The Role of Radiotherapy, Chemotherapy, and Targeted Therapies in Adult Intramedullary Spinal Cord Tumors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Spinal Ependymomas
2.1. Spinal Intramedullary Ependymomas
2.2. Myxopapillary Ependymomas
3. Spinal Astrocytomas
3.1. Spinal Pilocytic Astrocytomas
3.2. Spinal Diffuse Grade 2 Astrocytomas
3.3. Spinal H3K27M-Altered Diffuse Midline Gliomas
3.4. Spinal Glioblastomas and High-Grade Astrocytomas
3.5. Spinal High-Grade Astrocytomas with Piloid Features
4. Spinal Glioneuronal Tumors
4.1. Spinal Gangliogliomas
4.2. Spinal DLGNT
5. Spinal Hemangioblastomas
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016–2020. Neuro-Oncology 2023, 25, iv1–iv99. [Google Scholar] [CrossRef] [PubMed]
- Ogunlade, J.; Wiginton, J.G.; Elia, C.; Odell, T.; Rao, S.C. Primary Spinal Astrocytomas: A Literature Review. Cureus 2019, 11, e5247. [Google Scholar] [CrossRef] [PubMed]
- Amadasu, E.; Panther, E.; Lucke-Wold, B. Characterization and Treatment of Spinal Tumors. Intensive Care Res. 2022, 2, 76–95. [Google Scholar] [CrossRef]
- Ottenhausen, M.; Ntoulias, G.; Bodhinayake, I.; Ruppert, F.-H.; Schreiber, S.; Förschler, A.; Boockvar, J.A.; Jödicke, A. Intradural Spinal Tumors in Adults—Update on Management and Outcome. Neurosurg. Rev. 2019, 42, 371–388. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C.; Tredway, T.L. Adult Primary Intradural Spinal Cord Tumors: A Review. Curr. Neurol. Neurosci. Rep. 2011, 11, 320–328. [Google Scholar] [CrossRef]
- Kumar, N.; Tan, W.L.B.; Wei, W.; Vellayappan, B.A. An Overview of the Tumors Affecting the Spine—Inside to Out. Neuro-Oncol. Pract. 2020, 7, i10–i17. [Google Scholar] [CrossRef] [PubMed]
- Rudà, R.; Reifenberger, G.; Frappaz, D.; Pfister, S.M.; Laprie, A.; Santarius, T.; Roth, P.; Tonn, J.C.; Soffietti, R.; Weller, M.; et al. EANO Guidelines for the Diagnosis and Treatment of Ependymal Tumors. Neuro-Oncology 2018, 20, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Won, J.K.; Kim, C.H.; Phi, J.H.; Kim, S.-K.; Choi, S.H.; Chung, C.K. Pathological Classification of the Intramedullary Spinal Cord Tumors According to 2021 World Health Organization Classification of Central Nervous System Tumors, a Single-Institute Experience. Neurospine 2022, 19, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Cerretti, G.; Pessina, F.; Franceschi, E.; Barresi, V.; Salvalaggio, A.; Padovan, M.; Manara, R.; Di Nunno, V.; Bono, B.C.; Librizzi, G.; et al. Spinal Ependymoma in Adults: From Molecular Advances to New Treatment Perspectives. Front. Oncol. 2023, 13, 1301179. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, R.; Mehta, M.P.; Chang, E.L.; Brown, P.D.; Suh, J.H.; Lo, S.S.; Das, S.; Samawi, H.H.; Keith, J.; Perry, J.; et al. Updates in the Management of Intradural Spinal Cord Tumors: A Radiation Oncology Focus. Neuro-Oncology 2019, 21, 707–718. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.R.; Yuan, Y.; Wu, J.; Mendoza, T.; Vera, E.; Omuro, A.; Lieberman, F.; Robins, H.I.; Gerstner, E.R.; Wu, J.; et al. A Phase II Study of Dose-Dense Temozolomide and Lapatinib for Recurrent Low-Grade and Anaplastic Supratentorial, Infratentorial, and Spinal Cord Ependymoma. Neuro-Oncology 2021, 23, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Green, R.M.; Cloughesy, T.F.; Stupp, R.; DeAngelis, L.M.; Woyshner, E.A.; Ney, D.E.; Lassman, A.B. Bevacizumab for Recurrent Ependymoma. Neurology 2009, 73, 1677–1680. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.C.; Ivan, M.E.; Sun, M.Z.; Kaur, G.; Safaee, M.; Kim, J.M.; Sayegh, E.T.; Aranda, D.; Parsa, A.T. Adjuvant Radiotherapy Delays Recurrence Following Subtotal Resection of Spinal Cord Ependymomas. Neuro-Oncology 2013, 15, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Wostrack, M.; Ringel, F.; Eicker, S.O.; Jägersberg, M.; Schaller, K.; Kerschbaumer, J.; Thomé, C.; Shiban, E.; Stoffel, M.; Friedrich, B.; et al. Spinal Ependymoma in Adults: A Multicenter Investigation of Surgical Outcome and Progression-Free Survival. J. Neurosurg. Spine 2018, 28, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lim-Fat, M.J.; Qin, L.; Li, A.; Bryant, A.; Bay, C.P.; Gao, L.; Miskin, N.; Liu, Z.; Iorgulescu, J.B.; et al. A Comparative Retrospective Study of Immunotherapy RANO Versus Standard RANO Criteria in Glioblastoma Patients Receiving Immune Checkpoint Inhibitor Therapy. Front. Oncol. 2021, 11, 679331. [Google Scholar] [CrossRef] [PubMed]
- Rudà, R.; Bosa, C.; Magistrello, M.; Franchino, F.; Pellerino, A.; Fiano, V.; Trevisan, M.; Cassoni, P.; Soffietti, R. Temozolomide as Salvage Treatment for Recurrent Intracranial Ependymomas of the Adult: A Retrospective Study. Neuro-Oncology 2016, 18, 261–268. [Google Scholar] [CrossRef]
- Gornet, M.K.; Buckner, J.C.; Marks, R.S.; Scheithauer, B.W.; Erickson, B.J. Chemotherapy for Advanced CNS Ependymoma. J. Neuro-Oncol. 1999, 45, 61–67. [Google Scholar] [CrossRef]
- Chamberlain, M.C. Etoposide for Recurrent Spinal Cord Ependymoma: Table 1. Neurology 2002, 58, 1310–1311. [Google Scholar] [CrossRef]
- Kim, W.-H.; Yoon, S.H.; Kim, C.-Y.; Kim, K.; Lee, M.M.; Choe, G.; Kim, I.-A.; Kim, J.H.; Kim, Y.J.; Kim, H.-J. Temozolomide for Malignant Primary Spinal Cord Glioma: An Experience of Six Cases and a Literature Review. J. Neurooncol. 2011, 101, 247–254. [Google Scholar] [CrossRef]
- Morris, K.A.; Afridi, S.K.; Evans, D.G.; Hensiek, A.E.; McCabe, M.G.; Kellett, M.; Halliday, D.; Pretorius, P.M.; Parry, A. The Response of Spinal Cord Ependymomas to Bevacizumab in Patients with Neurofibromatosis Type 2. SPI 2017, 26, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Manabe, H.; Izumi, B.; Shima, T.; Adachi, N. Remarkable Efficacy of Temozolomide for Relapsed Spinal Myxopapillary Ependymoma with Multiple Recurrence and Cerebrospinal Dissemination: A Case Report and Literature Review. Eur. Spine J. 2018, 27, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Tapia Rico, G.; Townsend, A.; Price, T.; Patterson, K. Metastatic Myxopapillary Ependymoma Treated with Immunotherapy Achieving Durable Response. BMJ Case Rep. 2020, 13, e236242. [Google Scholar] [CrossRef] [PubMed]
- Blackwood, N.; Zetzmann, C.; Trevino, C.R. Case Report of Selumetinib as a Novel Therapy in a Neurofibromatosis Type 2-Associated Ependymoma. Mol. Ther. Methods Clin. Dev. 2023, 31, 101156. [Google Scholar] [CrossRef] [PubMed]
- Bowers, D.C.; Rajaram, V.; Karajannis, M.A.; Gardner, S.L.; Su, J.M.-F.; Baxter, P.; Partap, S.; Klesse, L.J. Phase II Study of Everolimus for Recurrent or Progressive Pediatric Ependymoma. Neurooncol. Adv. 2023, 5, vdad011. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, P.; Smith, S.; Lopez, J.; Sharma, R.K.; Millard, T.; Thway, K.; Fisher, C.; Reardon, D.A.; Jones, R.; Nicholson, A.G.; et al. PARP Inhibition Utilized in Combination Therapy with Olaparib-Temozolomide to Achieve Disease Stabilization in a Rare Case of BRCA1-mutant, Metastatic Myxopapillary Ependymoma. Rare Tumors 2023, 15, 20363613231152333. [Google Scholar] [CrossRef] [PubMed]
- Wahab, S.H.; Simpson, J.R.; Michalski, J.M.; Mansur, D.B. Long Term Outcome with Post-Operative Radiation Therapy for Spinal Canal Ependymoma. J. Neurooncol. 2007, 83, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Gomez, D.R.; Missett, B.T.; Wara, W.M.; Lamborn, K.R.; Prados, M.D.; Chang, S.; Berger, M.S.; Haas-Kogan, D.A. High Failure Rate in Spinal Ependymomas with Long-Term Follow-Up. Neuro-Oncology 2005, 7, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Byun, H.K.; Yi, S.; Yoon, H.I.; Kim, S.H.; Cho, J.; Suh, C.-O. Clinical Outcomes of Radiotherapy for Spinal Cord Ependymoma with Adverse Prognostic Features: A Single-Center Study. J. Neurooncol. 2018, 140, 649–657. [Google Scholar] [CrossRef]
- Weber, D.C.; Wang, Y.; Miller, R.; Villà, S.; Zaucha, R.; Pica, A.; Poortmans, P.; Anacak, Y.; Ozygit, G.; Baumert, B.; et al. Long-Term Outcome of Patients with Spinal Myxopapillary Ependymoma: Treatment Results from the MD Anderson Cancer Center and Institutions from the Rare Cancer Network. Neuro-Oncology 2015, 17, 588–595. [Google Scholar] [CrossRef]
- Brown, D.A.; Goyal, A.; Takami, H.; Graffeo, C.S.; Mahajan, A.; Krauss, W.E.; Bydon, M. Radiotherapy in Addition to Surgical Resection May Not Improve Overall Survival in WHO Grade II Spinal Ependymomas. Clin. Neurol. Neurosurg. 2020, 189, 105632. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C.; Johnston, S.K. Temozolomide for Recurrent Intracranial Supratentorial Platinum-Refractory Ependymoma. Cancer 2009, 115, 4775–4782. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.R.; Ruda, R.; Soffietti, R. Ependymomas in Adults. Curr. Neurol. Neurosci. Rep. 2010, 10, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Brandes, A.A.; Cavallo, G.; Reni, M.; Tosoni, A.; Nicolardi, L.; Scopece, L.; Franceschi, E.; Sotti, G.; Talacchi, A.; Turazzi, S.; et al. A Multicenter Retrospective Study of Chemotherapy for Recurrent Intracranial Ependymal Tumors in Adults by the Gruppo Italiano Cooperativo Di Neuro-Oncologia. Cancer 2005, 104, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Gramatzki, D.; Felsberg, J.; Hentschel, B.; Bähr, O.; Westphal, M.; Schackert, G.; Tonn, J.C.; Herrlinger, U.; Loeffler, M.; Pietsch, T.; et al. Chemotherapy for Adult Patients with Spinal Cord Gliomas. Neurooncol. Pract. 2021, 8, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.; Yuan, Y.; Wani, K.; Wu, J.; Omuro, A.; Lieberman, F.; Robins, H.I.; Gerstner, E.; Wu, J.; Wen, P.; et al. AT-23A phase ii study of lapatinib and dose-dense temozolomide (tmz) for adults with recurrent ependymoma: A cern clinical trial. Neuro-Oncology 2014, 16, v13. [Google Scholar] [CrossRef]
- Lombardi, G.; Della Puppa, A.; Pizzi, M.; Cerretti, G.; Bonaudo, C.; Gardiman, M.P.; Dipasquale, A.; Gregucci, F.; Esposito, A.; De Bartolo, D.; et al. An Overview of Intracranial Ependymomas in Adults. Cancers 2021, 13, 6128. [Google Scholar] [CrossRef] [PubMed]
- Farschtschi, S.; Merker, V.L.; Wolf, D.; Schuhmann, M.; Blakeley, J.; Plotkin, S.R.; Hagel, C.; Mautner, V.F. Bevacizumab Treatment for Symptomatic Spinal Ependymomas in Neurofibromatosis Type 2. Acta Neurol. Scand. 2016, 133, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Snyder, M.H.; Ampie, L.; DiDomenico, J.D.; Asthagiri, A.R. Bevacizumab as a Surgery-Sparing Agent for Spinal Ependymoma in Patients with Neurofibromatosis Type II: Systematic Review and Case. J. Clin. Neurosci. 2021, 86, 79–84. [Google Scholar] [CrossRef]
- Lorgis, V.; Varbedian, O.; Ghiringhelli, F. Metronomic Cyclophosphamide with Cisplatin and Bevacizumab: A New Chemotherapeutic Regimen for Refractory Anaplastic Ependymoma. Anticancer. Res. 2012, 32, 5067–5070. [Google Scholar]
- Perruccio, K.; Mastronuzzi, A.; Lupattelli, M.; Arcioni, F.; Capolsini, I.; Cerri, C.; Gurdo, G.M.I.; Massei, M.S.; Mastrodicasa, E.; Caniglia, M. Targeted Therapy with Sirolimus and Nivolumab in a Child with Refractory Multifocal Anaplastic Ependymoma. Reports 2021, 4, 12. [Google Scholar] [CrossRef]
- Gorsi, H.S.; Malicki, D.M.; Barsan, V.; Tumblin, M.; Yeh-Nayre, L.; Milburn, M.; Elster, J.D.; Crawford, J.R. Nivolumab in the Treatment of Recurrent or Refractory Pediatric Brain Tumors: A Single Institutional Experience. J. Pediatr. Hematol./Oncol. 2019, 41, e235. [Google Scholar] [CrossRef] [PubMed]
- Coy, S.; Lee, J.S.; Chan, S.J.; Woo, T.; Jones, J.; Alexandrescu, S.; Wen, P.Y.; Sorger, P.K.; Ligon, K.L.; Santagata, S. Systematic characterization of antibody-drug conjugate targets in central nervous system tumors. Neuro-Oncology 2024, 26, 458–472. [Google Scholar] [CrossRef] [PubMed]
- Jahanbakhshi, A.; Najafi, M.; Jafari, F.; Moshtaghian, M.; Gomar, M.; Anbarlouei, M.; Naderi, S. Adjunctive Treatment of Myxopapillary Ependymoma Running Head: Myxopapillary Ependymoma. Oncol. Rev. 2021, 15, 518. [Google Scholar] [CrossRef] [PubMed]
- Fakhreddine, M.H.; Mahajan, A.; Penas-Prado, M.; Weinberg, J.; McCutcheon, I.E.; Puduvalli, V.; Brown, P.D. Treatment, Prognostic Factors, and Outcomes in Spinal Cord Astrocytomas. Neuro-Oncology 2013, 15, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Nunna, R.S.; Khalid, S.; Ryoo, J.S.; Mehta, A.I. Adult Primary High-Grade Spinal Glioma: A Nationwide Analysis of Current Trends in Treatment and Outcomes. J. Neurooncol. 2020, 147, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Rudà, R.; Capper, D.; Waldman, A.D.; Pallud, J.; Minniti, G.; Kaley, T.J.; Bouffet, E.; Tabatabai, G.; Aronica, E.; Jakola, A.S.; et al. EANO—EURACAN—SNO Guidelines on Circumscribed Astrocytic Gliomas, Glioneuronal, and Neuronal Tumors. Neuro-Oncology 2022, 24, 2015–2034. [Google Scholar] [CrossRef] [PubMed]
- Biczok, A.; Strübing, F.L.; Eder, J.M.; Egensperger, R.; Schnell, O.; Zausinger, S.; Neumann, J.E.; Herms, J.; Tonn, J.-C.; Dorostkar, M.M. Molecular Diagnostics Helps to Identify Distinct Subgroups of Spinal Astrocytomas. Acta Neuropathol. Commun. 2021, 9, 119. [Google Scholar] [CrossRef]
- Gregory, T.A.; Chumbley, L.B.; Henson, J.W.; Theeler, B.J. Adult Pilocytic Astrocytoma in the Molecular Era: A Comprehensive Review. CNS Oncol. 2021, 10, CNS68. [Google Scholar] [CrossRef]
- Yang, T.; Wu, H.; Xia, C. Adult Intramedullary Pilocytic Astrocytomas: Clinical Features, Management, and Outcomes. Neurol. India 2022, 70, S206–S210. [Google Scholar] [CrossRef]
- Zhang, L.; Li, T.; Qiao, G.; Yang, W.; Shang, A.; Yu, X. Clinical Characteristics and Long-Term Surgical Outcomes of Spinal Pilocytic Astrocytoma: A Report of Twenty Cases. Acta Neurochir. 2021, 163, 3005–3013. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, Y.; Nishimura, Y.; Eguchi, K.; Yamaguchi, J.; Haimoto, S.; Ohka, F.; Takayasu, M.; Saito, R. Recent Molecular and Genetic Findings in Intramedullary Spinal Cord Tumors. Neurospine 2022, 19, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lv, L.; Yin, S.; Zhou, P.; Jiang, S. Primary Spinal Pilocytic Astrocytoma: Clinical Study with Long-Term Follow-up in 16 Patients and a Literature Review. Neurosurg. Rev. 2020, 43, 719–727. [Google Scholar] [CrossRef]
- Haque, W.; Verma, V.; Barber, S.; Tremont, I.W.; Brian Butler, E.; Teh, B.S. Management, Outcomes, and Prognostic Factors of Adult Primary Spinal Cord Gliomas. J. Clin. Neurosci. 2021, 84, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Miyata, K.; Hori, T.; Shimomura, Y.; Joko, M.; Takayasu, M.; Okumura, A. Pseudoprogression Successfully Treated with Bevacizumab in a Child with Spinal Pilocytic Astrocytoma. Childs Nerv. Syst. 2018, 34, 2305–2308. [Google Scholar] [CrossRef]
- Johnson, D.R.; Brown, P.D.; Galanis, E.; Hammack, J.E. Pilocytic Astrocytoma Survival in Adults: Analysis of the Surveillance, Epidemiology, and End Results Program of the National Cancer Institute. J. Neurooncol. 2012, 108, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Theeler, B.J.; Ellezam, B.; Sadighi, Z.S.; Mehta, V.; Tran, M.D.; Adesina, A.M.; Bruner, J.M.; Puduvalli, V.K. Adult Pilocytic Astrocytomas: Clinical Features and Molecular Analysis. Neuro-Oncology 2014, 16, 841–847. [Google Scholar] [CrossRef]
- Muto, J.; Murata, H.; Shigekawa, S.; Mitsuhara, T.; Umebayashi, D.; Kanematsu, R.; Joko, M.; Inoue, T.; Inoue, T.; Endo, T.; et al. Clinical Characteristics and Long-Term Outcomes of Spinal Pilocytic Astrocytomas: A Multicenter Retrospective Study by the Neurospinal Society of Japan. Neurospine 2023, 20, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, A.; Gunjur, A.; Gan, H.K.; Perchyonok, Y.; Cher, L.M. Response to Combined BRAF/MEK Inhibition in Adult BRAF V600E Mutant Spinal Pilocytic Astrocytoma. J. Clin. Neurosci. 2020, 79, 269–271. [Google Scholar] [CrossRef]
- Levenbaum, E.; Ellika, S.; Korones, D.N. Bevacizumab in treating the cystic components of pediatric low-grade gliomas: A report of four patients. Pediatr. Blood Cancer 2019, 66, e27917. [Google Scholar] [CrossRef]
- Horbinski, C.; Nabors, L.B.; Portnow, J.; Baehring, J.; Bhatia, A.; Bloch, O.; Brem, S.; Butowski, N.; Cannon, D.M.; Chao, S.; et al. NCCN Guidelines® Insights: Central Nervous System Cancers, Version 2.2022: Featured Updates to the NCCN Guidelines. J. Natl. Compr. Cancer Netw. 2023, 21, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, L.; Meléndez, B.; Blanchard, O.; De Nève, N.; Van Campenhout, C.; Lelotte, J.; Balériaux, D.; Riva, M.; Brotchi, J.; Bruneau, M.; et al. Clinical, Radiological and Molecular Characterization of Intramedullary Astrocytomas. Acta Neuropathol. Commun. 2020, 8, 128. [Google Scholar] [CrossRef]
- Konovalov, N.A.; Asyutin, D.S.; Shayhaev, E.G.; Kaprovoy, S.V.; Timonin, S.Y. Rare Cases of IDH1 Mutations in Spinal Cord Astrocytomas. Acta Naturae 2020, 12, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Campello, C.; Tabouret, E.; Chinot, O. Challenges in Diagnosis and Management of Adult Spinal Cord Gliomas. Rev. Neurol. 2021, 177, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.; Avendaño, J.; Raza, S.M.; Gokaslan, Z.L.; Jallo, G.I.; Quiñones-Hinojosa, A. Prognostic Factors and Survival in Primary Malignant Astrocytomas of the Spinal Cord: A Population-Based Analysis from 1973 to 2007. Spine 2012, 37, E727–E735. [Google Scholar] [CrossRef] [PubMed]
- Kanematsu, R.; Mizuno, M.; Inoue, T.; Takahashi, T.; Endo, T.; Shigekawa, S.; Muto, J.; Umebayashi, D.; Mitsuhara, T.; Hida, K.; et al. The Impact of Adjuvant Radiotherapy on Clinical Performance Status in Patients With Grade II Spinal Cord Astrocytoma—A Nationwide Analysis by the Neurospinal Society of Japan. Neurospine 2023, 20, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C. Temozolomide for Recurrent Low-Grade Spinal Cord Gliomas in Adults. Cancer 2008, 113, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.R.; Lee, S.S.; Urquhart, J.C.; Jonker, B.P. A Systematic Review of Outcome in Intramedullary Ependymoma and Astrocytoma. J. Clin. Neurosci. 2019, 63, 168–175. [Google Scholar] [CrossRef]
- Boström, A.; Kanther, N.-C.; Grote, A.; Boström, J. Management and Outcome in Adult Intramedullary Spinal Cord Tumours: A 20-Year Single Institution Experience. BMC Res. Notes 2014, 7, 908. [Google Scholar] [CrossRef]
- Ryu, S.J.; Kim, J.Y.; Kim, K.H.; Park, J.Y.; Kuh, S.U.; Chin, D.K.; Kim, K.S.; Cho, Y.E.; Kim, S.H. A Retrospective Observational Study on the Treatment Outcomes of 26 Patients with Spinal Cord Astrocytoma Including Two Cases of Malignant Transformation. Eur. Spine J. 2016, 25, 4067–4079. [Google Scholar] [CrossRef]
- Kaley, T.J.; Mondesire-Crump, I.; Gavrilovic, I.T. Temozolomide or Bevacizumab for Spinal Cord High-Grade Gliomas. J. Neurooncol. 2012, 109, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Henson, J.W.; Thornton, A.F.; Louis, D.N. Spinal cord astrocytoma: Response to PCV chemotherapy. Neurology 2000, 54, 518–520. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Gong, J.; Yu, T.; Zou, Y.; Zhang, M.; Nie, L.; Chen, X.; Yue, Q.; Liu, Y.; Mao, Q.; et al. Diffuse Midline Gliomas With Histone H3 K27M Mutation in Adults and Children. Am. J. Surg. Pathol. 2022, 46, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Huang, Y.; Zhang, H.; Jiang, B. Case Report: Five Adult Cases of H3K27-Altered Diffuse Midline Glioma in the Spinal Cord. Front. Oncol. 2021, 11, 701113. [Google Scholar] [CrossRef] [PubMed]
- Vallero, S.G.; Bertero, L.; Morana, G.; Sciortino, P.; Bertin, D.; Mussano, A.; Ricci, F.S.; Peretta, P.; Fagioli, F. Pediatric Diffuse Midline Glioma H3K27- Altered: A Complex Clinical and Biological Landscape behind a Neatly Defined Tumor Type. Front. Oncol. 2023, 12, 1082062. [Google Scholar] [CrossRef] [PubMed]
- Chai, R.; Yan, H.; An, S.; Pang, B.; Chen, H.; Mu, Q.; Zhang, K.; Zhang, Y.; Liu, Y.; Liu, X.; et al. Genomic Profiling and Prognostic Factors of H3 K27M-mutant Spinal Cord Diffuse Glioma. Brain Pathol. 2023, 33, e13153. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Wang, L.; Ge, H.; Yin, H.; Piao, Y. Diffuse midline glioma with H3 K27M mutation of the spinal cord: A series of 33 cases. Neuropathology 2021, 41, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Meyronet, D.; Esteban-Mader, M.; Bonnet, C.; Joly, M.O.; Uro-Coste, E.; Amiel-Benouaich, A.; Forest, F.; Rousselot-Denis, C.; Burel-Vandenbos, F.; Bourg, V.; et al. Characteristics of H3 K27M-mutant gliomas in adults. Neuro-Oncology 2017, 19, 1127–1134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arrillaga-Romany, I.; Lassman, A.; McGovern, S.L.; Mueller, S.; Nabors, B.; Van Den Bent, M.; Vogelbaum, M.; Allen, J.E.; Melemed, A.S.; Tarapore, R.S.; et al. ACTION: A Randomized Phase 3 Study of ONC201 (Dordaviprone) in Patients with Newly Diagnosed H3 K27M-Mutant Diffuse Glioma. Neuro-Oncology 2024, 26, noae031. [Google Scholar] [CrossRef]
- Arrillaga-Romany, I.; Gardner, S.L.; Odia, Y.; Aguilera, D.; Allen, J.E.; Batchelor, T.; Butowski, N.; Chen, C.; Cloughesy, T.; Cluster, A.; et al. ONC201 (Dordaviprone) in Recurrent H3 K27M-Mutant Diffuse Midline Glioma. J. Clin. Oncol. 2024, 42, 1542–1552. [Google Scholar] [CrossRef]
- Auffret, L.; Ajlil, Y.; Tauziède-Espariat, A.; Kergrohen, T.; Puiseux, C.; Riffaud, L.; Blouin, P.; Bertozzi, A.-I.; Leblond, P.; Blomgren, K.; et al. A New Subtype of Diffuse Midline Glioma, H3 K27 and BRAF/FGFR1 Co-Altered: A Clinico-Radiological and Histomolecular Characterisation. Acta Neuropathol. 2024, 147, 2. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.J.; Ji, S.; Picca, A.; Sanson, M.; Garcia, M.; Snuderl, M.; Schüller, U.; Picart, T.; Ducray, F.; Green, A.L.; et al. Clinical, Genomic, and Epigenomic Analyses of H3K27M-Mutant Diffuse Midline Glioma Long-Term Survivors Reveal a Distinct Group of Tumors with MAPK Pathway Alterations. Acta Neuropathol. 2023, 146, 849–852. [Google Scholar] [CrossRef] [PubMed]
- Amelot, A.; Terrier, L.-M.; Mathon, B.; Joubert, C.; Picart, T.; Jecko, V.; Bauchet, L.; Bernard, F.; Castel, X.; Chenin, L.; et al. Natural Course and Prognosis of Primary Spinal Glioblastoma. Neurology 2023, 100, e1497–e1509. [Google Scholar] [CrossRef] [PubMed]
- Behmanesh, B.; Setzer, M.; Konczalla, J.; Harter, P.; Quick-Weller, J.; Imoehl, L.; Franz, K.; Gessler, F.; Seifert, V.; Marquardt, G. Management of Patients with Primary Intramedullary Spinal Cord Glioblastoma. World Neurosurg. 2017, 98, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Beyer, S.; von Bueren, A.O.; Klautke, G.; Guckenberger, M.; Kortmann, R.-D.; Pietschmann, S.; Müller, K. A Systematic Review on the Characteristics, Treatments and Outcomes of the Patients with Primary Spinal Glioblastomas or Gliosarcomas Reported in Literature until March 2015. PLoS ONE 2016, 11, e0148312. [Google Scholar] [CrossRef] [PubMed]
- Raco, A.; Piccirilli, M.; Landi, A.; Lenzi, J.; Delfini, R.; Cantore, G. High-Grade Intramedullary Astrocytomas: 30 Years’ Experience at the Neurosurgery Department of the University of Rome “Sapienza”: Clinical Article. SPI 2010, 12, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, M.C.; Johnston, S.K. Recurrent Spinal Cord Glioblastoma: Salvage Therapy with Bevacizumab. J. Neurooncol. 2011, 102, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Bender, K.; Perez, E.; Chirica, M.; Onken, J.; Kahn, J.; Brenner, W.; Ehret, F.; Euskirchen, P.; Koch, A.; Capper, D.; et al. High-Grade Astrocytoma with Piloid Features (HGAP): The Charité Experience with a New Central Nervous System Tumor Entity. J. Neurooncol. 2021, 153, 109–120. [Google Scholar] [CrossRef]
- Cimino, P.J.; Ketchum, C.; Turakulov, R.; Singh, O.; Abdullaev, Z.; Giannini, C.; Pytel, P.; Lopez, G.Y.; Colman, H.; Nasrallah, M.P.; et al. Expanded Analysis of High-Grade Astrocytoma with Piloid Features Identifies an Epigenetically and Clinically Distinct Subtype Associated with Neurofibromatosis Type 1. Acta Neuropathol. 2023, 145, 71–82. [Google Scholar] [CrossRef]
- Soni, N.; Agarwal, A.; Ajmera, P.; Mehta, P.; Gupta, V.; Vibhute, M.; Gubbiotti, M.; Mark, I.T.; Messina, S.A.; Mohan, S.; et al. High-Grade Astrocytoma with Piloid Features: A Dual Institutional Review of Imaging Findings of a Novel Entity. Am. J. Neuroradiol. 2024, 45, 468–474. [Google Scholar] [CrossRef]
- Garnier, L.; Ducray, F.; Verlut, C.; Mihai, M.-I.; Cattin, F.; Petit, A.; Curtit, E. Prolonged Response Induced by Single Agent Vemurafenib in a BRAF V600E Spinal Ganglioglioma: A Case Report and Review of the Literature. Front. Oncol. 2019, 9, 177. [Google Scholar] [CrossRef] [PubMed]
- Dang, H.; Khan, A.B.; Gadgil, N.; Prablek, M.; Lin, F.Y.; Blessing, M.M.; Aldave, G.; Bauer, D. Primary Spinal Intramedullary Anaplastic Ganglioglioma in a Pediatric Patient. Surg. Neurol. Int. 2023, 14, 55. [Google Scholar] [CrossRef]
- Schreck, K.C.; Grossman, S.A.; Pratilas, C.A. BRAF Mutations and the Utility of RAF and MEK Inhibitors in Primary Brain Tumors. Cancers 2019, 11, 1262. [Google Scholar] [CrossRef] [PubMed]
- Kaley, T.; Touat, M.; Subbiah, V.; Hollebecque, A.; Rodon, J.; Lockhart, A.C.; Keedy, V.; Bielle, F.; Hofheinz, R.-D.; Joly, F.; et al. BRAF Inhibition in BRAF V600 -Mutant Gliomas: Results From the VE-BASKET Study. J. Clin. Oncol. 2018, 36, 3477–3484. [Google Scholar] [CrossRef] [PubMed]
- Pereira, B.J.A.; De Almeida, A.N.; Paiva, W.S.; Tzu, W.H.; Marie, S.K.N. Natural History and Neuro-Oncological Approach in Spinal Gangliogliomas: A Systematic Review. Neurosurg. Rev. 2024, 47, 93. [Google Scholar] [CrossRef]
- Crainic, N.; Furtner, J.; Pallud, J.; Bielle, F.; Lombardi, G.; Rudà, R.; Idbaih, A. Rare Neuronal, Glial and Glioneuronal Tumours in Adults. Cancers 2023, 15, 1120. [Google Scholar] [CrossRef] [PubMed]
- Bruno, F.; Pellerino, A.; Bertero, L.; Soffietti, R.; Rudà, R. Targeted Therapies in Rare Brain Tumours. Int. J. Mol. Sci. 2021, 22, 7949. [Google Scholar] [CrossRef] [PubMed]
- Touat, M.; Gratieux, J.; Condette Auliac, S.; Sejean, K.; Aldea, S.; Savatovsky, J.; Perkins, G.; Blons, H.; Ligon, K.L.; Idbaih, A.; et al. Vemurafenib and Cobimetinib Overcome Resistance to Vemurafenib in BRAF-Mutant Ganglioglioma. Neurology 2018, 91, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Demir, M.K.; Yapıcıer, O.; Kılıc, T.; Celik, S.; Oven, B.B.; Ozdamarlar, U.; Kundak, N.E.; Kanan, D.; Dincer, A.; Ertem, O.; et al. Diffuse Leptomeningeal Glioneuronal Tumors: A Case Series of Five Patients with Parenchymal Forms and an Analysis of the Diagnostic Challenges, Treatment Options and Outcomes. Curr. Med. Imaging 2023, 19, 1415–1426. [Google Scholar] [CrossRef]
- Saliba, T.; Boitsios, G. Diffuse Leptomeningeal Glioneuronal Tumour. Cureus 2023, 15, e38404. [Google Scholar] [CrossRef]
- Rodriguez, F.J.; Perry, A.; Rosenblum, M.K.; Krawitz, S.; Cohen, K.J.; Lin, D.; Mosier, S.; Lin, M.-T.; Eberhart, C.G.; Burger, P.C. Disseminated Oligodendroglial-like Leptomeningeal Tumor of Childhood: A Distinctive Clinicopathologic Entity. Acta Neuropathol. 2012, 124, 627–641. [Google Scholar] [CrossRef] [PubMed]
- Perez-Vega, C.; Akinduro, O.O.; Cheek, B.J.; Beier, A.D. Spinal Cord Diffuse Leptomeningeal Glioneuronal Tumor Presenting without Leptomeningeal Dissemination. Pediatr. Neurosurg. 2021, 56, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Wiśniewski, K.; Brandel, M.G.; Gonda, D.D.; Crawford, J.R.; Levy, M.L. Prognostic Factors in Diffuse Leptomeningeal Glioneuronal Tumor (DLGNT): A Systematic Review. Childs Nerv. Syst. 2022, 38, 1663–1673. [Google Scholar] [CrossRef]
- Deng, M.Y.; Sill, M.; Chiang, J.; Schittenhelm, J.; Ebinger, M.; Schuhmann, M.U.; Monoranu, C.M.; Milde, T.; Wittmann, A.; Hartmann, C.; et al. Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathol. 2018, 136, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, D.; Castellino, R.C.; Janss, A.; Schniederjan, M.; McNall, R.; MacDonald, T.; Mazewski, C. Clinical Responses of Patients with Diffuse Leptomeningeal Glioneuronal Tumors to Chemotherapy. Childs Nerv. Syst. 2018, 34, 329–334. [Google Scholar] [CrossRef] [PubMed]
- de los Reyes-Nabhan, N.K.; Scheil-Bertram, S.; Boppudi, S.; Carl, B.; Jussen, D. Diffuse Leptomeningeal Glioneuronal Tumor in Adults: Case Report and Literature Review. Case Rep. Oncol. 2024, 17, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Bajin, I.Y.; Levine, A.; Dewan, M.C.; Bennett, J.; Tabori, U.; Hawkins, C.; Bouffet, E. Understanding Diffuse Leptomeningeal Glioneuronal Tumors. Childs Nerv. Syst. 2024, 40, 2359–2366. [Google Scholar] [CrossRef] [PubMed]
- Valiakhmetova, A.; Papusha, L.; Druy, A.; Yasko, L.; Ektova, A.; Karachunsky, A.; Maschan, A.; Hwang, E.I.; Novichkova, G.; Packer, R.J. Pediatric Diffuse Leptomeningeal Glioneuronal Tumor: Two Clinical Cases of Successful Targeted Therapy. Pediatr. Blood Cancer 2020, 67, e28478. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.; Sun, C.; Hua, Y.; Wu, X.; Li, W.; Yin, Y. Anlotinib for the Treatment of Multiple Recurrent Lumbar and Sacral Cord Hemangioblastomas: A Case Report. Front. Oncol. 2022, 12, 859157. [Google Scholar] [CrossRef]
- Dantas, F.; Raso, J.L.; Braga, P.S.G.; Botelho, R.V.; Dantas, F.L.R. Aggressive Dissemination of Central Nervous System Hemangioblastoma without Association with von Hippel–Lindau Disease: A Case Report and Literature Review. Surg. Neurol. Int. 2022, 13, 358. [Google Scholar] [CrossRef]
- Lonser, R.R.; Glenn, G.M.; Walther, M.; Chew, E.Y.; Libutti, S.K.; Linehan, W.M.; Oldfield, E.H. Von Hippel-Lindau Disease. Lancet 2003, 361, 2059–2067. [Google Scholar] [CrossRef]
- Asthagiri, A.R.; Mehta, G.U.; Zach, L.; Li, X.; Butman, J.A.; Camphausen, K.A.; Lonser, R.R. Prospective Evaluation of Radiosurgery for Hemangioblastomas in von Hippel–Lindau Disease. Neuro-Oncology 2010, 12, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, A.M.; Albiñana, V.; Gallardo-Vara, E.; Recio-Poveda, L.; de Rojas-P, I.; de Las Heras, K.V.G.; Aguirre, D.T.; Botella, L.M. The Β2-Adrenergic Receptor Antagonist ICI-118,551 Blocks the Constitutively Activated HIF Signalling in Hemangioblastomas from von Hippel-Lindau Disease. Sci. Rep. 2019, 9, 10062. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, T.S.; Nielsen, S.M.; Lesniak, M.S.; Lukas, R.V. Neurological Management of Von Hippel-Lindau Disease. Neurologist 2016, 21, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Bridges, K.J.; Jaboin, J.J.; Kubicky, C.D.; Than, K.D. Stereotactic Radiosurgery versus Surgical Resection for Spinal Hemangioblastoma: A Systematic Review. Clin. Neurol. Neurosurg. 2017, 154, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, J.F.; Mazza, E.; Motta, M.; Mortini, P.; Reni, M. Mechanisms, Indications and Results of Salvage Systemic Therapy for Sporadic and von Hippel–Lindau Related Hemangioblastomas of the Central Nervous System. Crit. Rev. Oncol./Hematol. 2013, 86, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Jonasch, E.; McCutcheon, I.E.; Waguespack, S.G.; Wen, S.; Davis, D.W.; Smith, L.A.; Tannir, N.M.; Gombos, D.S.; Fuller, G.N.; Matin, S.F. Pilot Trial of Sunitinib Therapy in Patients with von Hippel–Lindau Disease. Ann. Oncol. 2011, 22, 2661–2666. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Nguyen, C.C.; Zhang, N.T.; Fink, N.S.; John, J.D.; Venkatesh, O.G.; Roe, J.D.; Hoffman, S.C.; Lesniak, M.S.; Wolinsky, J.-P.; et al. Neurological Applications of Belzutifan in von Hippel-Lindau Disease. Neuro-Oncology 2022, 25, 827–838. [Google Scholar] [CrossRef]
- Sardi, I.; Sanzo, M.; Giordano, F.; Buccoliero, A.M.; Mussa, F.; Aricò, M.; Genitori, L. Monotherapy with Thalidomide for Treatment of Spinal Cord Hemangioblastomas in a Patient with von Hippel–Lindau Disease. Pediatr. Blood Cancer 2009, 53, 464–467. [Google Scholar] [CrossRef]
- Jonasch, E.; Donskov, F.; Iliopoulos, O.; Rathmell, W.K.; Narayan, V.K.; Maughan, B.L.; Oudard, S.; Else, T.; Maranchie, J.K.; Welsh, S.J.; et al. Belzutifan for Renal Cell Carcinoma in von Hippel–Lindau Disease. N. Engl. J. Med. 2021, 385, 2036–2046. [Google Scholar] [CrossRef]
- Blay, J.-Y.; Casali, P.; Bouvier, C.; Dehais, C.; Galloway, I.; Gietema, J.; Halámková, J.; Hindi, N.; Idbaih, A.; Kinloch, E.; et al. European Reference Network for Rare Adult Solid Cancers, Statement and Integration to Health Care Systems of Member States: A Position Paper of the ERN EURACAN. ESMO Open 2021, 6, 100174. [Google Scholar] [CrossRef] [PubMed]
Tumor Diagnosis | Genetic Alterations |
---|---|
Ependymal tumors | |
Spinal subependymomas (grade 1) | Unknown |
Spinal ependymomas (grade 2) | Chromosome 22 deletion (1 copy loss) NF2 mutation or deletion |
Spinal ependymomas (grade 3) | Chromosome 22 deletion (1 copy loss) NF2 mutation or deletion |
Spinal ependymomas MYCN (grade 3) | MYCN amplification, specific methylation profile |
Myxopapillary ependymomas (grade 2) | Unknown |
Spinal astrocytoma | |
Pilocytic astrocytoma (PA) | MAPK pathway alterations, especially BRAF V600E mutation, KIAA1549–BRAF fusion |
Diffuse astrocytoma (DA) | IDH1/2 mutation (rarely), BRAF V600E mutation, ATRX mutation, TP53 mutation |
Spinal glioblastoma IDH wildtype (GBM) | EGFR amplification, PTEN homozygous deletion, 7p gain/10 homozygous deletion, TERT promoter mutation, TP53 |
Diffuse midline glioma H3 K27M altered (DMG-H3) | H3 K27M mutation, EGFR alteration, MAPK alterations, TP53 mutation, ATRX mutation |
High-grade astrocytoma with piloid features (HGAP) | NF1 mutation, MAPK alterations, CDKN2A/B deletion and/or mutations, loss of ATRX, MGMT promoter methylation |
Spinal glioneuronal tumor | |
Gangliogliomas | BRAF V600E mutation or other MAPK pathway alteration |
Diffuse leptomeningeal glioneuronal tumors (DLGNT) | KIAA1549–BRAF fusion, 1p/19q codeletion, IDHwt |
Spinal hemangioblastoma | VHL gene mutation |
Tumor | Radiotherapy | Chemotherapy | Targeted Therapy |
---|---|---|---|
Ependymal tumors | |||
Spinal subependymomas (grade 1) | Not recommended | Not recommended | Not known |
Spinal ependymomas (grade 2) | Focal RT (45 to 54 Gy) if GTR is not possible or at recurrence | At recurrence if no local treatment is possible: TMZ or TMZ + lapatinib or platin-based regimens or etoposide or bevacizumab-based regimens | Not known |
Spinal ependymomas (grade 3) Spinal ependymomas MYCN (grade 3) | Focal RT (45 to 54 Gy) after GTR or STR CSI (<36 Gy at 1.5–1.8 Gy/fr) if leptomeningeal dissemination + boost 45–54 Gy | ||
Myxopapillary ependymomas (grade 2) | Focal RT (45 to 54 Gy) if GTR is not possible or at recurrence | If progression/non-resectable: TMZ or TMZ + olaparib | Not known |
Spinal astrocytoma Pilocytic astrocytoma | Therapeutic option at progression | If progression/non-resectable: TMZ or carboplatin or vincristine or bevacizumab | BRAF and or MEK inhibitors |
Diffuse astrocytoma | Focal RT (45 to 54 Gy) if GTR is not possible or at recurrence | If progression/non-resectable: TMZ or PCV (procarbazine–CCNU–vincristine) or bevacizumab | Not known |
Spinal glioblastoma IDH wildtype | Focal RT ± CT after surgery | TMZ If progression: lomustine, bevacizumab | Not known |
Diffuse midline glioma H3 K27M altered | Focal RT ± C | Lomustine, bevacizumab | ONC201 |
High-grade astrocytoma with piloid features | Focal RT ± CT after surgery | TMZ | BRAF, MEK, or FGFR inhibitors |
Spinal glioneuronal tumor | |||
Gangliogliomas | No clear recommendations | No clear recommendations TMZ or carboplatin | BRAF/MEK tyrosine kinase inhibitors |
Diffuse leptomeningeal glioneuronal tumors | CSI | Carboplatin and vincristine or PCV or TMZ | BRAF/MEK tyrosine kinase inhibitors |
Spinal hemangioblastoma | SRS (12 to 20 Gy) or fractionated RT if surgery is not possible | If multiple/not surgical VHL-related: Belzutifan, tyrosine kinase inhibitors, bevacizumab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esparragosa Vazquez, I.; Ducray, F. The Role of Radiotherapy, Chemotherapy, and Targeted Therapies in Adult Intramedullary Spinal Cord Tumors. Cancers 2024, 16, 2781. https://doi.org/10.3390/cancers16162781
Esparragosa Vazquez I, Ducray F. The Role of Radiotherapy, Chemotherapy, and Targeted Therapies in Adult Intramedullary Spinal Cord Tumors. Cancers. 2024; 16(16):2781. https://doi.org/10.3390/cancers16162781
Chicago/Turabian StyleEsparragosa Vazquez, Ines, and François Ducray. 2024. "The Role of Radiotherapy, Chemotherapy, and Targeted Therapies in Adult Intramedullary Spinal Cord Tumors" Cancers 16, no. 16: 2781. https://doi.org/10.3390/cancers16162781
APA StyleEsparragosa Vazquez, I., & Ducray, F. (2024). The Role of Radiotherapy, Chemotherapy, and Targeted Therapies in Adult Intramedullary Spinal Cord Tumors. Cancers, 16(16), 2781. https://doi.org/10.3390/cancers16162781