CCL2 Predicts Survival in Patients with Inoperable Hepatocellular Carcinoma Undergoing Selective Internal Radiotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Settings and Population
2.3. Technique of 90Y-Radioembolization
2.4. Data Acquisition and Blood Sampling
2.5. Quantification of CCL2 by LEGENDPlex™
2.6. Statistics
3. Results
3.1. Characteristics of the Study Cohort
3.2. Clinical Parameters
3.3. Cell Count Pre- and Post-SIRT
3.4. CCL2 Levels in Patients Receiving SIRT
3.5. Treatment Response Associated with CCL2 and 60-Day Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Petrick, J.L.; London, W.T. Global epidemiology of hepatocellular carcinoma: An emphasis on demographic and regional variability. Clin. Liver Dis. 2015, 19, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.G.; Lampertico, P.; Nahon, P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J. Hepatol. 2020, 72, 250–261. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. S1), 4–13. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Prince, D.; Liu, K.; Xu, W.; Chen, M.; Sun, J.-Y.; Lu, X.-J.; Ji, J. Management of patients with intermediate stage hepatocellular carcinoma. Ther. Adv. Med. Oncol. 2020, 12, 1758835920970840. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Cervantes, A.; Chau, I.; Daniele, B.; Llovet, J.M.; Meyer, T.; Nault, J.-C.; Neumann, U.; Ricke, J.; Sangro, B.; et al. Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, iv238–iv255. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.A.; Stein, J.P.; Bellavia, R.J.; Broadwell, S.R. Treatment options for unresectable HCC with a focus on SIRT with Yttrium-90 resin microspheres. Int. J. Clin. Pract. 2017, 71, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Sundram, F.X.; Buscombe, J.R. Selective internal radiation therapy for liver tumours. Clin. Med. 2017, 17, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.; Brown, D.B.; Feilchenfeldt, J.; Marshall, J.; Wasan, H.; Fakih, M.; Gibbs, P.; Knuth, A.; Sangro, B.; Soulen, M.C.; et al. Safety of selective internal radiation therapy (SIRT) with yttrium-90 microspheres combined with systemic anticancer agents: Expert consensus. J. Gastrointest. Oncol. 2017, 8, 1079–1099. [Google Scholar] [CrossRef] [PubMed]
- Relja, B.; Pech, M. Transarterielle Radioembolisation: Immuneffekte und Immunonkologie. Radiologe 2020, 60, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Chew, V.; Lee, Y.H.; Pan, L.; Nasir, N.J.M.; Lim, C.J.; Chua, C.; Lai, L.; Hazirah, S.N.; Lim, T.K.H.; Goh, B.K.P.; et al. Immune activation underlies a sustained clinical response to Yttrium-90 radioembolisation in hepatocellular carcinoma. Gut 2019, 68, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Yoshie, O. Chemokines: A new classification system and their role in immunity. Immunity 2000, 12, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Anshita, D.; Ravichandiran, V. MCP-1: Function, regulation, and involvement in disease. Int. Immunopharmacol. 2021, 101, 107598. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, T. The chemokine MCP-1 (CCL2) in the host interaction with cancer: A foe or ally? Cell. Mol. Immunol. 2018, 15, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Fein, M.R.; He, X.-Y.; Almeida, A.S.; Bružas, E.; Pommier, A.; Yan, R.; Eberhardt, A.; Fearon, D.T.; van Aelst, L.; Wilkinson, J.E.; et al. Cancer cell CCR2 orchestrates suppression of the adaptive immune response. J. Exp. Med. 2020, 217, e20181551. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Cao, G.; Kou, C.; Liu, T. CCL2/CCR2 axis induces hepatocellular carcinoma invasion and epithelial-mesenchymal transition in vitro through activation of the Hedgehog pathway. Oncol. Rep. 2018, 39, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Tian, Z.; Hou, X.; Liu, W.; Shao, C.; Gao, L.; Jiang, J.; Zhang, L.; Han, Z.; Wei, L. Targeted blocking of CCR2 and CXCR2 improves the efficacy of transarterial chemoembolization of hepatocarcinoma. Cancer Cell Int. 2022, 22, 362. [Google Scholar] [CrossRef] [PubMed]
- Damm, R.; Pech, M.; Cavalli, P.; Haag, F.; Gylstorff, S.; Omari, J.; Thormann, M.; Seidensticker, R.; Ricke, J.; Seidensticker, M.; et al. Correlation of chemokines and growth factors with radiation-induced liver injury after interstitial high dose rate (HDR) brachytherapy of liver metastases. J. Cancer Res. Clin. Oncol. 2022, 148, 2815–2826. [Google Scholar] [CrossRef] [PubMed]
- Salem, R.; Thurston, K.G. Radioembolization with 90Yttrium microspheres: A state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: Technical and methodologic considerations. J. Vasc. Interv. Radiol. 2006, 17, 1251–1278. [Google Scholar] [CrossRef] [PubMed]
- Seidensticker, R.; Seidensticker, M.; Damm, R.; Mohnike, K.; Schütte, K.; Malfertheiner, P.; van Buskirk, M.; Pech, M.; Amthauer, H.; Ricke, J. Hepatic toxicity after radioembolization of the liver using (90)Y-microspheres: Sequential lobar versus whole liver approach. Cardiovasc. Intervent. Radiol. 2012, 35, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Institut für klinische Chemie und Pathologie der Universitätsklinik Magdeburg. Qualitätsmanagement Institut für Klinische Chemie und Pathologie. Available online: https://www.med.uni-magdeburg.de/fme/institute/ikc/?ikcb,13 (accessed on 1 August 2024).
- Dezarn, W.A.; Cessna, J.T.; DeWerd, L.A.; Feng, W.; Gates, V.L.; Halama, J.; Kennedy, A.S.; Nag, S.; Sarfaraz, M.; Sehgal, V.; et al. Recommendations of the American Association of Physicists in Medicine on dosimetry, imaging, and quality assurance procedures for 90Y microsphere brachytherapy in the treatment of hepatic malignancies. Med. Phys. 2011, 38, 4824–4845. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Kratz, M.; Malen, R.C.; Dai, J.Y.; Lindström, S.; Zheng, Y.; Newcomb, P.A. Association between post-treatment circulating biomarkers of inflammation and survival among stage II-III colorectal cancer patients. Br. J. Cancer 2021, 125, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.-T.; Chen, H.-R.; Lin, C.-H.; Lee, J.-W.; Lee, C.-C. Monocyte chemotactic protein 1 (MCP-1) modulates pro-survival signaling to promote progression of head and neck squamous cell carcinoma. PLoS ONE 2014, 9, e88952. [Google Scholar] [CrossRef]
- Li, X.; Yao, W.; Yuan, Y.; Chen, P.; Li, B.; Li, J.; Chu, R.; Song, H.; Xie, D.; Jiang, X.; et al. Targeting of tumour-infiltrating macrophages via CCL2/CCR2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 2017, 66, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Yao, W.; Ba, Q.; Li, X.; Li, H.; Zhang, S.; Yuan, Y.; Wang, F.; Duan, X.; Li, J.; Zhang, W.; et al. A Natural CCR2 Antagonist Relieves Tumor-associated Macrophage-mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer. EBioMedicine 2017, 22, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Raghu, H.; Lepus, C.M.; Wang, Q.; Wong, H.H.; Lingampalli, N.; Oliviero, F.; Punzi, L.; Giori, N.J.; Goodman, S.B.; Chu, C.R.; et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann. Rheum. Dis. 2017, 76, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Zhao, J.; Tong, Y.; Chen, Z.; He, B.; Li, J.; Chen, B.; Li, R.; Deng, L.; Yu, H.; et al. Crosstalk between endothelial progenitor cells and HCC through periostin/CCL2/CD36 supports formation of the pro-metastatic microenvironment in HCC. Oncogene 2024, 43, 944–961. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Ramil, C.P.; Hai, J.; Zhang, C.; Wang, H.; Watkins, A.A.; Afshar, R.; Georgiev, P.; Sze, M.A.; Song, X.S.; et al. Cancer-Associated Fibroblasts Promote Immunosuppression by Inducing ROS-Generating Monocytic MDSCs in Lung Squamous Cell Carcinoma. Cancer Immunol. Res. 2020, 8, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Jarosz-Biej, M.; Smolarczyk, R.; Cichoń, T.; Kułach, N. Tumor Microenvironment as A “Game Changer” in Cancer Radiotherapy. Int. J. Mol. Sci. 2019, 20, 3212. [Google Scholar] [CrossRef] [PubMed]
- You, R.; Jiang, H.; Xu, Q.; Yin, G. Preintervention MCP-1 serum levels as an early predictive marker of tumor response in patients with hepatocellular carcinoma undergoing transarterial chemoembolization. Transl. Cancer Res. 2021, 10, 966–976. [Google Scholar] [CrossRef] [PubMed]
- Wiesemann, A.; Ketteler, J.; Slama, A.; Wirsdörfer, F.; Hager, T.; Röck, K.; Engel, D.R.; Fischer, J.W.; Aigner, C.; Jendrossek, V.; et al. Inhibition of Radiation-Induced Ccl2 Signaling Protects Lungs from Vascular Dysfunction and Endothelial Cell Loss. Antioxid. Redox Signal. 2019, 30, 213–231. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.W.; Alanis, L.; Cho, S.-K.; Saab, S. Yttrium-90 Selective Internal Radiation Therapy with Glass Microspheres for Hepatocellular Carcinoma: Current and Updated Literature Review. Korean J. Radiol. 2016, 17, 472–488. [Google Scholar] [CrossRef] [PubMed]
- Schatka, I.; Tschernig, M.; Rogasch, J.M.M.; Bluemel, S.; Graef, J.; Furth, C.; Sehouli, J.; Blohmer, J.-U.; Gebauer, B.; Fehrenbach, U.; et al. Selective Internal Radiation Therapy in Breast Cancer Liver Metastases: Outcome Assessment Applying a Prognostic Score. Cancers 2021, 13, 3777. [Google Scholar] [CrossRef] [PubMed]
- Gabrielson, A.; Miller, A.; Banovac, F.; Kim, A.; He, A.R.; Unger, K. Outcomes and Predictors of Toxicity after Selective Internal Radiation Therapy Using Yttrium-90 Resin Microspheres for Unresectable Hepatocellular Carcinoma. Front. Oncol. 2015, 5, 292. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.; Larsen, S.; Seidelin, J.B.; Nielsen, O.H. Alcohol modulates circulating levels of interleukin-6 and monocyte chemoattractant protein-1 in chronic pancreatitis. Scand. J. Gastroenterol. 2004, 39, 277–282. [Google Scholar] [CrossRef]
- Harper, K.M.; Knapp, D.J.; Breese, G.R. Withdrawal from Chronic Alcohol Induces a Unique CCL2 mRNA Increase in Adolescent But Not Adult Brain—Relationship to Blood Alcohol Levels and Seizures. Alcohol. Clin. Exp. Res. 2015, 39, 2375–2385. [Google Scholar] [CrossRef] [PubMed]
Variables | Pre-T | Post-T | p Value < 0.05 | ||
---|---|---|---|---|---|
Survivors (n = 32) | Non-Survivors (n = 9) | Survivors (n = 32) | Non-Survivors (n = 9) | ||
Age [median (range)] | 69.00 (63.25–78.75) | 70.00 (62.00–79.50) | 69.00 (62.50–79.00) | 70.00 (62.00–79.50) | |
Gender (female, n) | 7 | 1 | |||
Total liver volume (cm3) [median (range)] | 1925 (1484–2482) | 2790 (1860–3332) | |||
Tumor volume (cm3) [median (range)] | 174.30 (70.17–529.00) | 690.00 (133.10–1836.00) | |||
Tumor fraction (%) [median (range)] | 5.80 (3.81–22.40) | 27.40 (7.00–42.68) | |||
Administered activity dose (MBq) [median (range)] | 1190 (1003–1392) | 1438 (1010–1579) | |||
Creatinine (umol/L) [median (range)] | 83.50 (66.00–100.50) | 72.00 (60.50–88.50) | 82.00 (70.00–105.00) | 87.00 (73.00–108.00) | d |
Urea (mmol/L) [median (range)] | 5.15 (3.36–7.95) | 4.80 (4.10–7.20) | 6.60 (4.40–8.80) | 8.10 (5.25–9.90) | c |
Uric acid (umol/L) [median (range)] | 373.00 (284.00–441.00) | 317.00 (249.00–451.00) | 350.00 (271.00–393.00) | 395.00 (251.50–530.00) | |
Bilirubin (umol/L) [median (range)] | 10.20 (8.48–15.65) | 12.40 (8.00–15.85) | 14.30 (8.90–20.80) | 17.80 (9.90–23.55) | d |
Albumin (g/L) [median (range)] | 39.40 (36.63–42.93) | 39.40 (34.00–42.15) | 37.10 (33.50–40.60) | 36.60 (29.70–39.30) | c, d |
Alanine aminotransferase (umol/s·L) [median (range)] | 0.66 (0.43–1.10) | 0.79 (0.52–1.07) | 0.71 (0.44–0.99) | 0.72 (0.55–2.16) | |
Aspartate aminotransferase (umol/s·L) [median (range)] | 0.88 (0.66–1.30) | 1.23 (0.65–2.11) | 0.73 (0.54–1.35) | 2.10 (1.06–8.10) | b, d |
Alkaline phosphatase (umol/s·L) [median (range)] | 2.19 (1.52–3.18) | 3.64 (2.20–5.22) | 1.90 (1.35–2.98) | 3.10 (1.69–4.03) | a, c |
Gamma-glutamyl transferase (umol/s·L) [median (range)] | 2.85 (1.66–6.87) | 4.84 (2.03–20.50) | 2.51 (1.64–6.38) | 3.51 (1.73–23.55) | c |
Quick value (%) [median (range)] | 87.00 (76.00–94.00) | 86.00 (78.00–98.00) | 81.00 (73.00–96.50) | 75.00 (57.50–92.50) | |
INR [median (range)] | 1.080 (1.030–1.160) | 1.080 (1.010–1.140) | 1.120 (1.020–1.175) | 1.170 (1.040–1.360) | |
PTT (sec.) [median (range)] | 29.40 (27.10–34.30) | 30.50 (25.90–30.85) | 29.20 (27.05–31.85) | 30.00 (26.80–33.65) | |
Thrombin time (sec.) [median (range)] | 16.80 (16.28–17.85) | 16.45 (15.65–17.98) | 17.70 (16.85–18.60) | 18.45 (16.75–19.38) | c, d |
C-reactive protein (mg/L) [median (range)] | 12.30 (4.84–14.10) | 21.30 (8.80–58.80) | 6.40 (2.90–11.10) | 18.70 (8.70–69.25) | a, b |
HGH (ng/mL) [median (range)] | 0.586 (0.221–1.320) | 0.975 (0.317–3.563) | 0.621 (0.342–1.295) | 1.91 (0.59–4.37) | |
IGF (ng/mL) [median (range)] | 71.15 (58.13–109.00) | 65.75 (41.55–115.80) | 61.20 (50.15–92.55) | 74.30 (39.45–111.80) | c |
Variables | Pre-T | Post-T | p Value < 0.05 | ||
---|---|---|---|---|---|
Survivors (n = 32) | Non-Survivors (n = 9) | Survivors (n = 32) | Non-Survivors (n = 9) | ||
Leukocytes (Gpt/L) [median (range)] | 6.47 (5.31–7.80) | 11.20 (6.94–12.85) | 6.81 (5.08–8.63) | 10.90 (6.81–14.45) | a, b |
Erythrocytes (Tpt/L) [median (range)] | 4.30 (3.63–4.64) | 4.43 (4.03–4.92) | 4.29 (3.73–4.54) | 4.48 (4.06–4.70) | c |
Thrombocytes (Gpt/L) [median (range)] | 164.50 (115.80–240.80) | 244.00 (159.50–467.50) | 146.00 (99.00–219.00) | 184.00 (97.50–354.00) | c, d |
Neutrophil granulocytes (%) [median (range)] | 67.00 (56.95–73.00) | 76.30 (73.85–81.45) | 73.00 (67.40–75.00) | 87.15 (82.18–92.80) | a, b |
Neutrophil granulocytes (Gpt/L) [median (range)] | 4.88 (3.05–5.77) | 9.85 (8.58–13.95) | 5.84 (3.76–7.800) | 12.83 (9.24–19.08) | a, b |
Immature granulocytes (%) [median (range)] | 0.00 (0.00–0.01) | 0.01 (0.00–1.05) | 0.00 (0.00–0.00) | 0.01 (0.00–1.89) | b |
Immature granulocytes (Gpt/L) [median (range)] | 0.04 (0.02–0.06) | 0.16 (0.09–0.17) | 0.04 (0.02–0.06) | 0.21 (0.08–0.38) | a, b |
Eosinophil granulocytes (%) [median (range)] | 2.00 (1.10–2.75) | 1.25 (0.30–3.25) | 1.60 (0.00–2.00) | 0.10 (0.00–0.28) | |
Eosinophil granulocytes (Gpt/L) [median (range)] | 0.13 (0.09–0.21) | 0.16 (0.07–0.57) | 0.08 (0.05–0.15) | 0.03 (0.00–0.06) | b |
Basophil granulocytes (%) [median (range)] | 1.00 (0.75–1.00) | 0.40 (0.08–0.58) | 0.80 (0.00–1.00) | 0.15 (0.25–0.20) | a |
Basophil granulocytes (Gpt/L) [median (range)] | 0.05 (0.04–0.06) | 0.06 (0.04–0.08) | 0.05 (0.03–0.06) | 0.03 (0.02–0.04) | |
Lymphocytes (%) [median (range)] | 21.00 (16.00–25.50) | 15.30 (8.20–19.63) | 14.00 (11.00–19.20) | 4.65 (2.08–10.60) | b, c |
Lymphocytes (Gpt/L) [median (range)] | 1.43 (1.16–1.72) | 1.83 (1.35–2.46) | 1.07 (0.73–1.49) | 0.68 (0.39–1.26) | |
Monocytes (%) [median (range)] | 9.99 (8.35–12.95) | 5.75 (4.63–7.25) | 10.00 (9.00–12.00) | 5.15 (2.90–9.88) | a |
Monocytes (Gpt/L) [median (range)] | 0.68 (0.52–0.99) | 0.81 (0.54–1.14) | 0.79 (0.54–1.400) | 0.93 (0.44–1.23) |
Parameters | Tumor Size (cm3) | Tumor Fraction (%) | Administered Activity Dose (MBq) | Leukocytes Pre-T (Gpt/L) | CCL2 Pre-T (pg/mL) | Interval Until Death (Days) | 60 Days Survival | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time Point | r | p Value | r | p Value | r | p Value | r | p Value | r | p Value | r | p Value | r | p Value | |
Leukocytes (Gpt/L) | pre-T | 0.361 | 0.022 | 0.357 | 0.062 | 0.508 | <0.001 | 0.396 | 0.010 | 0.326 | 0.201 | −0.473 | 0.002 | ||
post-T | 0.123 | 0.457 | 0.127 | 0.521 | 0.451 | 0.004 | 0.654 | <0.001 | 0.445 | 0.004 | 0.064 | 0.808 | −0.342 | 0.031 | |
Neutrophil granulocytes (%) | pre-T | 0.529 | 0.035 | 0.400 | 0.286 | 0.326 | 0.202 | 0.744 | 0.001 | 0.314 | 0.220 | −0.214 | 0.645 | −0.538 | 0.026 |
post-T | −0.075 | 0.790 | −0.067 | 0.865 | 0.013 | 0.965 | 0.330 | 0.229 | 0.479 | 0.071 | −0.251 | 0.515 | −0.717 | 0.003 | |
Neutrophil granulocytes (Gpt/L) | pre-T | 0.744 | 0.001 | 0.583 | 0.099 | 0.549 | 0.022 | 0.958 | <0.001 | 0.429 | 0.086 | 0.143 | 0.760 | −0.736 | 0.001 |
post-T | −0.146 | 0.603 | −0.017 | 0.966 | 0.093 | 0.742 | 0.509 | 0.052 | 0.563 | 0.074 | −0.033 | 0.932 | −0.698 | 0.004 | |
Immature granulocytes (%) | pre-T | 0.212 | 0.431 | 0.440 | 0.235 | −0.154 | 0.557 | 0.137 | 0.599 | −0.142 | 0.587 | 0.612 | 0.144 | −0.468 | 0.058 |
post-T | −0.152 | 0.589 | −0.266 | 0.489 | −0.160 | 0.568 | 0.154 | 0.584 | 0.081 | 0.774 | −0.488 | 0.183 | −0.522 | 0.046 | |
Immature granulocytes (Gpt/L) | pre-T | 0.534 | 0.033 | 0.599 | 0.088 | 0.531 | 0.028 | 0.758 | <0.001 | 0.587 | 0.013 | 0.709 | 0.074 | −0.658 | 0.004 |
post-T | −0.022 | 0.939 | 0.294 | 0.422 | 0.164 | 0.569 | 0.590 | 0.021 | 0.563 | 0.032 | 0.119 | 0.761 | −0.669 | 0.006 | |
Monocytes (%) | pre-T | −0.313 | 0.238 | −0.319 | 0.402 | −0.151 | 0.564 | −0.578 | 0.015 | −0.083 | 0.752 | 0.414 | 0.355 | 0.613 | 0.009 |
post-T | −0.475 | 0.074 | −0.283 | 0.460 | −0.171 | 0.541 | −0.324 | 0.240 | −0.271 | 0.328 | 0.100 | 0.798 | 0.489 | 0.065 | |
Monocytes (Gpt/L) | pre-T | 0.271 | 0.311 | 0.233 | 0.546 | 0.284 | 0.269 | 0.244 | 0.345 | 0.402 | 0.110 | 0.643 | 0.119 | −0.057 | 0.829 |
post-T | −0.238 | 0.384 | 0.133 | 0.732 | 0.202 | 0.470 | 0.331 | 0.228 | 0.216 | 0.439 | 0.460 | 0.231 | 0.035 | 0.902 | |
Alkaline phosphatase (umol/s·L) | pre-T | 0.222 | 0.170 | 0.376 | 0.049 | −0.249 | 0.116 | 0.199 | 0.213 | 0.107 | 0.505 | −0.480 | 0.051 | −0.331 | 0.034 |
post-T | 0.275 | 0.090 | 0.241 | 0.216 | −0.143 | 0.378 | 0.152 | 0.351 | 0.164 | 0.311 | −0.463 | 0.061 | −0.239 | 0.138 | |
C-reactive protein (mg/L) | pre-T | 0.361 | 0.022 | 0.430 | 0.022 | 0.161 | 0.315 | 0.391 | 0.011 | 0.152 | 0.344 | −0.059 | 0.823 | −0.334 | 0.033 |
post-T | 0.187 | 0.255 | 0.067 | 0.734 | 0.266 | 0.097 | 0.358 | 0.023 | 0.403 | 0.010 | −0.102 | 0.698 | −0.407 | 0.009 | |
CCL2 (pg/mL) | pre-T | 0.241 | 0.135 | 0.191 | 0.329 | 0.271 | 0.087 | 0.396 | 0.010 | −0.199 | 0.445 | −0.378 | 0.015 | ||
post-T | 0.100 | 0.540 | 0.177 | 0.368 | 0.065 | 0.688 | 0.106 | 0.511 | 0.537 | <0.001 | −0.265 | 0.305 | −0.174 | 0.276 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haag, F.; Gylstorff, S.; Bujok, J.; Pech, M.; Relja, B. CCL2 Predicts Survival in Patients with Inoperable Hepatocellular Carcinoma Undergoing Selective Internal Radiotherapy. Cancers 2024, 16, 2832. https://doi.org/10.3390/cancers16162832
Haag F, Gylstorff S, Bujok J, Pech M, Relja B. CCL2 Predicts Survival in Patients with Inoperable Hepatocellular Carcinoma Undergoing Selective Internal Radiotherapy. Cancers. 2024; 16(16):2832. https://doi.org/10.3390/cancers16162832
Chicago/Turabian StyleHaag, Florian, Severin Gylstorff, Jasmin Bujok, Maciej Pech, and Borna Relja. 2024. "CCL2 Predicts Survival in Patients with Inoperable Hepatocellular Carcinoma Undergoing Selective Internal Radiotherapy" Cancers 16, no. 16: 2832. https://doi.org/10.3390/cancers16162832
APA StyleHaag, F., Gylstorff, S., Bujok, J., Pech, M., & Relja, B. (2024). CCL2 Predicts Survival in Patients with Inoperable Hepatocellular Carcinoma Undergoing Selective Internal Radiotherapy. Cancers, 16(16), 2832. https://doi.org/10.3390/cancers16162832