mass index | 24.68 ± 4.3 | 27.18 ± 7.2 | 26.57 ± 5.5 | 25.03 ± 4.3 | 0.19 |
% (n = 36) | % (n = 19) | % (n = 13) | % (n = 123) | ||
Family history of cancer | 50 (18) | 26.3 (5) | 53.8 (7) | 44.7 (55) | 0.32 |
Smoking | 33.3 (12) | 31.6 (6) | 30.8 (4) | 37.4 (46) | 0.91 |
Obesity | 8.3 (3) | 21.1 (4) | 15.4 (2) | 11.4 (14) | 0.55 |
Early menarche | 2.8 (1) | 5.3 (1) | 7.7 (1) | 4.1 (5) | 0.88 |
Nulliparity | 5.6 (2) | 5.3 (1) | 7.7 (1) | 5.7 (7) | 0.99 |
Late menopause | 0 | 0 | 0 | 1.6 (2) | 0.77 |
Menopause | 83.3 (30) | 78.9 (15) | 100 (13) | 79.7 (98) | 0.33 |
Study Group | |||||
---|---|---|---|---|---|
nsBB % (n = 36) | sBB % (n = 19) | Diuretics % (n = 13) | No SAH % (n = 123) | p Value | |
Stage I–II | 97.2 (35) | 100 (19) | 76.9 (10) | 77.2 (95) | 0.007 |
Stage III–IV | 2.8 (1) | 0 | 23.1 (3) | 22.8 (28) | |
Triple negative | 30.6 (11) | 52.6 (10) | 23.1 (3) | 50.4 (62) | 0.05 |
Triple positive | 16.7 (6) | 21.1 (4) | 15.4 (2) | 11.4 (14) | 0.64 |
Hormonal therapy | 2.8 (1) | 15.8 (3) | 0 | 8.1 (10) | 0.23 |
Metastasis | 2.8 (1) | 0 | 7.7 (1) | 17.1 (21) | 0.02 |
Study Group | |||||
---|---|---|---|---|---|
nsBB Mean ± SD | sBB Mean ± SD | Diuretic Mean ± SD | No SAH Mean ± SD | p Value | |
All patients | +0.54 ± 0.94 | −0.44 ± 1.22 | −1.73 ± 0.83 | −1.22 ± 0.98 | 0.0001 |
Age range 34 to 58 years | +0.90 ± 0.59 | +0.32 ± 1.24 | −2.2 ± 0.80 | −1.07 ± 0.82 | 0.0001 |
Age range 59 to 83 years | +0.03 ± 1.12 | −0.90 ± 0.99 | −1.59 ± 0.83 | −1.39 ± 1.12 | 0.0001 |
Study Group | |||||
---|---|---|---|---|---|
nsBB % (n = 36) | sBB % (n = 19) | Diuretics % (n = 13) | No SAH % (n = 123) | p Value | |
All patients | |||||
Normal | 94.4 (34) | 68.4 (13) | 15.4 (2) | 41.5 (51) | 0.0001 |
Osteopenia | 5.6 (2) | 31.6 (6) | 61.5 (8) | 48 (59) | |
Osteoporosis | 0 | 0 | 23.1 (3) | 10.6 (13) | |
34 to 58 years old | % (n = 21) | % (n = 7) | % (n = 3) | % (n = 66) | |
Normal | 100 (21) | 85.7 (6) | 0 | 51.5 (34) | 0.0001 |
Osteopenia | 0 | 14.3 (1) | 66.7 (2) | 43.9 (29) | |
Osteoporosis | 0 | 0 | 33.2 (1) | 4.5 (3) | |
59 to 83 years old | % (n = 15) | % (n = 12) | % (n = 10) | % (n = 57) | |
Normal | 86.7 (13) | 58.3 (7) | 20 (2) | 29.8 (17) | 0.002 |
Osteopenia | 13.3 (2) | 41.7 (5) | 60 (6) | 52.6 (30) | |
Osteoporosis | 0 | 0 | 20 (2) | 17.5 (10) |
Osteoporosis/Osteopenia | ||||
---|---|---|---|---|
Yes | No | OR (95% CI) | p Value | |
All patients | ||||
No nsBB | 97.6% (83/85) | 60.9% (53/87) | 26.62 (6.13 to 115.5) | 0.0001 |
No sBB | 94.6% (70/74) | 81.5 (66/81) | 3.97 (1.25 to 12.50) | 0.01 |
34–58 years old | ||||
No nsBB | 100% (35/35) | 61.8% (34/55) | 44.25 # (2.57 to 759.9) | 0.0001 |
No sBB | 94.7% (36/38) | 86.8% (33/38) | 2.72 (0.49 to 15.0) | 0.21 |
59–83 years old | ||||
No nsBB | 96% (48/50) | 59.4% (19/32) | 16.42 (3.38 to 79.77) | 0.0001 |
No sBB | 94.4% (34/36) | 76.7% (33/43) | 5.15 (1.04 to 25.31) | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejía-Barradas, C.M.; Amador-Martínez, A.; Lara-Padilla, E.; Cárdenas-Rodríguez, N.; Ignacio-Mejía, I.; Martínez-López, V.; Ibañez-Cervantes, G.; Picado-Garcia, O.d.J.; Domínguez, B.; Bandala, C. Effects of Selective and Nonselective Beta Blockers on Bone Mineral Density in Mexican Patients with Breast Cancer. Cancers 2024, 16, 2891. https://doi.org/10.3390/cancers16162891
Mejía-Barradas CM, Amador-Martínez A, Lara-Padilla E, Cárdenas-Rodríguez N, Ignacio-Mejía I, Martínez-López V, Ibañez-Cervantes G, Picado-Garcia OdJ, Domínguez B, Bandala C. Effects of Selective and Nonselective Beta Blockers on Bone Mineral Density in Mexican Patients with Breast Cancer. Cancers. 2024; 16(16):2891. https://doi.org/10.3390/cancers16162891
Chicago/Turabian StyleMejía-Barradas, César Miguel, Ana Amador-Martínez, Eleazar Lara-Padilla, Noemí Cárdenas-Rodríguez, Iván Ignacio-Mejía, Valentín Martínez-López, Gabriela Ibañez-Cervantes, Orlando de Jesús Picado-Garcia, Brayan Domínguez, and Cindy Bandala. 2024. "Effects of Selective and Nonselective Beta Blockers on Bone Mineral Density in Mexican Patients with Breast Cancer" Cancers 16, no. 16: 2891. https://doi.org/10.3390/cancers16162891
APA StyleMejía-Barradas, C. M., Amador-Martínez, A., Lara-Padilla, E., Cárdenas-Rodríguez, N., Ignacio-Mejía, I., Martínez-López, V., Ibañez-Cervantes, G., Picado-Garcia, O. d. J., Domínguez, B., & Bandala, C. (2024). Effects of Selective and Nonselective Beta Blockers on Bone Mineral Density in Mexican Patients with Breast Cancer. Cancers, 16(16), 2891. https://doi.org/10.3390/cancers16162891