Molecular Analysis of Salivary and Lacrimal Adenoid Cystic Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods and Materials
2.1. Clinical Data Collection
2.2. Sample Preparation
2.3. FISH Analysis
2.4. DNA Sequencing
2.5. Bioinformatic Analysis
3. Results
3.1. FISH Studies
Whole Exome Sequencing (WES) Single Nucleotide Variant (SNV) Analysis
3.2. DDR Analysis
3.3. Survival Analysis
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thierauf, J.; Ramamurthy, N.; Jo, V.Y.; Robinson, H.; Frazier, R.P.; Gonzalez, J.; Pacula, M.; Dominguez Meneses, E.; Nose, V.; Nardi, V.; et al. Clinically Integrated Molecular Diagnostics in Adenoid Cystic Carcinoma. Oncologist 2019, 24, 1356–1367. [Google Scholar] [CrossRef] [PubMed]
- Coca-Pelaz, A.; Rodrigo, J.P.; Bradley, P.J.; Vander Poorten, V.; Triantafyllou, A.; Hunt, J.L.; Strojan, P.; Rinaldo, A.; Haigentz, M.; Takes, R.P.; et al. Adenoid cystic carcinoma of the head and neck—An update. Oral Oncol. 2015, 51, 652–661. [Google Scholar] [CrossRef] [PubMed]
- Grossniklaus, H.E.; Eberhart, C.G.; Kivelä, T.T. WHO Classification of Tumours of the Eye; IARC: Lyon, France, 2018. [Google Scholar]
- Knijnenburg, T.A.; Wang, L.; Zimmermann, M.T.; Chambwe, N.; Gao, G.F.; Cherniack, A.D.; Fan, H.; Shen, H.; Way, G.P.; Greene, C.S.; et al. Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Rep. 2018, 23, 239–254.e6. [Google Scholar] [CrossRef] [PubMed]
- Bernardini, F.P.; Devoto, M.H.; Croxatto, J.O. Epithelial tumors of the lacrimal gland: An update. Curr. Opin. Ophthalmol. 2008, 19, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.K.; Afshari, M.K.; Andrén, Y.; Wick, M.J.; Stenman, G. Targeting the Oncogenic Transcriptional Regulator MYB in Adenoid Cystic Carcinoma by Inhibition of IGF1R/AKT Signaling. JNCI J. Natl. Cancer Inst. 2017, 109, djx017. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.W.; Speight, P.M. Perineural invasion in adenoid cystic carcinoma of the salivary glands: A valid prognostic indicator? Oral Oncol. 2009, 45, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Drill, E.; Ho, A.; Ho, A.; Dunn, L.; Prieto-Granada, C.N.; Chan, T.; Ganly, I.; Ghossein, R.; Katabi, N. Predictors of Outcome in Adenoid Cystic Carcinoma of Salivary Glands: A Clinicopathologic Study With Correlation Between: MYB: Fusion and Protein Expression. Am. J. Surg. Pathol. 2017, 41, 1422–1432. [Google Scholar] [CrossRef] [PubMed]
- Szanto, P.A.; Luna, M.A.; Tortoledo, M.E.; White, R.A. Histologic grading of adenoid cystic carcinoma of the salivary glands. Cancer 1984, 54, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Perzin, K.H.; Gullane, P.; Clairmont, A.C. Adenoid cystic carcinomas arising in salivary glands. A correlation of histologic features and clinical course. Cancer 1978, 42, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Batsakis, J.G.; Luna, M.A.; El-Naggar, A. Histopathologic grading of salivary gland neoplasms: III. Adenoid cystic carcinomas. Ann. Otol. Rhinol. Laryngol. 1990, 99, 1007–1009. [Google Scholar] [CrossRef] [PubMed]
- Liebig, C.; Ayala, G.; Wilks, J.A.; Berger, D.H.; Albo, D. Perineural invasion in cancer. Cancer 2009, 115, 3379–3391. [Google Scholar] [CrossRef] [PubMed]
- Miles, B.; Tadi, P. Genetics, Somatic Mutation; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Andreasen, S.; Tan, Q.; Agander, T.K.; Steiner, P.; Bjørndal, K.; Høgdall, E.; Larsen, S.R.; Erentaite, D.; Olsen, C.H.; Ulhøi, B.P. Adenoid cystic carcinomas of the salivary gland, lacrimal gland, and breast are morphologically and genetically similar but have distinct microRNA expression profiles. Mod. Pathol. 2018, 31, 1211–1225. [Google Scholar] [CrossRef] [PubMed]
- Wagner, V.P.; Bingle, C.D.; Bingle, L. MYB-NFIB fusion transcript in adenoid cystic carcinoma: Current state of knowledge and future directions. Crit. Rev. Oncol. Hematol. 2022, 176, 103745. [Google Scholar] [CrossRef] [PubMed]
- Emerick, C.; Mariano, F.V.; Vargas, P.A.; Nör, J.E.; Squarize, C.H.; Castilho, R.M. Adenoid Cystic Carcinoma from the salivary and lacrimal glands and the breast: Different clinical outcomes to the same tumor. Crit. Rev. Oncol. Hematol. 2022, 179, 103792. [Google Scholar] [CrossRef] [PubMed]
- Brayer, K.J.; Frerich, C.A.; Kang, H.; Ness, S.A. Recurrent fusions in MYB and MYBL1 define a common, transcription factor–driven oncogenic pathway in salivary gland adenoid cystic carcinoma. Cancer Discov. 2016, 6, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Shakoori, A.R. Fluorescence In Situ Hybridization (FISH) and Its Applications. In Chromosom Struct Aberrations; Bhat, T.A., Wani, A.A., Eds.; Springer: New Delhi, India, 2017; pp. 343–367. [Google Scholar] [CrossRef]
- Persson, M.; Andrén, Y.; Mark, J.; Horlings, H.M.; Persson, F.; Stenman, G. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl. Acad. Sci. USA 2009, 106, 18740–18744. [Google Scholar] [CrossRef] [PubMed]
- Ferrarotto, R.; Mitani, Y.; McGrail, D.J.; Li, K.; Karpinets, T.V.; Bell, D.; Frank, S.J.; Song, X.; Kupferman, M.E.; Liu, B.; et al. Proteogenomic Analysis of Salivary Adenoid Cystic Carcinomas Defines Molecular Subtypes and Identifies Therapeutic Targets. Clin. Cancer Res. 2023, 27, 852–864. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.; He, Y.-Y. Targeting the AMP-Activated Protein Kinase for Cancer Prevention and Therapy. Front. Oncol. 2013, 3, 175. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.S.; Wang, K.; Rand, J.V.; Sheehan, C.E.; Jennings, T.A.; Al-Rohil, R.N.; Otto, G.A.; Curran, J.C.; Palmer, G.; Downing, S.R.; et al. Comprehensive Genomic Profiling of Relapsed and Metastatic Adenoid Cystic Carcinomas by Next-generation Sequencing Reveals Potential New Routes to Targeted Therapies. Am. J. Surg. Pathol. 2014, 38, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.E.; Au, V.; Mokhtari, T.E.; Goss, D.; Faden, D.L.; Varvares, M.A. A Contemporary Review of Molecular Therapeutic Targets for Adenoid Cystic Carcinoma. Cancers 2022, 14, 992. [Google Scholar] [CrossRef] [PubMed]
- Ferrarotto, R.; Mitani, Y.; Diao, L.; Guijarro, I.; Wang, J.; Zweidler-McKay, P.; Bell, D.; William, W.N.; Glisson, B.S.; Wick, M.J.; et al. Activating NOTCH1 mutations define a distinct subgroup of patients with adenoid cystic carcinoma who have poor prognosis, propensity to bone and liver metastasis, and potential responsiveness to Notch1 inhibitors. J. Clin. Oncol. 2017, 35, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Su, B.H.; Qu, J.; Song, M.; Huang, X.Y.; Hu, X.M.; Xie, J.; Zhao, Y.; Ding, L.C.; She, L.; Chen, J.; et al. NOTCH1 signaling contributes to cell growth, anti-apoptosis and metastasis in salivary adenoid cystic carcinoma. Oncotarget 2014, 5, 6885–6895. [Google Scholar] [CrossRef] [PubMed]
- Ferrarotto, R.; Metcalf, R.; Rodriguez, C.P.; Muzaffar, J.; Even, C.; Perez, C.A.; Van Herpen, C.M.L.-; Oliva, M.; Xia, B.; Bowles, D.W.; et al. Results of ACCURACY: A phase 2 trial of AL101, a selective gamma secretase inhibitor, in subjects with recurrent/metastatic (R/M) adenoid cystic carcinoma (ACC) harboring Notch activating mutations (Notchmut). J. Clin. Oncol. 2022, 40 (Suppl. 16), 6046. [Google Scholar] [CrossRef]
- Lopez Miranda, E.; Stathis, A.; Hess, D.; Racca, F.; Quon, D.; Rodon, J.; Saavedra Santa Gadea, O.; Perez Garcia, J.M.; Nuciforo, P.; Vivancos, A.; et al. Phase 1 study of CB-103, a novel first-in-class inhibitor of the CSL-NICD gene transcription factor complex in human cancers. J. Clin. Oncol. 2021, 39 (Suppl. 15), 3020. [Google Scholar] [CrossRef]
- Frierson, H.F., Jr.; Moskaluk, C.A. Mutation signature of adenoid cystic carcinoma: Evidence for transcriptional and epigenetic reprogramming. J. Clin. Investig. 2013, 123, 2783–2785. [Google Scholar] [CrossRef] [PubMed]
- Urnov, F.D.; Wolffe, A.P. Chromatin remodeling and transcriptional activation: The cast (in order of appearance). Oncogene 2001, 20, 2991–3006. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.S.; Ochoa, A.; Jayakumaran, G.; Zehir, A.; Valero Mayor, C.; Tepe, J.; Makarov, V.; Dalin, M.G.; He, J.; Bailey, M.; et al. Genetic hallmarks of recurrent/metastatic adenoid cystic carcinoma. J. Clin. Investig. 2019, 129, 4276–4289. [Google Scholar] [CrossRef] [PubMed]
- Lesueur, P.; Rapeaud, E.; De Marzi, L.; Goudjil, F.; Levy, C.; Galatoire, O.; Jacomet, P.V.; Dendale, R.; Calugaru, V. Adenoid Cystic Carcinoma of the Lacrimal Gland: High Dose Adjuvant Proton Therapy to Improve Patients Outcomes. Front. Oncol. 2020, 10, 135. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.; Sen, S.; Pushker, N.; Bajaj, M.S.; Kashyap, S.; Bakhshi, S.; Chosdol, K.; Meel, R.; Sharma, M.C. Prognostic impact of Notch1 receptor and clinicopathological High-Risk Predictors in lacrimal gland adenoid cystic carcinoma. Acta Ophthalmol. 2021, 99, e1467–e1473. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.D.; Al-Zubidi, N.; Debnam, J.M.; Shinder, R.; DeMonte, F.; Esmaeli, B. Bone Invasion by Adenoid Cystic Carcinoma of the Lacrimal Gland: Preoperative Imaging Assessment and Surgical Considerations. Ophthalmic Plast. Reconstr. Surg. 2010, 26, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Gamel, J.W.; Font, R.L. Adenoid cystic carcinoma of the lacrimal gland: The clinical significance of a basaloid histologic pattern. Hum. Pathol. 1982, 13, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Font, R.L.; Smith, S.L.; Bryan, R.G. Malignant Epithelial Tumors of the Lacrimal Gland: A Clinicopathologic Study of 21 Cases. Arch. Ophthalmol. 1998, 116, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Association, W.M. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef] [PubMed]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Mayakonda, A.; Lin, D.-C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018, 28, 1747–1756. [Google Scholar] [CrossRef] [PubMed]
- Mitani, Y.; Li, J.; Rao, P.H.; Zhao, Y.-J.; Bell, D.; Lippman, S.M.; Weber, R.S.; Caulin, C.; El-Naggar, A.K. Comprehensive Analysis of the MYB-NFIB Gene Fusion in Salivary Adenoid Cystic Carcinoma: Incidence, Variability, and Clinicopathologic Significance. Clin. Cancer Res. 2010, 16, 4722–4731. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.Y.; Keeney, M.G.; Chintakuntlawar, A.V.; Knutson, D.L.; Kloft-Nelson, S.; Greipp, P.T.; Garrity, J.A.; Salomao, D.R.; Garcia, J.J. Adenoid cystic carcinoma of the lacrimal gland is frequently characterized by MYB rearrangement. Eye 2017, 31, 720–725. [Google Scholar] [CrossRef] [PubMed]
- von Holstein, S.L.; Fehr, A.; Persson, M.; Therkildsen, M.H.; Prause, J.U.; Heegaard, S.; Stenman, G. Adenoid Cystic Carcinoma of the Lacrimal Gland: <em>MYB</em> Gene Activation, Genomic Imbalances, and Clinical Characteristics. Ophthalmology 2013, 120, 2130–2138. [Google Scholar] [CrossRef] [PubMed]
- Vibert, R.; Cyrta, J.; Girard, E.; Vacher, S.; Dupain, C.; Antonio, S.; Wong, J.; Baulande, S.; De Sousa, J.M.F.; Vincent-Salomon, A.; et al. Molecular characterisation of tumours of the lacrimal apparatus. Histopathology 2023, 83, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; Pereira, L.; Roth, S.; Galletta, L.; Link, E.; Akhurst, T.; Solomon, B.; Michael, M.; Darcy, P.; Sampurno, S.; et al. First-in-human phase I clinical trial of a combined immune modulatory approach using TetMYB vaccine and Anti-PD-1 antibody in patients with advanced solid cancer including colorectal or adenoid cystic carcinoma: The MYPHISMO study protocol (NCT03287427). Contemp. Clin. Trials Commun. 2019, 16, 100409. [Google Scholar] [CrossRef] [PubMed]
- Misiorek, J.O.; Przybyszewska-Podstawka, A.; Kałafut, J.; Paziewska, B.; Rolle, K.; Rivero-Müller, A.; Nees, M. Context Matters: NOTCH Signatures and Pathway in Cancer Progression and Metastasis. Cells 2021, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Feeney, L.; Hapuarachi, B.; Adderley, H.; Rack, S.; Morgan, D.; Walker, R.; Rauch, R.; Herz, E.; Kaye, J.; Harrington, K.; et al. Clinical disease course and survival outcomes following disease recurrence in adenoid cystic carcinoma with and without NOTCH signaling pathway activation. Oral Oncol. 2022, 133, 106028. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.-C.; She, L.; Zheng, D.-L.; Huang, Q.-L.; Wang, J.-F.; Zheng, F.-F.; Lu, Y.-G. Notch-4 contributes to the metastasis of salivary adenoid cystic carcinoma. Oncol. Rep. 2010, 24, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Kieran, R.; de Paula, B.H.R.; Hubank, M.; Barker, A.; Paterson, A.L.; Gilligan, D.; Doherty, G.J. Response of NOTCH1-activated tracheal adenoid cystic carcinoma to the gamma secretase inhibitor nirogacestat. JCO Precis. Oncol. 2021, 5, 1579–1583. [Google Scholar] [CrossRef] [PubMed]
- Sethi, M.K.; Buettner, F.F.R.; Krylov, V.B.; Takeuchi, H.; Nifantiev, N.E.; Haltiwanger, R.S.; Gerardy-Schahn, R.; Bakker, H. Identification of Glycosyltransferase 8 Family Members as Xylosyltransferases Acting on O-Glucosylated Notch Epidermal Growth Factor Repeats. J. Biol. Chem. 2010, 285, 1582–1586. [Google Scholar] [CrossRef] [PubMed]
- Ferrarotto, R.; Eckhardt, G.; Patnaik, A.; LoRusso, P.; Faoro, L.; Heymach, J.V.; Kapoun, A.M.; Xu, L.; Munster, P. A phase I dose-escalation and dose-expansion study of brontictuzumab in subjects with selected solid tumors. Ann. Oncol. 2018, 29, 1561–1568. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263. [Google Scholar] [CrossRef] [PubMed]
- Broustas, C.G.; Lieberman, H.B. DNA Damage Response Genes and the Development of Cancer Metastasis. Radiat. Res. 2014, 181, 111–130. [Google Scholar] [CrossRef] [PubMed]
- Rettig, E.M.; Talbot Jr, C.C.; Sausen, M.; Jones, S.; Bishop, J.A.; Wood, L.D.; Tokheim, C.; Niknafs, N.; Karchin, R.; Fertig, E.J.; et al. Whole-Genome Sequencing of Salivary Gland Adenoid Cystic Carcinoma. Cancer Prev. Res. 2016, 9, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.A.; Baylin, S.B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 2002, 3, 415–428. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chan, Y.-T.; Tan, H.-Y.; Li, S.; Wang, N.; Feng, Y. Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Mol. Cancer 2020, 19, 79. [Google Scholar] [CrossRef] [PubMed]
- Boila, L.D.; Ghosh, S.; Bandyopadhyay, S.K.; Jin, L.; Murison, A.; Zeng, A.G.X.; Shaikh, W.; Bhowmik, S.; Muddineni, S.S.N.A.; Biswas, M.; et al. KDM6 demethylases integrate DNA repair gene regulation and loss of KDM6A sensitizes human acute myeloid leukemia to PARP and BCL2 inhibition. Leukemia 2023, 37, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Rogers, P.; Eggerson, R.; Post, S.R.; Davis, R. Translational Research for Identifying Potential Early-stage Prostate Cancer Biomarkers. Cancer Genom. Proteom. 2023, 20, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brayer, K.J.; Kang, H.; El-Naggar, A.K.; Andreasen, S.; Homøe, P.; Kiss, K.; Mikkelsen, L.; Heegaard, S.; Pelaez, D.; Moeyersoms, A.; et al. Dominant Gene Expression Profiles Define Adenoid Cystic Carcinoma (ACC) from Different Tissues: Validation of a Gene Signature Classifier for Poor Survival in Salivary Gland ACC. Cancers 2023, 15, 1390. [Google Scholar] [CrossRef] [PubMed]
Filters Applied | Threshold | Action |
---|---|---|
Read Depth | >30 | Retained |
Biotype | Protein coding | Retained |
AF in general population | ≤0.001 | Retained |
Variant classification | Frameshift, missense, nonsense | Retained |
Consequence | Frameshift, missense, stop gain. Stop lost, start gain, start lost | Retained |
Impact | Low | Removed |
Filter | Common variants | Removed |
PolyPhen | Benign | Removed |
SIFT | Tolerated | Removed |
Minimum | Maximum | Median | ||
---|---|---|---|---|
Age at Diagnosis (years) | 20 | 72 | 42 | |
Overall Survival (months) | 39 | 275 | 85 | |
Duration of Follow-up (months) | 4 | 156 | 43.5 | |
Time to Recurrence (months) | 0 | 104 | 27 | |
N | % | |||
Overall Survival Status | Deceased | 7 | 50 | |
Alive/Censored | 7 | 50 | ||
Tumour Site | Salivary | 12 | 85.7 | |
Lacrimal | 2 | 14.3 | ||
Histological Pattern | Tubular | 1 | 7.1 | |
Cribriform | 8 | 57.1 | ||
Solid | 1 | 7.1 | ||
Mixed | 4 | 28.6 | ||
Recurrence/Metastasis | 8 | 57.1 |
Age | OS | Follow-Up | Time Rec | OSS | Tumor Site | Histology | Histology Grade | |
---|---|---|---|---|---|---|---|---|
1 | 40 | 74 | 12 | N/A | Deceased | Lacrimal | Solid (>30%), Cribiform and Tubular | 3 |
2 | 33 | 275 | 125 | 84 | Deceased | Salivary | Cribriform and Tubular, no Solid Component | 2 |
3 | 42 | 193 | 156 | 0 | Alive | Salivary | Mixed Solid (>50%), Cribriform and Tubular | 3 |
4 | 44 | 156 | 153 | N/A | Alive | Salivary | Mixed Cribiform and Tubular | 2 |
5 | 66 | 39 | 1 | 0 | Deceased | Salivary | Cribriform—no Solid | 2 |
6 | 52 | 45 | 42 | 19 | Deceased | Salivary | Cribriform—no Solid | 2 |
7 | 72 | 64 | 6 | 35 | Deceased | Salivary | Cribriform—no Solid | 2 |
8 | 20 | 107 | 4 | N/A | Alive | Salivary | Mixed—Cribriform and Tubular | 2 |
9 | 32 | 90 | 90 | N/A | Alive | Salivary | Cribriform—no Solid | 2 |
10 | 33 | 80 | 1 | N/A | Alive | Lacrimal | Tubular | 1 |
11 | 34 | 42 | 42 | 37 | Alive | Salivary | Cribriform—No Solid | 2 |
12 | 53 | 31 | 31 | 1 | Alive | Salivary | Mixed Solid (>30%) | 3 |
Mutated Genes | N | % |
---|---|---|
ARID1A | 2 | 14.3 |
CREBBP | 3 | 21.4 |
CHEK2 | 1 | 7.1 |
BRCA2 | 1 | 7.1 |
POLD3 | 1 | 7.1 |
PARP2 | 1 | 7.1 |
Minimum | Maximum | Median | |||
---|---|---|---|---|---|
Age at Diagnosis (years) | 33 | 52 | 39 | ||
Overall Survival (months) | 45 | 275 | 77 | ||
Duration of Follow-up (months) | 12 | 125 | 42 | ||
Time to Recurrence (months) | 19 | 84 | 51.5 | ||
N | % | ||||
Overall Survival Status | Deceased | 3 | 60 | ||
Alive/Censored | 2 | 40 | |||
Tumor Site | Salivary | 3 | 60 | ||
Lacrimal | 2 | 40 | |||
Histological Pattern | Tubular | 1 | 20 | ||
Cribriform | 3 | 60 | |||
Solid | 1 | 20 | |||
Recurrence/Metastasis | 2 | 40 | |||
Gene Fusion | MYB-NFIB | 3 | 60 | ||
MYB | 1 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Powell, S.; Kulakova, K.; Hanratty, K.; Khan, R.; Casserly, P.; Crown, J.; Walsh, N.; Kennedy, S. Molecular Analysis of Salivary and Lacrimal Adenoid Cystic Carcinoma. Cancers 2024, 16, 2868. https://doi.org/10.3390/cancers16162868
Powell S, Kulakova K, Hanratty K, Khan R, Casserly P, Crown J, Walsh N, Kennedy S. Molecular Analysis of Salivary and Lacrimal Adenoid Cystic Carcinoma. Cancers. 2024; 16(16):2868. https://doi.org/10.3390/cancers16162868
Chicago/Turabian StylePowell, Sarah, Karina Kulakova, Katie Hanratty, Rizwana Khan, Paula Casserly, John Crown, Naomi Walsh, and Susan Kennedy. 2024. "Molecular Analysis of Salivary and Lacrimal Adenoid Cystic Carcinoma" Cancers 16, no. 16: 2868. https://doi.org/10.3390/cancers16162868
APA StylePowell, S., Kulakova, K., Hanratty, K., Khan, R., Casserly, P., Crown, J., Walsh, N., & Kennedy, S. (2024). Molecular Analysis of Salivary and Lacrimal Adenoid Cystic Carcinoma. Cancers, 16(16), 2868. https://doi.org/10.3390/cancers16162868