A Multidisciplinary Update on Treatment Modalities for Metastatic Spinal Tumors with a Surgical Emphasis: A Literature Review and Evaluation of the Role of Artificial Intelligence
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Discussion
3.1. Multidisciplinary Team Approach
3.2. Treatment Approach for Spinal Metastases
3.3. Minimally Invasive Surgery
3.4. Preoperative Embolization
3.5. External Beam Radiotherapy
3.6. Stereotactic Radiosurgery
3.7. Cement Augmentation
3.8. Fenestrated Screw Fixation
3.9. CFR-PEEK Instrumentation
3.10. Radiofrequency Ablation
3.11. Next Generation Sequencing
3.12. Artificial Intelligence
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cofano, F.; Di Perna, G.; Zenga, F.; Ducati, A.; Baldassarre, B.; Ajello, M.; Marengo, N.; Ceroni, L.; Lanotte, M.; Garbossa, D. The Neurology-Stability-Epidural compression assessment: A new score to establish the need for surgery in spinal metastases. Clin. Neurol. Neurosurg. 2020, 195, 105896. [Google Scholar] [CrossRef] [PubMed]
- Fisher, C.G.; DiPaola, C.P.; Ryken, T.C.; Bilsky, M.H.; Shaffrey, C.I.; Berven, S.H.; Harrop, J.S.; Fehlings, M.G.; Boriani, S.; Chou, D.; et al. A novel classification system for spinal instability in neoplastic disease: An evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine 2010, 35, E1221–E1229. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Breckenridge, C.; de Almeida, R.; Haider, A.; Muir, M.; Bird, J.; North, R.; Rhines, L.; Tatsui, C. Carbon Fiber-Reinforced Polyetheretherketone Spinal Implants for Treatment of Spinal Tumors: Perceived Advantages and Limitations. Neurospine 2023, 20, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Van den Brande, R.; Cornips, E.M.; Peeters, M.; Ost, P.; Billiet, C.; Van de Kelft, E. Epidemiology of spinal metastases, metastatic epidural spinal cord compression and pathologic vertebral compression fractures in patients with solid tumors: A systematic review. J. Bone Oncol. 2022, 35, 100446. [Google Scholar] [CrossRef] [PubMed]
- Barzilai, O.; Martin, A.; Reiner, A.S.; Laufer, I.; Schmitt, A.; Bilsky, M.H. Clinical reliability of genomic data obtained from spinal metastatic tumor samples. Neuro Oncol. 2022, 24, 1090–1100. [Google Scholar] [CrossRef]
- Laufer, I.; Rubin, D.G.; Lis, E.; Cox, B.W.; Stubblefield, M.D.; Yamada, Y.; Bilsky, M.H. The NOMS framework: Approach to the treatment of spinal metastatic tumors. Oncologist 2013, 18, 744–751. [Google Scholar] [CrossRef]
- Al Farii, H.; Aoude, A.; Al Shammasi, A.; Reynolds, J.; Weber, M. Surgical management of the metastatic spine disease: A review of the literature and proposed algorithm. Glob. Spine J. 2023, 13, 486–498. [Google Scholar] [CrossRef] [PubMed]
- Patchell, R.A.; Tibbs, P.A.; Regine, W.F.; Payne, R.; Saris, S.; Kryscio, R.J.; Mohiuddin, M.; Young, B. Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: A randomised trial. Lancet 2005, 366, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Rothrock, R.J.; Barzilai, O.; Reiner, A.S.; Lis, E.; Schmitt, A.M.; Higginson, D.S.; Yamada, Y.; Bilsky, M.H.; Laufer, I. Survival Trends After Surgery for Spinal Metastatic Tumors: 20-Year Cancer Center Experience. Neurosurgery 2021, 88, 402–412. [Google Scholar] [CrossRef]
- McNicol, E.; Horowicz-Mehler, N.; Fisk, R.A.; Bennett, K.; Gialeli-Goudas, M.; Chew, P.W.; Lau, J.; Carr, D. Management of opioid side effects in cancer-related and chronic noncancer pain: A systematic review. J. Pain 2003, 4, 231–256. [Google Scholar] [CrossRef]
- Smith, M.R.; Coleman, R.E.; Klotz, L.; Pittman, K.; Milecki, P.; Ng, S.; Chi, K.N.; Balakumaran, A.; Wei, R.; Wang, H. Denosumab for the prevention of skeletal complications in metastatic castration-resistant prostate cancer: Comparison of skeletal-related events and symptomatic skeletal events. Ann. Oncol. 2015, 26, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Lipton, A.; Uzzo, R.; Amato, R.J.; Ellis, G.K.; Hakimian, B.; Roodman, G.D.; Smith, M.R. The science and practice of bone health in oncology: Managing bone loss and metastasis in patients with solid tumors. J. Natl. Compr. Cancer Netw. 2009, 7 (Suppl. S7), S1–S29, quiz S30. [Google Scholar]
- Omlin, A.; Blum, D.; Wierecky, J.; Haile, S.R.; Ottery, F.D.; Strasser, F. Nutrition impact symptoms in advanced cancer patients: Frequency and specific interventions, a case-control study. J. Cachexia Sarcopenia Muscle 2013, 4, 55–61. [Google Scholar] [CrossRef]
- Porporato, P.E. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis 2016, 5, e200. [Google Scholar] [CrossRef] [PubMed]
- Johal, J.; Han, C.Y.; Joseph, R.; Munn, Z.; Agbejule, O.A.; Crawford-Williams, F.; Wallen, M.P.; Chan, R.J.; Hart, N.H. Dietary Supplements in People with Metastatic Cancer Who Are Experiencing Malnutrition, Cachexia, Sarcopenia, and Frailty: A Scoping Review. Nutrients 2022, 14, 2642. [Google Scholar] [CrossRef] [PubMed]
- Massie, M.J. Prevalence of depression in patients with cancer. J. Natl. Cancer Inst. Monogr. 2004, 2004, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Tian, Q.; Zhang, B. Effects of rehabilitation nursing care on deep vein thrombosis of the lower limbs following spinal fractures. Am. J. Transl. Res. 2021, 13, 1877–1883. [Google Scholar] [PubMed]
- Kimura, T. Multidisciplinary approach for bone metastasis: A review. Cancers 2018, 10, 156. [Google Scholar] [CrossRef] [PubMed]
- El Saghir, N.S.; Keating, N.L.; Carlson, R.W.; Khoury, K.E.; Fallowfield, L. Tumor boards: Optimizing the structure and improving efficiency of multidisciplinary management of patients with cancer worldwide. Am. Soc. Clin. Oncol. Educ. Book 2014, 34, e461–e466. [Google Scholar] [CrossRef]
- Newman, W.C.; Laufer, I.; Bilsky, M.H. Neurologic, oncologic, mechanical, and systemic and other decision frameworks for spinal disease. Neurosurg. Clin. N. Am. 2020, 31, 151–166. [Google Scholar] [CrossRef]
- Morgen, S.S.; Fruergaard, S.; Gehrchen, M.; Bjørck, S.; Engelholm, S.A.; Dahl, B. A revision of the Tokuhashi revised score improves the prognostic ability in patients with metastatic spinal cord compression. J. Cancer Res. Clin. Oncol. 2018, 144, 33–38. [Google Scholar] [CrossRef]
- Bilsky, M.; Smith, M. Surgical approach to epidural spinal cord compression. Hematol. Oncol. Clin. N. Am. 2006, 20, 1307–1317. [Google Scholar] [CrossRef]
- Barzilai, O.; McLaughlin, L.; Amato, M.-K.; Reiner, A.S.; Ogilvie, S.Q.; Lis, E.; Yamada, Y.; Bilsky, M.H.; Laufer, I. Minimal Access Surgery for Spinal Metastases: Prospective Evaluation of a Treatment Algorithm Using Patient-Reported Outcomes. World Neurosurg. 2018, 120, e889–e901. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Shi, X.; Mi, C.; Wang, B.; Pan, Y.; Lin, Y. Comparison of Minimally Invasive Tubular Surgery with Conventional Surgery in the Treatment of Thoracolumbar Metastasis. Cancer Manag. Res. 2021, 13, 8399–8409. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, A.; Hariri, O.; Ghanchi, H.; Miulli, D.E.; Siddiqi, J.; Vrionis, F.; Asgarzadie, F. Unusual metastasis of papillary thyroid cancer to the thoracic spine: A case report, new surgical management proposal, and review of the literature. Cureus 2017, 9, e1132. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.J.T. Embolization of musculoskeletal bone tumors. Semin. Interv. Radiol. 2010, 27, 111–123. [Google Scholar] [CrossRef]
- Kato, S.; Murakami, H.; Minami, T.; Demura, S.; Yoshioka, K.; Matsui, O.; Tsuchiya, H. Preoperative embolization significantly decreases intraoperative blood loss during palliative surgery for spinal metastasis. Orthopedics 2012, 35, e1389–e1395. [Google Scholar] [CrossRef]
- Kato, S.; Hozumi, T.; Takaki, Y.; Yamakawa, K.; Goto, T.; Kondo, T. Optimal schedule of preoperative embolization for spinal metastasis surgery. Spine 2013, 38, 1964–1969. [Google Scholar] [CrossRef]
- Clausen, C.; Dahl, B.; Frevert, S.C.; Hansen, L.V.; Nielsen, M.B.; Lönn, L. Preoperative embolization in surgical treatment of spinal metastases: Single-blind, randomized controlled clinical trial of efficacy in decreasing intraoperative blood loss. J. Vasc. Interv. Radiol. 2015, 26, 402–412.e1. [Google Scholar] [CrossRef]
- Damante, M.A.; Gibbs, D.; Dibs, K.; Palmer, J.D.; Raval, R.; Scharschmidt, T.; Chakravarti, A.; Bourekas, E.; Boulter, D.; Thomas, E.; et al. Neoadjuvant arterial embolization of spine metastases associated with improved local control in patients receiving surgical decompression and stereotactic body radiotherapy. Neurosurgery 2023, 93, 320–329. [Google Scholar] [CrossRef]
- Griessenauer, C.J.; Salem, M.; Hendrix, P.; Foreman, P.M.; Ogilvy, C.S.; Thomas, A.J. Preoperative Embolization of Spinal Tumors: A Systematic Review and Meta-Analysis. World Neurosurg. 2016, 87, 362–371. [Google Scholar] [CrossRef]
- Kumar, N.; Madhu, S.; Bohra, H.; Pandita, N.; Wang, S.S.Y.; Lopez, K.G.; Tan, J.H.; Vellayappan, B.A. Is there an optimal timing between radiotherapy and surgery to reduce wound complications in metastatic spine disease? A systematic review. Eur. Spine J. 2020, 29, 3080–3115. [Google Scholar] [CrossRef] [PubMed]
- Azad, T.D.; Varshneya, K.; Herrick, D.B.; Pendharkar, A.V.; Ho, A.L.; Stienen, M.; Zygourakis, C.; Bagshaw, H.P.; Veeravagu, A.; Ratliff, J.K.; et al. Timing of Adjuvant Radiation Therapy and Risk of Wound-Related Complications Among Patients With Spinal Metastatic Disease. Glob. Spine J. 2021, 11, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Dormand, E.-L.; Banwell, P.E.; Goodacre, T.E.E. Radiotherapy and wound healing. Int. Wound J. 2005, 2, 112–127. [Google Scholar] [CrossRef] [PubMed]
- Payne, W.G.; Naidu, D.K.; Wheeler, C.K.; Barkoe, D.; Mentis, M.; Salas, R.E.; Smith, D.J.; Robson, M.C. Wound healing in patients with cancer. Eplasty 2008, 8, e9. [Google Scholar] [PubMed]
- Wong, H.C.Y.; Lee, S.F.; Chan, A.W.; Caini, S.; Hoskin, P.; Simone, C.B.; Johnstone, P.; van der Linden, Y.; van der Velden, J.M.; Martin, E.; et al. Stereotactic body radiation therapy versus conventional external beam radiotherapy for spinal metastases: A systematic review and meta-analysis of randomized controlled trials. Radiother. Oncol. 2023, 189, 109914. [Google Scholar] [CrossRef]
- Barzilai, O.; Laufer, I.; Yamada, Y.; Higginson, D.S.; Schmitt, A.M.; Lis, E.; Bilsky, M.H. Integrating Evidence-Based Medicine for Treatment of Spinal Metastases Into a Decision Framework: Neurologic, Oncologic, Mechanicals Stability, and Systemic Disease. J. Clin. Oncol. 2017, 35, 2419–2427. [Google Scholar] [CrossRef] [PubMed]
- Witham, T.F.; Khavkin, Y.A.; Gallia, G.L.; Wolinsky, J.-P.; Gokaslan, Z.L. Surgery insight: Current management of epidural spinal cord compression from metastatic spine disease. Nat. Clin. Pract. Neurol. 2006, 2, 87–94, quiz 116. [Google Scholar] [CrossRef]
- Curtin, M.; Piggott, R.P.; Murphy, E.P.; Munigangaiah, S.; Baker, J.F.; McCabe, J.P.; Devitt, A. Spinal metastatic disease: A review of the role of the multidisciplinary team. Orthop. Surg. 2017, 9, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Bate, B.G.; Khan, N.R.; Kimball, B.Y.; Gabrick, K.; Weaver, J. Stereotactic radiosurgery for spinal metastases with or without separation surgery. J. Neurosurg. Spine 2015, 22, 409–415. [Google Scholar] [CrossRef]
- Gottumukkala, S.; Srivastava, U.; Brocklehurst, S.; Mendel, J.T.; Kumar, K.; Yu, F.F.; Agarwal, A.; Shah, B.R.; Vira, S.; Raj, K.M. Fundamentals of radiation oncology for treatment of vertebral metastases. Radiographics 2021, 41, 2136–2156. [Google Scholar] [CrossRef]
- Wowra, B.; Zausinger, S.; Drexler, C.; Kufeld, M.; Muacevic, A.; Staehler, M.; Tonn, J.-C. Cyberknife radiosurgery for malignant spinal tumors. Spine 2008, 33, 2929–2934. [Google Scholar] [CrossRef]
- Zeng, K.L.; Husain, Z.A.; Soliman, H.; Myrehaug, S.D.; Tseng, C.L.; Detsky, J.; Lee, Y.; Campbell, M.; Foster, M.; Atenafu, E.; et al. Imaging-Based Local Control Rates For “Radioresistant” Spinal Metastases Following Spine Stereotactic Body Radiotherapy Using Prostate Cancer As The “Radiosensitive” Reference. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, e733–e734. [Google Scholar] [CrossRef]
- Gerszten, P.C.; Burton, S.A.; Ozhasoglu, C.; Welch, W.C. Radiosurgery for spinal metastases: Clinical experience in 500 cases from a single institution. Spine 2007, 32, 193–199. [Google Scholar] [CrossRef]
- Kaloostian, P.E.; Yurter, A.; Zadnik, P.L.; Sciubba, D.M.; Gokaslan, Z.L. Current paradigms for metastatic spinal disease: An evidence-based review. Ann. Surg. Oncol. 2014, 21, 248–262. [Google Scholar] [CrossRef]
- Balagamwala, E.H.; Naik, M.; Reddy, C.A.; Angelov, L.; Suh, J.H.; Djemil, T.; Magnelli, A.; Chao, S.T. Pain flare after stereotactic radiosurgery for spine metastases. J. Radiosurg. SBRT 2018, 5, 99–105. [Google Scholar] [PubMed]
- Tanguturi, S.K.; Alexander, B.M. Neurologic complications of radiation therapy. Neurol. Clin. 2018, 36, 599–625. [Google Scholar] [CrossRef]
- Barisano, G.; Bergamaschi, S.; Acharya, J.; Rajamohan, A.; Gibbs, W.; Kim, P.; Zada, G.; Chang, E.; Law, M. Complications of radiotherapy and radiosurgery in the brain and spine. Neurographics 2018, 8, 167–187. [Google Scholar] [CrossRef]
- Caruso, J.P.; Cohen-Inbar, O.; Bilsky, M.H.; Gerszten, P.C.; Sheehan, J.P. Stereotactic radiosurgery and immunotherapy for metastatic spinal melanoma. Neurosurg. Focus 2015, 38, E6. [Google Scholar] [CrossRef] [PubMed]
- Floeth, F.W.; Herdmann, J.; Rhee, S.; Turowski, B.; Krajewski, K.; Steiger, H.-J.; Eicker, S.O. Open microsurgical tumor excavation and vertebroplasty for metastatic destruction of the second cervical vertebra-outcome in seven cases. Spine J. 2014, 14, 3030–3037. [Google Scholar] [CrossRef]
- Health Quality Ontario. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: A Systematic Review. Ont. Health Technol. Assess. Ser. 2016, 16, 1–202. [Google Scholar]
- Hu, Y.C.; Hart, D.J. Complications of vertebroplasty and kyphoplasty. Tech. Reg. Anesth. Pain Manag. 2007, 11, 164–170. [Google Scholar] [CrossRef]
- Alsoof, D.; Anderson, G.; McDonald, C.L.; Basques, B.; Kuris, E.; Daniels, A.H. Diagnosis and management of vertebral compression fracture. Am. J. Med. 2022, 135, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Koto, K.; Murata, H.; Sawai, Y.; Ashihara, E.; Horii, M.; Kubo, T. Cytotoxic effects of zoledronic acid-loaded hydroxyapatite and bone cement in malignant tumors. Oncol. Lett. 2017, 14, 1648–1656. [Google Scholar] [CrossRef]
- Sa, Y.; Yang, F.; de Wijn, J.R.; Wang, Y.; Wolke, J.G.C.; Jansen, J.A. Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 61, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Berenson, J.; Pflugmacher, R.; Jarzem, P.; Zonder, J.; Schechtman, K.; Tillman, J.B.; Bastian, L.; Ashraf, T.; Vrionis, F. Balloon kyphoplasty versus non-surgical fracture management for treatment of painful vertebral body compression fractures in patients with cancer: A multicentre, randomised controlled trial. Lancet Oncol. 2011, 12, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-K.; Li, Y.-D.; Li, Y.-C.; Liu, M.-Y.; Tsai, T.-T.; Lai, P.-L.; Tai, C.-L. Improved fixation stability for repairing pedicle screw loosening using a modified cement filling technique in porcine vertebrae. Sci. Rep. 2022, 12, 2739. [Google Scholar] [CrossRef] [PubMed]
- Galbusera, F.; Volkheimer, D.; Reitmaier, S.; Berger-Roscher, N.; Kienle, A.; Wilke, H.-J. Pedicle screw loosening: A clinically relevant complication? Eur. Spine J. 2015, 24, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Saadeh, Y.S.; Swong, K.N.; Yee, T.J.; Strong, M.J.; Kashlan, O.N.; Szerlip, N.J.; Oppenlander, M.E.; Park, P. Effect of Fenestrated Pedicle Screws with Cement Augmentation in Osteoporotic Patients Undergoing Spinal Fusion. World Neurosurg. 2020, 143, e351–e361. [Google Scholar] [CrossRef] [PubMed]
- Frankel, B.M.; Jones, T.; Wang, C. Segmental polymethylmethacrylate-augmented pedicle screw fixation in patients with bone softening caused by osteoporosis and metastatic tumor involvement: A clinical evaluation. Neurosurgery 2007, 61, 531–537; discussion 537. [Google Scholar] [CrossRef]
- Ignacio, J.M.F.; Ignacio, K.H.D. Pulmonary Embolism from Cement Augmentation of the Vertebral Body. Asian Spine J. 2018, 12, 380–387. [Google Scholar] [CrossRef]
- Massaad, E.; Rolle, M.; Hadzipasic, M.; Kiapour, A.; Shankar, G.M.; Shin, J.H. Safety and efficacy of cement augmentation with fenestrated pedicle screws for tumor-related spinal instability. Neurosurg. Focus 2021, 50, E12. [Google Scholar] [CrossRef] [PubMed]
- Zavras, A.G.; Schoenfeld, A.J.; Patt, J.C.; Munim, M.A.; Goodwin, C.R.; Goodwin, M.L.; Lo, S.-F.L.; Redmond, K.J.; Tobert, D.G.; Shin, J.H.; et al. Attitudes and trends in the use of radiolucent spinal implants: A survey of the North American Spine Society section of spinal oncology. N. Am. Spine Soc. J. 2022, 10, 100105. [Google Scholar] [CrossRef]
- Knott, P.T.; Mardjetko, S.M.; Kim, R.H.; Cotter, T.M.; Dunn, M.M.; Patel, S.T.; Spencer, M.J.; Wilson, A.S.; Tager, D.S. A comparison of magnetic and radiographic imaging artifact after using three types of metal rods: Stainless steel, titanium, and vitallium. Spine J. 2010, 10, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Ringel, F.; Ryang, Y.-M.; Kirschke, J.S.; Müller, B.S.; Wilkens, J.J.; Brodard, J.; Combs, S.E.; Meyer, B. Radiolucent Carbon Fiber-Reinforced Pedicle Screws for Treatment of Spinal Tumors: Advantages for Radiation Planning and Follow-Up Imaging. World Neurosurg. 2017, 105, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Nevelsky, A.; Borzov, E.; Daniel, S.; Bar-Deroma, R. Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution. J. Appl. Clin. Med. Phys. 2017, 18, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Poel, R.; Belosi, F.; Albertini, F.; Walser, M.; Gisep, A.; Lomax, A.J.; Weber, D.C. Assessing the advantages of CFR-PEEK over titanium spinal stabilization implants in proton therapy-a phantom study. Phys. Med. Biol. 2020, 65, 245031. [Google Scholar] [CrossRef] [PubMed]
- Cofano, F.; Di Perna, G.; Monticelli, M.; Marengo, N.; Ajello, M.; Mammi, M.; Vercelli, G.; Petrone, S.; Tartara, F.; Zenga, F. Carbon fiber reinforced vs. titanium implants for fixation in spinal metastases: A comparative clinical study about safety and effectiveness of the new “carbon-strategy”. J. Clin. Neurosci. 2020, 75, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Bruner, H.J.; Guan, Y.; Yoganandan, N.; Pintar, F.A.; Maiman, D.J.; Slivka, M.A. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation. J. Neurosurg. Spine 2010, 13, 766–772. [Google Scholar] [CrossRef]
- Neal, M.T.; Richards, A.E.; Curley, K.L.; Patel, N.P.; Ashman, J.B.; Vora, S.A.; Kalani, M.A. Carbon fiber-reinforced PEEK instrumentation in the spinal oncology population: A retrospective series demonstrating technique, feasibility, and clinical outcomes. Neurosurg. Focus 2021, 50, E13. [Google Scholar] [CrossRef]
- Laux, C.J.; Hodel, S.M.; Farshad, M.; Müller, D.A. Carbon fibre/polyether ether ketone (CF/PEEK) implants in orthopaedic oncology. World J. Surg. Oncol. 2018, 16, 241. [Google Scholar] [CrossRef]
- Xu, X.; Wang, L.; Wang, J.; Yu, X.; Huang, W. Retrieval analysis of PEEK rods pedicle screw system: Three cases analysis. BMC Musculoskelet. Disord. 2024, 25, 488. [Google Scholar] [CrossRef]
- Kang, K.-T.; Koh, Y.-G.; Son, J.; Yeom, J.S.; Park, J.-H.; Kim, H.-J. Biomechanical evaluation of pedicle screw fixation system in spinal adjacent levels using polyetheretherketone, carbon-fiber-reinforced polyetheretherketone, and traditional titanium as rod materials. Compos. Part. B Eng. 2017, 130, 248–256. [Google Scholar] [CrossRef]
- Takayanagi, A.; Siddiqi, I.; Ghanchi, H.; Lischalk, J.; Vrionis, F.; Ratliff, J.; Bilsky, M.; Hariri, O.R. Radiolucent Carbon Fiber-Reinforced Implants for Treatment of Spinal Tumors-Clinical, Radiographic, and Dosimetric Considerations. World Neurosurg. 2021, 152, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Santosham, R.; Dev, B.; Priyadarshini, P.; Chadga, H.; Anupama, C.; Santosham, R.; Santosham, R.; Vishnu, S. How I do it: Radiofrequency ablation-PMC. Indian J. Radiol. Imaging 2008, 18, 166–170. [Google Scholar]
- Levy, J.; Hopkins, T.; Morris, J.; Tran, N.D.; David, E.; Massari, F.; Farid, H.; Vogel, A.; O’Connell, W.G.; Sunenshine, P.; et al. Radiofrequency Ablation for the Palliative Treatment of Bone Metastases: Outcomes from the Multicenter OsteoCool Tumor Ablation Post-Market Study (OPuS One Study) in 100 Patients. J. Vasc. Interv. Radiol. 2020, 31, 1745–1752. [Google Scholar] [CrossRef]
- Ahmed, M.; Brace, C.L.; Lee, F.T.; Goldberg, S.N. Principles of and advances in percutaneous ablation. Radiology 2011, 258, 351–369. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, F.; Farouil, G.; Ternes, N.; Gaudin, A.; Hakime, A.; Tselikas, L.; Teriitehau, C.; Baudin, E.; Auperin, A.; de Baere, T. Thermal ablation techniques: A curative treatment of bone metastases in selected patients? Eur. Radiol. 2014, 24, 1971–1980. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.N.; Tomasian, A.; Vaswani, D.; Vyhmeister, R.; Chang, R.O.; Jennings, J.W. Radiographic Local Control of Spinal Metastases with Percutaneous Radiofrequency Ablation and Vertebral Augmentation. AJNR Am. J. Neuroradiol. 2016, 37, 759–765. [Google Scholar] [CrossRef]
- Giammalva, G.R.; Costanzo, R.; Paolini, F.; Benigno, U.E.; Porzio, M.; Brunasso, L.; Basile, L.; Gulì, C.; Pino, M.A.; Gerardi, R.M.; et al. Management of Spinal Bone Metastases With Radiofrequency Ablation, Vertebral Reinforcement and Transpedicular Fixation: A Retrospective Single-Center Case Series. Front. Oncol. 2021, 11, 818760. [Google Scholar] [CrossRef]
- Bagla, S.; Sayed, D.; Smirniotopoulos, J.; Brower, J.; Neal Rutledge, J.; Dick, B.; Carlisle, J.; Lekht, I.; Georgy, B. Multicenter prospective clinical series evaluating radiofrequency ablation in the treatment of painful spine metastases. Cardiovasc. Intervent Radiol. 2016, 39, 1289–1297. [Google Scholar] [CrossRef]
- Reyes, M.; Georgy, M.; Brook, L.; Ortiz, O.; Brook, A.; Agarwal, V.; Muto, M.; Manfre, L.; Marcia, S.; Georgy, B.A. Multicenter clinical and imaging evaluation of targeted radiofrequency ablation (t-RFA) and cement augmentation of neoplastic vertebral lesions. J. Neurointerv Surg. 2018, 10, 176–182. [Google Scholar] [CrossRef]
- Abdelgawaad, A.S.; Ezzati, A.; Krajnovic, B.; Seyed-Emadaldin, S.; Abdelrahman, H. Radiofrequency ablation and balloon kyphoplasty for palliation of painful spinal metastases. Eur. Spine J. 2021, 30, 2874–2880. [Google Scholar] [CrossRef]
- Clarençon, F.; Jean, B.; Pham, H.-P.; Cormier, E.; Bensimon, G.; Rose, M.; Maksud, P.; Chiras, J. Value of percutaneous radiofrequency ablation with or without percutaneous vertebroplasty for pain relief and functional recovery in painful bone metastases. Skelet. Radiol. 2013, 42, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Halpin, R.J.; Bendok, B.R.; Liu, J.C. Minimally invasive treatments for spinal metastases: Vertebroplasty, kyphoplasty, and radiofrequency ablation. J. Support. Oncol. 2004, 2, 339–351; discussion 352. [Google Scholar] [PubMed]
- Goetz, M.P.; Callstrom, M.R.; Charboneau, J.W.; Farrell, M.A.; Maus, T.P.; Welch, T.J.; Wong, G.Y.; Sloan, J.A.; Novotny, P.J.; Petersen, I.A.; et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: A multicenter study. J. Clin. Oncol. 2004, 22, 300–306. [Google Scholar] [CrossRef]
- Dupuy, D.E.; Liu, D.; Hartfeil, D.; Hanna, L.; Blume, J.D.; Ahrar, K.; Lopez, R.; Safran, H.; DiPetrillo, T. Percutaneous radiofrequency ablation of painful osseous metastases: A multicenter American College of Radiology Imaging Network trial. Cancer 2010, 116, 989–997. [Google Scholar] [CrossRef]
- Tomasian, A.; Marlow, J.; Hillen, T.J.; Jennings, J.W. Complications of Percutaneous Radiofrequency Ablation of Spinal Osseous Metastases: An 8-Year Single-Center Experience. AJR Am. J. Roentgenol. 2021, 216, 1607–1613. [Google Scholar] [CrossRef]
- Luthra, R.; Chen, H.; Roy-Chowdhuri, S.; Singh, R.R. Next-Generation Sequencing in Clinical Molecular Diagnostics of Cancer: Advantages and Challenges. Cancers 2015, 7, 2023–2036. [Google Scholar] [CrossRef] [PubMed]
- Cofano, F.; Monticelli, M.; Ajello, M.; Zenga, F.; Marengo, N.; Di Perna, G.; Altieri, R.; Cassoni, P.; Bertero, L.; Melcarne, A.; et al. The targeted therapies era beyond the surgical point of view: What spine surgeons should know before approaching spinal metastases. Cancer Control. 2019, 26, 1073274819870549. [Google Scholar] [CrossRef]
- Cao, R.; Chen, H.; Wang, H.; Wang, Y.; Cui, E.-N.; Jiang, W. Comprehensive analysis of prediction of the EGFR mutation and subtypes based on the spinal metastasis from primary lung adenocarcinoma. Front. Oncol. 2023, 13, 1154327. [Google Scholar] [CrossRef]
- Batista, N.; Tee, J.; Sciubba, D.; Sahgal, A.; Laufer, I.; Weber, M.; Gokaslan, Z.; Rhines, L.; Fehlings, M.; Patel, S.; et al. Emerging and established clinical, histopathological and molecular parametric prognostic factors for metastatic spine disease secondary to lung cancer: Helping surgeons make decisions. J. Clin. Neurosci. 2016, 34, 15–22. [Google Scholar] [CrossRef]
- Liang, S.-K.; Ko, J.-C.; Yang, J.C.-H.; Shih, J.-Y. Afatinib is effective in the treatment of lung adenocarcinoma with uncommon EGFR p.L747P and p.L747S mutations. Lung Cancer 2019, 133, 103–109. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Tangsrivimol, J.A.; Schonfeld, E.; Zhang, M.; Veeravagu, A.; Smith, T.R.; Härtl, R.; Lawton, M.T.; El-Sherbini, A.H.; Prevedello, D.M.; Glicksberg, B.S.; et al. Artificial Intelligence in Neurosurgery: A State-of-the-Art Review from Past to Future. Diagnostics 2023, 13, 2429. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, S.; Dong, D.; Wei, J.; Fang, C.; Zhou, X.; Sun, K.; Li, L.; Li, B.; Wang, M.; et al. The applications of radiomics in precision diagnosis and treatment of oncology: Opportunities and challenges. Theranostics 2019, 9, 1303–1322. [Google Scholar] [CrossRef]
- Wang, J.; Fang, Z.; Lang, N.; Yuan, H.; Su, M.-Y.; Baldi, P. A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Comput. Biol. Med. 2017, 84, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-J.; Zhu, H.-T.; Li, X.-T.; Zhang, X.-Y.; Wei, Y.-Y.; Yan, S.; Sun, Y.-S. Radiomics analysis based on multiple parameters MR imaging in the spine: Predicting treatment response of osteolytic bone metastases to chemotherapy in breast cancer patients. Magn. Reson. Imaging 2022, 92, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, K.; Koide, Y.; Aoyama, T.; Shimizu, H.; Miyauchi, R.; Tanaka, H.; Tachibana, H.; Nakamura, K.; Kodaira, T. A predictive model for pain response following radiotherapy for treatment of spinal metastases. Sci. Rep. 2021, 11, 12908. [Google Scholar] [CrossRef]
- Karhade, A.V.; Thio, Q.C.B.S.; Ogink, P.T.; Shah, A.A.; Bono, C.M.; Oh, K.S.; Saylor, P.J.; Schoenfeld, A.J.; Shin, J.H.; Harris, M.B.; et al. Development of Machine Learning Algorithms for Prediction of 30-Day Mortality After Surgery for Spinal Metastasis. Neurosurgery 2019, 85, E83–E91. [Google Scholar] [CrossRef]
- Karhade, A.V.; Ahmed, A.K.; Pennington, Z.; Chara, A.; Schilling, A.; Thio, Q.C.B.S.; Ogink, P.T.; Sciubba, D.M.; Schwab, J.H. External validation of the SORG 90-day and 1-year machine learning algorithms for survival in spinal metastatic disease. Spine J. 2020, 20, 14–21. [Google Scholar] [CrossRef]
- Ahmed, A.K.; Goodwin, C.R.; Heravi, A.; Kim, R.; Abu-Bonsrah, N.; Sankey, E.; Kerekes, D.; De la Garza Ramos, R.; Schwab, J.; Sciubba, D.M.; et al. Predicting survival for metastatic spine disease: A comparison of nine scoring systems. Spine J. 2018, 18, 1804–1814. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Ferrone, M.L.; Schwab, J.H.; Blucher, J.A.; Barton, L.B.; Tobert, D.G.; Chi, J.H.; Shin, J.H.; Kang, J.D.; Harris, M.B. Prospective validation of a clinical prediction score for survival in patients with spinal metastases: The New England Spinal Metastasis Score. Spine J. 2021, 21, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Ferrone, M.L.; Blucher, J.A.; Agaronnik, N.; Nguyen, L.; Tobert, D.G.; Balboni, T.A.; Schwab, J.H.; Shin, J.H.; Sciubba, D.M.; et al. Prospective comparison of the accuracy of the New England Spinal Metastasis Score (NESMS) to legacy scoring systems in prognosticating outcomes following treatment of spinal metastases. Spine J. 2022, 22, 39–48. [Google Scholar] [CrossRef] [PubMed]
Prognostic Model | Year of Study | Design | Number of Patients | Statistical Method(s) |
---|---|---|---|---|
Tokuhashi | 1990 | Retrospective, Single Institution | 64 | Cox proportional hazard regression analysis |
Tomita | 2001 | Retrospective, Single Institution | 342 | Cox proportional hazard regression analysis |
Revised Tokuhasi | 2005 | Semi-prospective, Single Institution | 246 | Cox proportional hazard regression analysis |
NESMS | 2015 | Retrospective, Multicentric Institutional | 318 | Cox proportional hazard regression analysis |
SORG Normogram | 2016 | Retrospective, Single Institution | 649 | Regression normogram boosting algorithm |
Study | Citation Number | Design | Year | Main Findings |
---|---|---|---|---|
I. Multidisciplinary Teams and Treatment Decision-Making Approach | ||||
Rothrock et al. | [9] | Single-center retrospective review | 2021 | Survival rates have improved for patients with spinal metastases from kidney, breast, lung, and colon cancers, underscoring the importance of considering long-term outcomes in surgical treatment decisions. |
Kimura | [18] | Systematic review | 2018 | A multidisciplinary specialist board approach to the management of bony metastases may improve quality of life and prognosis of patients by targeting reductions in morbidity, hospitalization rate, and overall costs associated with late-stage cancers. |
Morgen et al. | [21] | Semi-prospective clinical study | 2017 | The original 2005 Tokuhashi prognostic scoring system for patients with metastatic spinal cord compression which evaluates factors such as performance status, neurological status, and the number of extraspinal bone metastases is improved upon in this updated scoring system. |
El Saghir et al. | [19] | Narrative review | 2014 | Positive outcomes from tumor boards depend on the presence of qualified and effective faculty, good preparation and selection of cases, format and structure of the meeting, expertise, efficient leadership, and interactions among physicians present. Tumor boards allow for discussion, dissemination and implementation of guidelines, may help capture cases for clinical trials, and in areas with limited resources (such as rural hospitals), limitations in diagnosis and management can be overcome, or at least optimized. |
Omlin et al. | [13] | Prospective case–control study | 2013 | Nutrition impact symptoms common to cancer patients such as pain, fatigue and taste and smell alterations influence cancer cachexia, which may in turn lead to compromised treatment outcomes. This may be countered via nutrition-targeted interventions. |
Fisher et al. | [2] | Systematic review, modified Delphi technique | 2010 | The Spine Instability Neoplastic Score (SINS) classification system aids physicians in identifying when patients with neoplastic disease of the spine may benefit from surgical consultation. It can also aid surgeons in assessing the key components of neoplastic spinal instability and may become a prognostic tool for surgical decision-making when put in context with other key elements such as neurologic symptoms, extent of disease, prognosis, patient health factors, oncologic subtype, and radiosensitivity of the tumor. |
Bilsky et al. | [22] | Systematic review | 2006 | The NOMS paradigm offers a comprehensive decision-making framework for treating spinal metastases, considering tumor radiation sensitivity, epidural extension, spinal stability, and systemic disease to determine optimal treatment strategies. |
Patchell et al. | [8] | Multicenter, non-blinded RCT | 2005 | Survival advantage and superior ambulatory outcomes in patients with spinal metastases treated with a combination of surgery and radiotherapy compared to radiotherapy alone. |
Massie | [16] | Systematic review | 2004 | Untreated depression results in significant morbidity and mortality. There is a higher prevalence of depression in certain cancer types (oropharyngeal, pancreatic, breast and lung). The spectrum of depression symptoms may vary through the course of cancer, as this patient population faces repeated threats to life, fluctuating pain levels, and more. |
Tomita et al. | [20] | Retrospective case series | 2001 | A proposed patient-centered prognostic scoring system that provides weighted point-based evaluation of factors such as expected rate of tumor grown, visceral metastases, “treatable” vs. “untreatable”, bony metastases, and solitary vs. multiple lesions. |
II. Surgery | ||||
Iia. MIS | ||||
Cui et al. | [24] | Single-center retrospective study | 2021 | Minimally invasive tubular surgery for spinal metastasis is safe and effective, particularly for patients with hypo-vascular tumors due to lower complicaiton rates. |
Barzilai et al. | [23] | Prospective cohort study | 2018 | Minimally invasive surgery in spinal metastases reduces pain and symptom interference with daily activities. |
IIb. Pre-op Embolization | ||||
Damante et al. | [30] | Retrospective single-center review | 2023 | Preoperative embolization was associated with improved local control (LC) and pain outcomes in spinal metastatic patients. |
Griessenauer | [31] | Meta-analysis and systematic review | 2016 | Embolization of spinal tumors is a safe and effective treatment option to reduce intraoperative blood loss, despite the variability in techniques and the retrospective nature of the available studies |
Clausen et al. | [29] | Single-blind, randomized controlled clinical trial | 2015 | Intraoperative blood loss or the need for allogenic RBC infusions were not reduced with preoperative embolization in patients with spinal metastases. For hypervascular metastases, there was a small reduction in blood loss with pre-op embolization. |
Kato et al. | [28] | Retrospective cohort study | 2013 | Reducing intraoperative blood loss by preoperative embolization was more effective when spinal metastases surgery was conducted on the same day compatred to later. |
Kato et al. | [27] | Retrospective cohort study | 2012 | Preoperative embolization significantly reduced intraoperative blood loss, despite variations in tumor vascularization, embolization completeness, or timing of surgery relative to embolization |
Owen | [26] | Systematic review | 2010 | Preoperative embolization of bone tumors is of specific benefit where there is a known high risk of bleeding during surgery, demonstrated spinal involvement and neural encroachment, where active bleeding is present, or in awkward surgical locations where prolonged surgery is anticipated. |
IIc. Cement Augmentation | ||||
Alsoof et al. | [53] | Systematic review | 2022 | Surgical interventions, such as kyphoplasty and vertebroplasty, provide superior pain relief compared to nonoperative management. |
Koto et al. | [54] | in vivo experimental animal study | 2017 | Zoledronic acid-loaded bone cement reduced metastatic bony tumor growth of numerous cancer types in mice without causing systemic toxicity or adverse bone reactions. |
Health Quality Ontario, Pron et al. | [51] | Systematic review | 2016 | Vertebroplasty and kyphoplasty effectively provide pain palliation and reduction in functional diabilities in cancer patients with vertebral compression fractures. |
Berenson et al. | [56] | Multicenter randomized RCT | 2011 | Kyphoplasty is an effective, safe, and rapid treatment for painful vertebral compression fractures compared to non-surgical management. |
IId. Fenestrated Screw Fixation | ||||
Massaad et al. | [62] | Retrospective analysis | 2022 | Cement augmentation via fenestrated pedicle screws offers a reliable and effective method for spine stabilization in cancer patients. There is a minimal risk of significant adverse effects resulting from cement leakage. |
Saadeh et al. | [59] | Systematic review | 2020 | Cement-augmented fenestrated pedicle screws enhance fixation strength in osteoporotic patients undergoing spinal fusion, reducing screw pullout and improving fusion rates compared to traditional techniques. Cement extravasation is a potential risk, but is most commonly asymptomatic. |
IIe. CFR-PEEK (CFRP) Instrumentation | ||||
Alvarez-Breckenridge et al. | [3] | Retrospective chart review | 2023 | Use of CFRP implants in spinal surgeries for oncologic patients and found them to be a safe and effective alternative to titanium implants resulting in minimal imaging artifacts, thereby facilitating postoperative radiation planning and the ability to detect local recurrence. |
Zavras et al. | [63] | NASS Spinal Oncology Section survey | 2022 | Responders exhibited a lack of consensus with regard to the imaging and radiation benefits of radiolucent spinal implants, with concerns cited such as high costs, low availability, limited cervical and percutaneous options, and suboptimal screw and rod designs. |
Poel et al. | [67] | Comparative experimental study | 2020 | CFRP implants reduce artifacts on CT images, decrease the time required for artifact correction, and lead to fewer discrepancies between planned and delivered radiation doses in proton therapy compared to titanium implants; CFRP may thereby improve outcomes for patients requiring both spinal stabilization and proton therapy. |
Ringel et al. | [65] | Prospective observational study | 2017 | CFRP pedicle screws effectively reduce imaging artifacts on CT and MRI in comparison with standard titanium alloy implants, resulting in improved radiation planning. |
Kang et al. | [72] | Comparative biomechanical analysis | 2017 | Titanium rods result in higher disk pressure and facet joint contact forces on adjacent segments compared to PEEK and CFRP rods. CFRP found to be superior to PEEK. |
III. Radiation Therapy-EBRT and SRS | ||||
Wong et al. | [36] | Meta-analysis and systematic review | 2023 | There is no significant difference in overall pain response between Stereotactic body radiation therapy (SBRT) and cEBRT. However, SBRT may provide better complete pain response at 3 and 6 months compared to cEBRT, without increasing the risk of adverse events. There were no significant differences in local progression and overall survival. |
Gottumukkala et al. | [41] | Systematic review | 2021 | A review of the fundamentals of radiation oncology for treatment of spinal metastases, this article summarizes basic principles regarding treatment, complications, and the essentials of a multi-disciplinary approach to care. SBRT for spinal metastases reveal high rates of pain response and local tumor control, including cases in which reirradiation is indicated. |
Kumar et al. | [32] | Systematic review | 2020 | Wound complications post spinal metastases surgeries are significantly associated with the timing of radiation therapy (RT). Postop-RT has fewer wound complications versus preop-RT. Evidence is insufficient to recommend a precise ideal RT to surgery interval. However, an interval of 2 weeks with the minimum being 7 days is optimum. |
Barzilai et al. | [37] | Review article | 2017 | An updated review integrating the most recent decade of evidence-based medicine for treatment of spinal metastasis into the NOMS framework. The most important change to these paradigms has been the integration of SRS, allowing delivery of tumoricidal radiation doses with sparing of nearby organs at risk High-dose single or hypofractionated SRS offers a significantly higher biologic effective dose and more precise dose delivery to the tumor with shorter treatment schedules compared with the cEBRT. Integration of SRS has fundamentally changed the indications for and type of surgery performed for metastatic spine tumors. |
Bate et al. | [40] | Retrospective chart review | 2015 | SRS provides durable local disease control while preserving or improving neurological function either alone (if separation surgery is not necessary) or as an adjunt to surgical decompression. This is true even for historically radioresistant tumor types such as renal cell carcinoma. |
Witham et al. | [38] | Review article | 2006 | RT has a clearly defined role for treatment of metastatic tumors of the spine with epidural compression; this is especially true for radiation-sensitive tumors in the setting of non-bony spinal cord compression and those with a limited life expectancy. Spinal stereotactic radiosurgery, vertebroplasty and kyphoplasty are emerging treatment options that are beginning to be used in selected patients with metastatic spinal tumors with epidural compression. |
Wong et al. | [36] | Meta-analysis and systematic review | 2023 | There is no significant difference in overall pain response between Stereotactic body radiation therapy (SBRT) and cEBRT. However, SBRT may provide better complete pain response at 3 and 6 months compared to cEBRT, without increasing the risk of adverse events. There were no significant differences in local progression and overall survival. |
IV. Radiofrequency Ablation (RFA) | ||||
Wallace et al. | [78] | Retrospective cohort study | 2016 | RFA in combination with vertebral augmentation is effective for local spine metastases control. Further, it does not interfere with administration or effectiveness of radiation or chemotherapy. |
Bagla et al. | [80] | Multicenter prospeective clinical series | 2016 | RFA with concurrent vertebral augmentation is safe and effective in providing quick pain relief, disability reduction and improvemnt in quality of life for patients with vertebral body metastases. |
V. Artificial Intelligence and Next Generation Sequencing (NGS) | ||||
Wang et al. | [96] | Original research with exploratory data analysis | 2017 | A multi-resolution approach using deep Siamese neural networks was developed to identify spinal metastases in MRI images, exhibiting an accuracy rate of 90%. |
Wakabayashi et al. | [98] | Original research with exploratory data analysis | 2021 | A model using a combination of clinical and radiomic features to predict the pain response of patients with spinal metastases receiving radiation therapy. The sensitivity and specificity of the combined features model were 85.4% and 76.2%. |
Karhade et al. | [99] | Original research with exploratory data analysis | 2019 | A machine learning (ML) algorithm was developed to predict 30-day mortality after surgical intervention for spinal metastases. The 30-day mortality rate was found to be 8.49% for 1790 patients. An open access web application was developed for the best performing model. |
Ahmed et al. | [101] | Retrospective study | 2018 | A comparison of the ability of scoring systems to estimate both overall survival (OS) at various time points and tumor-specific survival for patients undergoing surgical treatment for metastatic spine disease. The the Skeletal Oncology Research Group (SORG) Normogram demonstrated the highest accuracy at predicting 30-day and 90-day survival after surgery. The original Tokuhashi was the most accurate at predicting 365-day survival. |
Schoenfeld et al. | [102] | Observational study with exploratory data analysis | 2021 | The New England Spinal Metastasis Score (NESMS) is validated as a useful prognostic tool for predicting survival in patients with spinal metastases regardless of of selected treatment strategy. The NESMS may be used in patient care, hospital-based practice and health care policy. |
Barzilai et al. | [5] | Retrospective study | 2022 | NGS data sourced form spinal metastases demonstrated a high concordance rate for genetic alterations between the primary tumor and spinal metastasis. This was also true between spinal metastases and other, visceral metastases, especially for driver mutations. Therefore, spine tumor samples may be reliably used for genomic-based decision-making in cancer care, particularly for prostate, NSCLC, and breast cancer. |
Cao et al. | [90] | Retrospective cohort study | 2023 | Multiparameter MRI-associated radiomics ML models were developed to predict the presence of the epidermal growth factor receptor (EGFR) mutation and subtypes sourced from the spinal metastasis in patients with pathologically confirmed primary lung adenocarcinoma. The models integrating T1 and T2FS sequences achieved the best prediction capabilities. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houston, R.; Desai, S.; Takayanagi, A.; Quynh Thu Tran, C.; Mortezaei, A.; Oladaskari, A.; Sourani, A.; Siddiqi, I.; Khodayari, B.; Ho, A.; et al. A Multidisciplinary Update on Treatment Modalities for Metastatic Spinal Tumors with a Surgical Emphasis: A Literature Review and Evaluation of the Role of Artificial Intelligence. Cancers 2024, 16, 2800. https://doi.org/10.3390/cancers16162800
Houston R, Desai S, Takayanagi A, Quynh Thu Tran C, Mortezaei A, Oladaskari A, Sourani A, Siddiqi I, Khodayari B, Ho A, et al. A Multidisciplinary Update on Treatment Modalities for Metastatic Spinal Tumors with a Surgical Emphasis: A Literature Review and Evaluation of the Role of Artificial Intelligence. Cancers. 2024; 16(16):2800. https://doi.org/10.3390/cancers16162800
Chicago/Turabian StyleHouston, Rebecca, Shivum Desai, Ariel Takayanagi, Christina Quynh Thu Tran, Ali Mortezaei, Alireza Oladaskari, Arman Sourani, Imran Siddiqi, Behnood Khodayari, Allen Ho, and et al. 2024. "A Multidisciplinary Update on Treatment Modalities for Metastatic Spinal Tumors with a Surgical Emphasis: A Literature Review and Evaluation of the Role of Artificial Intelligence" Cancers 16, no. 16: 2800. https://doi.org/10.3390/cancers16162800
APA StyleHouston, R., Desai, S., Takayanagi, A., Quynh Thu Tran, C., Mortezaei, A., Oladaskari, A., Sourani, A., Siddiqi, I., Khodayari, B., Ho, A., & Hariri, O. (2024). A Multidisciplinary Update on Treatment Modalities for Metastatic Spinal Tumors with a Surgical Emphasis: A Literature Review and Evaluation of the Role of Artificial Intelligence. Cancers, 16(16), 2800. https://doi.org/10.3390/cancers16162800