The Role of Radiotherapy, Chemotherapy, and Targeted Therapies in Adult Intramedullary Spinal Cord Tumors
Abstract
Simple Summary
Abstract
1. Introduction
2. Spinal Ependymomas
2.1. Spinal Intramedullary Ependymomas
2.2. Myxopapillary Ependymomas
3. Spinal Astrocytomas
3.1. Spinal Pilocytic Astrocytomas
3.2. Spinal Diffuse Grade 2 Astrocytomas
3.3. Spinal H3K27M-Altered Diffuse Midline Gliomas
3.4. Spinal Glioblastomas and High-Grade Astrocytomas
3.5. Spinal High-Grade Astrocytomas with Piloid Features
4. Spinal Glioneuronal Tumors
4.1. Spinal Gangliogliomas
4.2. Spinal DLGNT
5. Spinal Hemangioblastomas
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016–2020. Neuro-Oncology 2023, 25, iv1–iv99. [Google Scholar] [CrossRef] [PubMed]
- Ogunlade, J.; Wiginton, J.G.; Elia, C.; Odell, T.; Rao, S.C. Primary Spinal Astrocytomas: A Literature Review. Cureus 2019, 11, e5247. [Google Scholar] [CrossRef] [PubMed]
- Amadasu, E.; Panther, E.; Lucke-Wold, B. Characterization and Treatment of Spinal Tumors. Intensive Care Res. 2022, 2, 76–95. [Google Scholar] [CrossRef]
- Ottenhausen, M.; Ntoulias, G.; Bodhinayake, I.; Ruppert, F.-H.; Schreiber, S.; Förschler, A.; Boockvar, J.A.; Jödicke, A. Intradural Spinal Tumors in Adults—Update on Management and Outcome. Neurosurg. Rev. 2019, 42, 371–388. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C.; Tredway, T.L. Adult Primary Intradural Spinal Cord Tumors: A Review. Curr. Neurol. Neurosci. Rep. 2011, 11, 320–328. [Google Scholar] [CrossRef]
- Kumar, N.; Tan, W.L.B.; Wei, W.; Vellayappan, B.A. An Overview of the Tumors Affecting the Spine—Inside to Out. Neuro-Oncol. Pract. 2020, 7, i10–i17. [Google Scholar] [CrossRef] [PubMed]
- Rudà, R.; Reifenberger, G.; Frappaz, D.; Pfister, S.M.; Laprie, A.; Santarius, T.; Roth, P.; Tonn, J.C.; Soffietti, R.; Weller, M.; et al. EANO Guidelines for the Diagnosis and Treatment of Ependymal Tumors. Neuro-Oncology 2018, 20, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Won, J.K.; Kim, C.H.; Phi, J.H.; Kim, S.-K.; Choi, S.H.; Chung, C.K. Pathological Classification of the Intramedullary Spinal Cord Tumors According to 2021 World Health Organization Classification of Central Nervous System Tumors, a Single-Institute Experience. Neurospine 2022, 19, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Cerretti, G.; Pessina, F.; Franceschi, E.; Barresi, V.; Salvalaggio, A.; Padovan, M.; Manara, R.; Di Nunno, V.; Bono, B.C.; Librizzi, G.; et al. Spinal Ependymoma in Adults: From Molecular Advances to New Treatment Perspectives. Front. Oncol. 2023, 13, 1301179. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, R.; Mehta, M.P.; Chang, E.L.; Brown, P.D.; Suh, J.H.; Lo, S.S.; Das, S.; Samawi, H.H.; Keith, J.; Perry, J.; et al. Updates in the Management of Intradural Spinal Cord Tumors: A Radiation Oncology Focus. Neuro-Oncology 2019, 21, 707–718. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.R.; Yuan, Y.; Wu, J.; Mendoza, T.; Vera, E.; Omuro, A.; Lieberman, F.; Robins, H.I.; Gerstner, E.R.; Wu, J.; et al. A Phase II Study of Dose-Dense Temozolomide and Lapatinib for Recurrent Low-Grade and Anaplastic Supratentorial, Infratentorial, and Spinal Cord Ependymoma. Neuro-Oncology 2021, 23, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Green, R.M.; Cloughesy, T.F.; Stupp, R.; DeAngelis, L.M.; Woyshner, E.A.; Ney, D.E.; Lassman, A.B. Bevacizumab for Recurrent Ependymoma. Neurology 2009, 73, 1677–1680. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.C.; Ivan, M.E.; Sun, M.Z.; Kaur, G.; Safaee, M.; Kim, J.M.; Sayegh, E.T.; Aranda, D.; Parsa, A.T. Adjuvant Radiotherapy Delays Recurrence Following Subtotal Resection of Spinal Cord Ependymomas. Neuro-Oncology 2013, 15, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Wostrack, M.; Ringel, F.; Eicker, S.O.; Jägersberg, M.; Schaller, K.; Kerschbaumer, J.; Thomé, C.; Shiban, E.; Stoffel, M.; Friedrich, B.; et al. Spinal Ependymoma in Adults: A Multicenter Investigation of Surgical Outcome and Progression-Free Survival. J. Neurosurg. Spine 2018, 28, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lim-Fat, M.J.; Qin, L.; Li, A.; Bryant, A.; Bay, C.P.; Gao, L.; Miskin, N.; Liu, Z.; Iorgulescu, J.B.; et al. A Comparative Retrospective Study of Immunotherapy RANO Versus Standard RANO Criteria in Glioblastoma Patients Receiving Immune Checkpoint Inhibitor Therapy. Front. Oncol. 2021, 11, 679331. [Google Scholar] [CrossRef] [PubMed]
- Rudà, R.; Bosa, C.; Magistrello, M.; Franchino, F.; Pellerino, A.; Fiano, V.; Trevisan, M.; Cassoni, P.; Soffietti, R. Temozolomide as Salvage Treatment for Recurrent Intracranial Ependymomas of the Adult: A Retrospective Study. Neuro-Oncology 2016, 18, 261–268. [Google Scholar] [CrossRef]
- Gornet, M.K.; Buckner, J.C.; Marks, R.S.; Scheithauer, B.W.; Erickson, B.J. Chemotherapy for Advanced CNS Ependymoma. J. Neuro-Oncol. 1999, 45, 61–67. [Google Scholar] [CrossRef]
- Chamberlain, M.C. Etoposide for Recurrent Spinal Cord Ependymoma: Table 1. Neurology 2002, 58, 1310–1311. [Google Scholar] [CrossRef]
- Kim, W.-H.; Yoon, S.H.; Kim, C.-Y.; Kim, K.; Lee, M.M.; Choe, G.; Kim, I.-A.; Kim, J.H.; Kim, Y.J.; Kim, H.-J. Temozolomide for Malignant Primary Spinal Cord Glioma: An Experience of Six Cases and a Literature Review. J. Neurooncol. 2011, 101, 247–254. [Google Scholar] [CrossRef]
- Morris, K.A.; Afridi, S.K.; Evans, D.G.; Hensiek, A.E.; McCabe, M.G.; Kellett, M.; Halliday, D.; Pretorius, P.M.; Parry, A. The Response of Spinal Cord Ependymomas to Bevacizumab in Patients with Neurofibromatosis Type 2. SPI 2017, 26, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Manabe, H.; Izumi, B.; Shima, T.; Adachi, N. Remarkable Efficacy of Temozolomide for Relapsed Spinal Myxopapillary Ependymoma with Multiple Recurrence and Cerebrospinal Dissemination: A Case Report and Literature Review. Eur. Spine J. 2018, 27, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Tapia Rico, G.; Townsend, A.; Price, T.; Patterson, K. Metastatic Myxopapillary Ependymoma Treated with Immunotherapy Achieving Durable Response. BMJ Case Rep. 2020, 13, e236242. [Google Scholar] [CrossRef] [PubMed]
- Blackwood, N.; Zetzmann, C.; Trevino, C.R. Case Report of Selumetinib as a Novel Therapy in a Neurofibromatosis Type 2-Associated Ependymoma. Mol. Ther. Methods Clin. Dev. 2023, 31, 101156. [Google Scholar] [CrossRef] [PubMed]
- Bowers, D.C.; Rajaram, V.; Karajannis, M.A.; Gardner, S.L.; Su, J.M.-F.; Baxter, P.; Partap, S.; Klesse, L.J. Phase II Study of Everolimus for Recurrent or Progressive Pediatric Ependymoma. Neurooncol. Adv. 2023, 5, vdad011. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, P.; Smith, S.; Lopez, J.; Sharma, R.K.; Millard, T.; Thway, K.; Fisher, C.; Reardon, D.A.; Jones, R.; Nicholson, A.G.; et al. PARP Inhibition Utilized in Combination Therapy with Olaparib-Temozolomide to Achieve Disease Stabilization in a Rare Case of BRCA1-mutant, Metastatic Myxopapillary Ependymoma. Rare Tumors 2023, 15, 20363613231152333. [Google Scholar] [CrossRef] [PubMed]
- Wahab, S.H.; Simpson, J.R.; Michalski, J.M.; Mansur, D.B. Long Term Outcome with Post-Operative Radiation Therapy for Spinal Canal Ependymoma. J. Neurooncol. 2007, 83, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.R.; Missett, B.T.; Wara, W.M.; Lamborn, K.R.; Prados, M.D.; Chang, S.; Berger, M.S.; Haas-Kogan, D.A. High Failure Rate in Spinal Ependymomas with Long-Term Follow-Up. Neuro-Oncology 2005, 7, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.K.; Yi, S.; Yoon, H.I.; Kim, S.H.; Cho, J.; Suh, C.-O. Clinical Outcomes of Radiotherapy for Spinal Cord Ependymoma with Adverse Prognostic Features: A Single-Center Study. J. Neurooncol. 2018, 140, 649–657. [Google Scholar] [CrossRef]
- Weber, D.C.; Wang, Y.; Miller, R.; Villà, S.; Zaucha, R.; Pica, A.; Poortmans, P.; Anacak, Y.; Ozygit, G.; Baumert, B.; et al. Long-Term Outcome of Patients with Spinal Myxopapillary Ependymoma: Treatment Results from the MD Anderson Cancer Center and Institutions from the Rare Cancer Network. Neuro-Oncology 2015, 17, 588–595. [Google Scholar] [CrossRef]
- Brown, D.A.; Goyal, A.; Takami, H.; Graffeo, C.S.; Mahajan, A.; Krauss, W.E.; Bydon, M. Radiotherapy in Addition to Surgical Resection May Not Improve Overall Survival in WHO Grade II Spinal Ependymomas. Clin. Neurol. Neurosurg. 2020, 189, 105632. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C.; Johnston, S.K. Temozolomide for Recurrent Intracranial Supratentorial Platinum-Refractory Ependymoma. Cancer 2009, 115, 4775–4782. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.R.; Ruda, R.; Soffietti, R. Ependymomas in Adults. Curr. Neurol. Neurosci. Rep. 2010, 10, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Brandes, A.A.; Cavallo, G.; Reni, M.; Tosoni, A.; Nicolardi, L.; Scopece, L.; Franceschi, E.; Sotti, G.; Talacchi, A.; Turazzi, S.; et al. A Multicenter Retrospective Study of Chemotherapy for Recurrent Intracranial Ependymal Tumors in Adults by the Gruppo Italiano Cooperativo Di Neuro-Oncologia. Cancer 2005, 104, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Gramatzki, D.; Felsberg, J.; Hentschel, B.; Bähr, O.; Westphal, M.; Schackert, G.; Tonn, J.C.; Herrlinger, U.; Loeffler, M.; Pietsch, T.; et al. Chemotherapy for Adult Patients with Spinal Cord Gliomas. Neurooncol. Pract. 2021, 8, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.; Yuan, Y.; Wani, K.; Wu, J.; Omuro, A.; Lieberman, F.; Robins, H.I.; Gerstner, E.; Wu, J.; Wen, P.; et al. AT-23A phase ii study of lapatinib and dose-dense temozolomide (tmz) for adults with recurrent ependymoma: A cern clinical trial. Neuro-Oncology 2014, 16, v13. [Google Scholar] [CrossRef]
- Lombardi, G.; Della Puppa, A.; Pizzi, M.; Cerretti, G.; Bonaudo, C.; Gardiman, M.P.; Dipasquale, A.; Gregucci, F.; Esposito, A.; De Bartolo, D.; et al. An Overview of Intracranial Ependymomas in Adults. Cancers 2021, 13, 6128. [Google Scholar] [CrossRef] [PubMed]
- Farschtschi, S.; Merker, V.L.; Wolf, D.; Schuhmann, M.; Blakeley, J.; Plotkin, S.R.; Hagel, C.; Mautner, V.F. Bevacizumab Treatment for Symptomatic Spinal Ependymomas in Neurofibromatosis Type 2. Acta Neurol. Scand. 2016, 133, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Snyder, M.H.; Ampie, L.; DiDomenico, J.D.; Asthagiri, A.R. Bevacizumab as a Surgery-Sparing Agent for Spinal Ependymoma in Patients with Neurofibromatosis Type II: Systematic Review and Case. J. Clin. Neurosci. 2021, 86, 79–84. [Google Scholar] [CrossRef]
- Lorgis, V.; Varbedian, O.; Ghiringhelli, F. Metronomic Cyclophosphamide with Cisplatin and Bevacizumab: A New Chemotherapeutic Regimen for Refractory Anaplastic Ependymoma. Anticancer. Res. 2012, 32, 5067–5070. [Google Scholar]
- Perruccio, K.; Mastronuzzi, A.; Lupattelli, M.; Arcioni, F.; Capolsini, I.; Cerri, C.; Gurdo, G.M.I.; Massei, M.S.; Mastrodicasa, E.; Caniglia, M. Targeted Therapy with Sirolimus and Nivolumab in a Child with Refractory Multifocal Anaplastic Ependymoma. Reports 2021, 4, 12. [Google Scholar] [CrossRef]
- Gorsi, H.S.; Malicki, D.M.; Barsan, V.; Tumblin, M.; Yeh-Nayre, L.; Milburn, M.; Elster, J.D.; Crawford, J.R. Nivolumab in the Treatment of Recurrent or Refractory Pediatric Brain Tumors: A Single Institutional Experience. J. Pediatr. Hematol./Oncol. 2019, 41, e235. [Google Scholar] [CrossRef] [PubMed]
- Coy, S.; Lee, J.S.; Chan, S.J.; Woo, T.; Jones, J.; Alexandrescu, S.; Wen, P.Y.; Sorger, P.K.; Ligon, K.L.; Santagata, S. Systematic characterization of antibody-drug conjugate targets in central nervous system tumors. Neuro-Oncology 2024, 26, 458–472. [Google Scholar] [CrossRef] [PubMed]
- Jahanbakhshi, A.; Najafi, M.; Jafari, F.; Moshtaghian, M.; Gomar, M.; Anbarlouei, M.; Naderi, S. Adjunctive Treatment of Myxopapillary Ependymoma Running Head: Myxopapillary Ependymoma. Oncol. Rev. 2021, 15, 518. [Google Scholar] [CrossRef] [PubMed]
- Fakhreddine, M.H.; Mahajan, A.; Penas-Prado, M.; Weinberg, J.; McCutcheon, I.E.; Puduvalli, V.; Brown, P.D. Treatment, Prognostic Factors, and Outcomes in Spinal Cord Astrocytomas. Neuro-Oncology 2013, 15, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Nunna, R.S.; Khalid, S.; Ryoo, J.S.; Mehta, A.I. Adult Primary High-Grade Spinal Glioma: A Nationwide Analysis of Current Trends in Treatment and Outcomes. J. Neurooncol. 2020, 147, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Rudà, R.; Capper, D.; Waldman, A.D.; Pallud, J.; Minniti, G.; Kaley, T.J.; Bouffet, E.; Tabatabai, G.; Aronica, E.; Jakola, A.S.; et al. EANO—EURACAN—SNO Guidelines on Circumscribed Astrocytic Gliomas, Glioneuronal, and Neuronal Tumors. Neuro-Oncology 2022, 24, 2015–2034. [Google Scholar] [CrossRef] [PubMed]
- Biczok, A.; Strübing, F.L.; Eder, J.M.; Egensperger, R.; Schnell, O.; Zausinger, S.; Neumann, J.E.; Herms, J.; Tonn, J.-C.; Dorostkar, M.M. Molecular Diagnostics Helps to Identify Distinct Subgroups of Spinal Astrocytomas. Acta Neuropathol. Commun. 2021, 9, 119. [Google Scholar] [CrossRef]
- Gregory, T.A.; Chumbley, L.B.; Henson, J.W.; Theeler, B.J. Adult Pilocytic Astrocytoma in the Molecular Era: A Comprehensive Review. CNS Oncol. 2021, 10, CNS68. [Google Scholar] [CrossRef]
- Yang, T.; Wu, H.; Xia, C. Adult Intramedullary Pilocytic Astrocytomas: Clinical Features, Management, and Outcomes. Neurol. India 2022, 70, S206–S210. [Google Scholar] [CrossRef]
- Zhang, L.; Li, T.; Qiao, G.; Yang, W.; Shang, A.; Yu, X. Clinical Characteristics and Long-Term Surgical Outcomes of Spinal Pilocytic Astrocytoma: A Report of Twenty Cases. Acta Neurochir. 2021, 163, 3005–3013. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, Y.; Nishimura, Y.; Eguchi, K.; Yamaguchi, J.; Haimoto, S.; Ohka, F.; Takayasu, M.; Saito, R. Recent Molecular and Genetic Findings in Intramedullary Spinal Cord Tumors. Neurospine 2022, 19, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lv, L.; Yin, S.; Zhou, P.; Jiang, S. Primary Spinal Pilocytic Astrocytoma: Clinical Study with Long-Term Follow-up in 16 Patients and a Literature Review. Neurosurg. Rev. 2020, 43, 719–727. [Google Scholar] [CrossRef]
- Haque, W.; Verma, V.; Barber, S.; Tremont, I.W.; Brian Butler, E.; Teh, B.S. Management, Outcomes, and Prognostic Factors of Adult Primary Spinal Cord Gliomas. J. Clin. Neurosci. 2021, 84, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Miyata, K.; Hori, T.; Shimomura, Y.; Joko, M.; Takayasu, M.; Okumura, A. Pseudoprogression Successfully Treated with Bevacizumab in a Child with Spinal Pilocytic Astrocytoma. Childs Nerv. Syst. 2018, 34, 2305–2308. [Google Scholar] [CrossRef]
- Johnson, D.R.; Brown, P.D.; Galanis, E.; Hammack, J.E. Pilocytic Astrocytoma Survival in Adults: Analysis of the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute. J. Neurooncol. 2012, 108, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Theeler, B.J.; Ellezam, B.; Sadighi, Z.S.; Mehta, V.; Tran, M.D.; Adesina, A.M.; Bruner, J.M.; Puduvalli, V.K. Adult Pilocytic Astrocytomas: Clinical Features and Molecular Analysis. Neuro-Oncology 2014, 16, 841–847. [Google Scholar] [CrossRef]
- Muto, J.; Murata, H.; Shigekawa, S.; Mitsuhara, T.; Umebayashi, D.; Kanematsu, R.; Joko, M.; Inoue, T.; Inoue, T.; Endo, T.; et al. Clinical Characteristics and Long-Term Outcomes of Spinal Pilocytic Astrocytomas: A Multicenter Retrospective Study by the Neurospinal Society of Japan. Neurospine 2023, 20, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, A.; Gunjur, A.; Gan, H.K.; Perchyonok, Y.; Cher, L.M. Response to Combined BRAF/MEK Inhibition in Adult BRAF V600E Mutant Spinal Pilocytic Astrocytoma. J. Clin. Neurosci. 2020, 79, 269–271. [Google Scholar] [CrossRef]
- Levenbaum, E.; Ellika, S.; Korones, D.N. Bevacizumab in treating the cystic components of pediatric low-grade gliomas: A report of four patients. Pediatr. Blood Cancer 2019, 66, e27917. [Google Scholar] [CrossRef]
- Horbinski, C.; Nabors, L.B.; Portnow, J.; Baehring, J.; Bhatia, A.; Bloch, O.; Brem, S.; Butowski, N.; Cannon, D.M.; Chao, S.; et al. NCCN Guidelines® Insights: Central Nervous System Cancers, Version 2.2022: Featured Updates to the NCCN Guidelines. J. Natl. Compr. Cancer Netw. 2023, 21, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, L.; Meléndez, B.; Blanchard, O.; De Nève, N.; Van Campenhout, C.; Lelotte, J.; Balériaux, D.; Riva, M.; Brotchi, J.; Bruneau, M.; et al. Clinical, Radiological and Molecular Characterization of Intramedullary Astrocytomas. Acta Neuropathol. Commun. 2020, 8, 128. [Google Scholar] [CrossRef]
- Konovalov, N.A.; Asyutin, D.S.; Shayhaev, E.G.; Kaprovoy, S.V.; Timonin, S.Y. Rare Cases of IDH1 Mutations in Spinal Cord Astrocytomas. Acta Naturae 2020, 12, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Campello, C.; Tabouret, E.; Chinot, O. Challenges in Diagnosis and Management of Adult Spinal Cord Gliomas. Rev. Neurol. 2021, 177, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.; Avendaño, J.; Raza, S.M.; Gokaslan, Z.L.; Jallo, G.I.; Quiñones-Hinojosa, A. Prognostic Factors and Survival in Primary Malignant Astrocytomas of the Spinal Cord: A Population-Based Analysis from 1973 to 2007. Spine 2012, 37, E727–E735. [Google Scholar] [CrossRef] [PubMed]
- Kanematsu, R.; Mizuno, M.; Inoue, T.; Takahashi, T.; Endo, T.; Shigekawa, S.; Muto, J.; Umebayashi, D.; Mitsuhara, T.; Hida, K.; et al. The Impact of Adjuvant Radiotherapy on Clinical Performance Status in Patients With Grade II Spinal Cord Astrocytoma—A Nationwide Analysis by the Neurospinal Society of Japan. Neurospine 2023, 20, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C. Temozolomide for Recurrent Low-Grade Spinal Cord Gliomas in Adults. Cancer 2008, 113, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.R.; Lee, S.S.; Urquhart, J.C.; Jonker, B.P. A Systematic Review of Outcome in Intramedullary Ependymoma and Astrocytoma. J. Clin. Neurosci. 2019, 63, 168–175. [Google Scholar] [CrossRef]
- Boström, A.; Kanther, N.-C.; Grote, A.; Boström, J. Management and Outcome in Adult Intramedullary Spinal Cord Tumours: A 20-Year Single Institution Experience. BMC Res. Notes 2014, 7, 908. [Google Scholar] [CrossRef]
- Ryu, S.J.; Kim, J.Y.; Kim, K.H.; Park, J.Y.; Kuh, S.U.; Chin, D.K.; Kim, K.S.; Cho, Y.E.; Kim, S.H. A Retrospective Observational Study on the Treatment Outcomes of 26 Patients with Spinal Cord Astrocytoma Including Two Cases of Malignant Transformation. Eur. Spine J. 2016, 25, 4067–4079. [Google Scholar] [CrossRef]
- Kaley, T.J.; Mondesire-Crump, I.; Gavrilovic, I.T. Temozolomide or Bevacizumab for Spinal Cord High-Grade Gliomas. J. Neurooncol. 2012, 109, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Henson, J.W.; Thornton, A.F.; Louis, D.N. Spinal cord astrocytoma: Response to PCV chemotherapy. Neurology 2000, 54, 518–520. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Gong, J.; Yu, T.; Zou, Y.; Zhang, M.; Nie, L.; Chen, X.; Yue, Q.; Liu, Y.; Mao, Q.; et al. Diffuse Midline Gliomas With Histone H3 K27M Mutation in Adults and Children. Am. J. Surg. Pathol. 2022, 46, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Huang, Y.; Zhang, H.; Jiang, B. Case Report: Five Adult Cases of H3K27-Altered Diffuse Midline Glioma in the Spinal Cord. Front. Oncol. 2021, 11, 701113. [Google Scholar] [CrossRef] [PubMed]
- Vallero, S.G.; Bertero, L.; Morana, G.; Sciortino, P.; Bertin, D.; Mussano, A.; Ricci, F.S.; Peretta, P.; Fagioli, F. Pediatric Diffuse Midline Glioma H3K27- Altered: A Complex Clinical and Biological Landscape behind a Neatly Defined Tumor Type. Front. Oncol. 2023, 12, 1082062. [Google Scholar] [CrossRef] [PubMed]
- Chai, R.; Yan, H.; An, S.; Pang, B.; Chen, H.; Mu, Q.; Zhang, K.; Zhang, Y.; Liu, Y.; Liu, X.; et al. Genomic Profiling and Prognostic Factors of H3 K27M-mutant Spinal Cord Diffuse Glioma. Brain Pathol. 2023, 33, e13153. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Wang, L.; Ge, H.; Yin, H.; Piao, Y. Diffuse midline glioma with H3 K27M mutation of the spinal cord: A series of 33 cases. Neuropathology 2021, 41, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Meyronet, D.; Esteban-Mader, M.; Bonnet, C.; Joly, M.O.; Uro-Coste, E.; Amiel-Benouaich, A.; Forest, F.; Rousselot-Denis, C.; Burel-Vandenbos, F.; Bourg, V.; et al. Characteristics of H3 K27M-mutant gliomas in adults. Neuro-Oncology 2017, 19, 1127–1134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arrillaga-Romany, I.; Lassman, A.; McGovern, S.L.; Mueller, S.; Nabors, B.; Van Den Bent, M.; Vogelbaum, M.; Allen, J.E.; Melemed, A.S.; Tarapore, R.S.; et al. ACTION: A Randomized Phase 3 Study of ONC201 (Dordaviprone) in Patients with Newly Diagnosed H3 K27M-Mutant Diffuse Glioma. Neuro-Oncology 2024, 26, noae031. [Google Scholar] [CrossRef]
- Arrillaga-Romany, I.; Gardner, S.L.; Odia, Y.; Aguilera, D.; Allen, J.E.; Batchelor, T.; Butowski, N.; Chen, C.; Cloughesy, T.; Cluster, A.; et al. ONC201 (Dordaviprone) in Recurrent H3 K27M-Mutant Diffuse Midline Glioma. J. Clin. Oncol. 2024, 42, 1542–1552. [Google Scholar] [CrossRef]
- Auffret, L.; Ajlil, Y.; Tauziède-Espariat, A.; Kergrohen, T.; Puiseux, C.; Riffaud, L.; Blouin, P.; Bertozzi, A.-I.; Leblond, P.; Blomgren, K.; et al. A New Subtype of Diffuse Midline Glioma, H3 K27 and BRAF/FGFR1 Co-Altered: A Clinico-Radiological and Histomolecular Characterisation. Acta Neuropathol. 2024, 147, 2. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.J.; Ji, S.; Picca, A.; Sanson, M.; Garcia, M.; Snuderl, M.; Schüller, U.; Picart, T.; Ducray, F.; Green, A.L.; et al. Clinical, Genomic, and Epigenomic Analyses of H3K27M-Mutant Diffuse Midline Glioma Long-Term Survivors Reveal a Distinct Group of Tumors with MAPK Pathway Alterations. Acta Neuropathol. 2023, 146, 849–852. [Google Scholar] [CrossRef] [PubMed]
- Amelot, A.; Terrier, L.-M.; Mathon, B.; Joubert, C.; Picart, T.; Jecko, V.; Bauchet, L.; Bernard, F.; Castel, X.; Chenin, L.; et al. Natural Course and Prognosis of Primary Spinal Glioblastoma. Neurology 2023, 100, e1497–e1509. [Google Scholar] [CrossRef] [PubMed]
- Behmanesh, B.; Setzer, M.; Konczalla, J.; Harter, P.; Quick-Weller, J.; Imoehl, L.; Franz, K.; Gessler, F.; Seifert, V.; Marquardt, G. Management of Patients with Primary Intramedullary Spinal Cord Glioblastoma. World Neurosurg. 2017, 98, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Beyer, S.; von Bueren, A.O.; Klautke, G.; Guckenberger, M.; Kortmann, R.-D.; Pietschmann, S.; Müller, K. A Systematic Review on the Characteristics, Treatments and Outcomes of the Patients with Primary Spinal Glioblastomas or Gliosarcomas Reported in Literature until March 2015. PLoS ONE 2016, 11, e0148312. [Google Scholar] [CrossRef] [PubMed]
- Raco, A.; Piccirilli, M.; Landi, A.; Lenzi, J.; Delfini, R.; Cantore, G. High-Grade Intramedullary Astrocytomas: 30 Years’ Experience at the Neurosurgery Department of the University of Rome “Sapienza”: Clinical Article. SPI 2010, 12, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C.; Johnston, S.K. Recurrent Spinal Cord Glioblastoma: Salvage Therapy with Bevacizumab. J. Neurooncol. 2011, 102, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Bender, K.; Perez, E.; Chirica, M.; Onken, J.; Kahn, J.; Brenner, W.; Ehret, F.; Euskirchen, P.; Koch, A.; Capper, D.; et al. High-Grade Astrocytoma with Piloid Features (HGAP): The Charité Experience with a New Central Nervous System Tumor Entity. J. Neurooncol. 2021, 153, 109–120. [Google Scholar] [CrossRef]
- Cimino, P.J.; Ketchum, C.; Turakulov, R.; Singh, O.; Abdullaev, Z.; Giannini, C.; Pytel, P.; Lopez, G.Y.; Colman, H.; Nasrallah, M.P.; et al. Expanded Analysis of High-Grade Astrocytoma with Piloid Features Identifies an Epigenetically and Clinically Distinct Subtype Associated with Neurofibromatosis Type 1. Acta Neuropathol. 2023, 145, 71–82. [Google Scholar] [CrossRef]
- Soni, N.; Agarwal, A.; Ajmera, P.; Mehta, P.; Gupta, V.; Vibhute, M.; Gubbiotti, M.; Mark, I.T.; Messina, S.A.; Mohan, S.; et al. High-Grade Astrocytoma with Piloid Features: A Dual Institutional Review of Imaging Findings of a Novel Entity. Am. J. Neuroradiol. 2024, 45, 468–474. [Google Scholar] [CrossRef]
- Garnier, L.; Ducray, F.; Verlut, C.; Mihai, M.-I.; Cattin, F.; Petit, A.; Curtit, E. Prolonged Response Induced by Single Agent Vemurafenib in a BRAF V600E Spinal Ganglioglioma: A Case Report and Review of the Literature. Front. Oncol. 2019, 9, 177. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.; Khan, A.B.; Gadgil, N.; Prablek, M.; Lin, F.Y.; Blessing, M.M.; Aldave, G.; Bauer, D. Primary Spinal Intramedullary Anaplastic Ganglioglioma in a Pediatric Patient. Surg. Neurol. Int. 2023, 14, 55. [Google Scholar] [CrossRef]
- Schreck, K.C.; Grossman, S.A.; Pratilas, C.A. BRAF Mutations and the Utility of RAF and MEK Inhibitors in Primary Brain Tumors. Cancers 2019, 11, 1262. [Google Scholar] [CrossRef] [PubMed]
- Kaley, T.; Touat, M.; Subbiah, V.; Hollebecque, A.; Rodon, J.; Lockhart, A.C.; Keedy, V.; Bielle, F.; Hofheinz, R.-D.; Joly, F.; et al. BRAF Inhibition in BRAF V600 -Mutant Gliomas: Results From the VE-BASKET Study. J. Clin. Oncol. 2018, 36, 3477–3484. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.J.A.; De Almeida, A.N.; Paiva, W.S.; Tzu, W.H.; Marie, S.K.N. Natural History and Neuro-Oncological Approach in Spinal Gangliogliomas: A Systematic Review. Neurosurg. Rev. 2024, 47, 93. [Google Scholar] [CrossRef]
- Crainic, N.; Furtner, J.; Pallud, J.; Bielle, F.; Lombardi, G.; Rudà, R.; Idbaih, A. Rare Neuronal, Glial and Glioneuronal Tumours in Adults. Cancers 2023, 15, 1120. [Google Scholar] [CrossRef] [PubMed]
- Bruno, F.; Pellerino, A.; Bertero, L.; Soffietti, R.; Rudà, R. Targeted Therapies in Rare Brain Tumours. Int. J. Mol. Sci. 2021, 22, 7949. [Google Scholar] [CrossRef] [PubMed]
- Touat, M.; Gratieux, J.; Condette Auliac, S.; Sejean, K.; Aldea, S.; Savatovsky, J.; Perkins, G.; Blons, H.; Ligon, K.L.; Idbaih, A.; et al. Vemurafenib and Cobimetinib Overcome Resistance to Vemurafenib in BRAF-Mutant Ganglioglioma. Neurology 2018, 91, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Demir, M.K.; Yapıcıer, O.; Kılıc, T.; Celik, S.; Oven, B.B.; Ozdamarlar, U.; Kundak, N.E.; Kanan, D.; Dincer, A.; Ertem, O.; et al. Diffuse Leptomeningeal Glioneuronal Tumors: A Case Series of Five Patients with Parenchymal Forms and an Analysis of the Diagnostic Challenges, Treatment Options and Outcomes. Curr. Med. Imaging 2023, 19, 1415–1426. [Google Scholar] [CrossRef]
- Saliba, T.; Boitsios, G. Diffuse Leptomeningeal Glioneuronal Tumour. Cureus 2023, 15, e38404. [Google Scholar] [CrossRef]
- Rodriguez, F.J.; Perry, A.; Rosenblum, M.K.; Krawitz, S.; Cohen, K.J.; Lin, D.; Mosier, S.; Lin, M.-T.; Eberhart, C.G.; Burger, P.C. Disseminated Oligodendroglial-like Leptomeningeal Tumor of Childhood: A Distinctive Clinicopathologic Entity. Acta Neuropathol. 2012, 124, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Perez-Vega, C.; Akinduro, O.O.; Cheek, B.J.; Beier, A.D. Spinal Cord Diffuse Leptomeningeal Glioneuronal Tumor Presenting without Leptomeningeal Dissemination. Pediatr. Neurosurg. 2021, 56, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewski, K.; Brandel, M.G.; Gonda, D.D.; Crawford, J.R.; Levy, M.L. Prognostic Factors in Diffuse Leptomeningeal Glioneuronal Tumor (DLGNT): A Systematic Review. Childs Nerv. Syst. 2022, 38, 1663–1673. [Google Scholar] [CrossRef]
- Deng, M.Y.; Sill, M.; Chiang, J.; Schittenhelm, J.; Ebinger, M.; Schuhmann, M.U.; Monoranu, C.M.; Milde, T.; Wittmann, A.; Hartmann, C.; et al. Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathol. 2018, 136, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, D.; Castellino, R.C.; Janss, A.; Schniederjan, M.; McNall, R.; MacDonald, T.; Mazewski, C. Clinical Responses of Patients with Diffuse Leptomeningeal Glioneuronal Tumors to Chemotherapy. Childs Nerv. Syst. 2018, 34, 329–334. [Google Scholar] [CrossRef] [PubMed]
- de los Reyes-Nabhan, N.K.; Scheil-Bertram, S.; Boppudi, S.; Carl, B.; Jussen, D. Diffuse Leptomeningeal Glioneuronal Tumor in Adults: Case Report and Literature Review. Case Rep. Oncol. 2024, 17, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Bajin, I.Y.; Levine, A.; Dewan, M.C.; Bennett, J.; Tabori, U.; Hawkins, C.; Bouffet, E. Understanding Diffuse Leptomeningeal Glioneuronal Tumors. Childs Nerv. Syst. 2024, 40, 2359–2366. [Google Scholar] [CrossRef] [PubMed]
- Valiakhmetova, A.; Papusha, L.; Druy, A.; Yasko, L.; Ektova, A.; Karachunsky, A.; Maschan, A.; Hwang, E.I.; Novichkova, G.; Packer, R.J. Pediatric Diffuse Leptomeningeal Glioneuronal Tumor: Two Clinical Cases of Successful Targeted Therapy. Pediatr. Blood Cancer 2020, 67, e28478. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.; Sun, C.; Hua, Y.; Wu, X.; Li, W.; Yin, Y. Anlotinib for the Treatment of Multiple Recurrent Lumbar and Sacral Cord Hemangioblastomas: A Case Report. Front. Oncol. 2022, 12, 859157. [Google Scholar] [CrossRef]
- Dantas, F.; Raso, J.L.; Braga, P.S.G.; Botelho, R.V.; Dantas, F.L.R. Aggressive Dissemination of Central Nervous System Hemangioblastoma without Association with von Hippel–Lindau Disease: A Case Report and Literature Review. Surg. Neurol. Int. 2022, 13, 358. [Google Scholar] [CrossRef]
- Lonser, R.R.; Glenn, G.M.; Walther, M.; Chew, E.Y.; Libutti, S.K.; Linehan, W.M.; Oldfield, E.H. Von Hippel-Lindau Disease. Lancet 2003, 361, 2059–2067. [Google Scholar] [CrossRef]
- Asthagiri, A.R.; Mehta, G.U.; Zach, L.; Li, X.; Butman, J.A.; Camphausen, K.A.; Lonser, R.R. Prospective Evaluation of Radiosurgery for Hemangioblastomas in von Hippel–Lindau Disease. Neuro-Oncology 2010, 12, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, A.M.; Albiñana, V.; Gallardo-Vara, E.; Recio-Poveda, L.; de Rojas-P, I.; de Las Heras, K.V.G.; Aguirre, D.T.; Botella, L.M. The Β2-Adrenergic Receptor Antagonist ICI-118,551 Blocks the Constitutively Activated HIF Signalling in Hemangioblastomas from von Hippel-Lindau Disease. Sci. Rep. 2019, 9, 10062. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, T.S.; Nielsen, S.M.; Lesniak, M.S.; Lukas, R.V. Neurological Management of Von Hippel-Lindau Disease. Neurologist 2016, 21, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Bridges, K.J.; Jaboin, J.J.; Kubicky, C.D.; Than, K.D. Stereotactic Radiosurgery versus Surgical Resection for Spinal Hemangioblastoma: A Systematic Review. Clin. Neurol. Neurosurg. 2017, 154, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, J.F.; Mazza, E.; Motta, M.; Mortini, P.; Reni, M. Mechanisms, Indications and Results of Salvage Systemic Therapy for Sporadic and von Hippel–Lindau Related Hemangioblastomas of the Central Nervous System. Crit. Rev. Oncol./Hematol. 2013, 86, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Jonasch, E.; McCutcheon, I.E.; Waguespack, S.G.; Wen, S.; Davis, D.W.; Smith, L.A.; Tannir, N.M.; Gombos, D.S.; Fuller, G.N.; Matin, S.F. Pilot Trial of Sunitinib Therapy in Patients with von Hippel–Lindau Disease. Ann. Oncol. 2011, 22, 2661–2666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nguyen, C.C.; Zhang, N.T.; Fink, N.S.; John, J.D.; Venkatesh, O.G.; Roe, J.D.; Hoffman, S.C.; Lesniak, M.S.; Wolinsky, J.-P.; et al. Neurological Applications of Belzutifan in von Hippel-Lindau Disease. Neuro-Oncology 2022, 25, 827–838. [Google Scholar] [CrossRef]
- Sardi, I.; Sanzo, M.; Giordano, F.; Buccoliero, A.M.; Mussa, F.; Aricò, M.; Genitori, L. Monotherapy with Thalidomide for Treatment of Spinal Cord Hemangioblastomas in a Patient with von Hippel–Lindau Disease. Pediatr. Blood Cancer 2009, 53, 464–467. [Google Scholar] [CrossRef]
- Jonasch, E.; Donskov, F.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.K.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.K.; Welsh, S.J.; et al. Belzutifan for Renal Cell Carcinoma in von Hippel–Lindau Disease. N. Engl. J. Med. 2021, 385, 2036–2046. [Google Scholar] [CrossRef]
- Blay, J.-Y.; Casali, P.; Bouvier, C.; Dehais, C.; Galloway, I.; Gietema, J.; Halámková, J.; Hindi, N.; Idbaih, A.; Kinloch, E.; et al. European Reference Network for Rare Adult Solid Cancers, Statement and Integration to Health Care Systems of Member States: A Position Paper of the ERN EURACAN. ESMO Open 2021, 6, 100174. [Google Scholar] [CrossRef] [PubMed]
Tumor Diagnosis | Genetic Alterations |
---|---|
Ependymal tumors | |
Spinal subependymomas (grade 1) | Unknown |
Spinal ependymomas (grade 2) | Chromosome 22 deletion (1 copy loss) NF2 mutation or deletion |
Spinal ependymomas (grade 3) | Chromosome 22 deletion (1 copy loss) NF2 mutation or deletion |
Spinal ependymomas MYCN (grade 3) | MYCN amplification, specific methylation profile |
Myxopapillary ependymomas (grade 2) | Unknown |
Spinal astrocytoma | |
Pilocytic astrocytoma (PA) | MAPK pathway alterations, especially BRAF V600E mutation, KIAA1549–BRAF fusion |
Diffuse astrocytoma (DA) | IDH1/2 mutation (rarely), BRAF V600E mutation, ATRX mutation, TP53 mutation |
Spinal glioblastoma IDH wildtype (GBM) | EGFR amplification, PTEN homozygous deletion, 7p gain/10 homozygous deletion, TERT promoter mutation, TP53 |
Diffuse midline glioma H3 K27M altered (DMG-H3) | H3 K27M mutation, EGFR alteration, MAPK alterations, TP53 mutation, ATRX mutation |
High-grade astrocytoma with piloid features (HGAP) | NF1 mutation, MAPK alterations, CDKN2A/B deletion and/or mutations, loss of ATRX, MGMT promoter methylation |
Spinal glioneuronal tumor | |
Gangliogliomas | BRAF V600E mutation or other MAPK pathway alteration |
Diffuse leptomeningeal glioneuronal tumors (DLGNT) | KIAA1549–BRAF fusion, 1p/19q codeletion, IDHwt |
Spinal hemangioblastoma | VHL gene mutation |
Tumor | Radiotherapy | Chemotherapy | Targeted Therapy |
---|---|---|---|
Ependymal tumors | |||
Spinal subependymomas (grade 1) | Not recommended | Not recommended | Not known |
Spinal ependymomas (grade 2) | Focal RT (45 to 54 Gy) if GTR is not possible or at recurrence | At recurrence if no local treatment is possible: TMZ or TMZ + lapatinib or platin-based regimens or etoposide or bevacizumab-based regimens | Not known |
Spinal ependymomas (grade 3) Spinal ependymomas MYCN (grade 3) | Focal RT (45 to 54 Gy) after GTR or STR CSI (<36 Gy at 1.5–1.8 Gy/fr) if leptomeningeal dissemination + boost 45–54 Gy | ||
Myxopapillary ependymomas (grade 2) | Focal RT (45 to 54 Gy) if GTR is not possible or at recurrence | If progression/non-resectable: TMZ or TMZ + olaparib | Not known |
Spinal astrocytoma Pilocytic astrocytoma | Therapeutic option at progression | If progression/non-resectable: TMZ or carboplatin or vincristine or bevacizumab | BRAF and or MEK inhibitors |
Diffuse astrocytoma | Focal RT (45 to 54 Gy) if GTR is not possible or at recurrence | If progression/non-resectable: TMZ or PCV (procarbazine–CCNU–vincristine) or bevacizumab | Not known |
Spinal glioblastoma IDH wildtype | Focal RT ± CT after surgery | TMZ If progression: lomustine, bevacizumab | Not known |
Diffuse midline glioma H3 K27M altered | Focal RT ± C | Lomustine, bevacizumab | ONC201 |
High-grade astrocytoma with piloid features | Focal RT ± CT after surgery | TMZ | BRAF, MEK, or FGFR inhibitors |
Spinal glioneuronal tumor | |||
Gangliogliomas | No clear recommendations | No clear recommendations TMZ or carboplatin | BRAF/MEK tyrosine kinase inhibitors |
Diffuse leptomeningeal glioneuronal tumors | CSI | Carboplatin and vincristine or PCV or TMZ | BRAF/MEK tyrosine kinase inhibitors |
Spinal hemangioblastoma | SRS (12 to 20 Gy) or fractionated RT if surgery is not possible | If multiple/not surgical VHL-related: Belzutifan, tyrosine kinase inhibitors, bevacizumab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esparragosa Vazquez, I.; Ducray, F. The Role of Radiotherapy, Chemotherapy, and Targeted Therapies in Adult Intramedullary Spinal Cord Tumors. Cancers 2024, 16, 2781. https://doi.org/10.3390/cancers16162781
Esparragosa Vazquez I, Ducray F. The Role of Radiotherapy, Chemotherapy, and Targeted Therapies in Adult Intramedullary Spinal Cord Tumors. Cancers. 2024; 16(16):2781. https://doi.org/10.3390/cancers16162781
Chicago/Turabian StyleEsparragosa Vazquez, Ines, and François Ducray. 2024. "The Role of Radiotherapy, Chemotherapy, and Targeted Therapies in Adult Intramedullary Spinal Cord Tumors" Cancers 16, no. 16: 2781. https://doi.org/10.3390/cancers16162781
APA StyleEsparragosa Vazquez, I., & Ducray, F. (2024). The Role of Radiotherapy, Chemotherapy, and Targeted Therapies in Adult Intramedullary Spinal Cord Tumors. Cancers, 16(16), 2781. https://doi.org/10.3390/cancers16162781