Surgical Implications for Nonalcoholic Steatohepatitis-Related Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Interplay between Obesity, MAFLD/NASH, and HCC Risk
3. HCC Screening, Diagnosis, and Implications of Obesity
4. Novel Approaches to NASH-HCC Risk Stratification and Earlier Diagnosis
5. Prevention of NASH-HCC
6. Impact of Obesity on Management Options for HCC
7. NASH-HCC Outcomes with Surgical Resection
8. NASH-HCC and Liver Transplantation
9. Tumor Microenvironment and Medical Treatments
Treatment Modality | Challenges of Obesity/MAFLD | Considerations |
---|---|---|
Transplant |
| |
Surgical Resection |
|
|
Locoregional Therapy |
|
|
Systemic Therapy |
|
|
Study | Type | Study Period | Sample Size | Variable of Interest | Type of Hepatic Resection | Results |
---|---|---|---|---|---|---|
Jacoby et al. [95] | Prospective observational study | 2016–2020 | N = 74 * | Presence of metabolic syndrome (MS) | Robotic | No difference in operative time, EBL, conversion to open, intraoperative complications, or postoperative outcomes in patients with MS versus without MS. |
Sucandy et al. [96] | Prospective observational study | 2013–2017 | N = 38 | BMI (BMI < 25, BMI 25–35, BMI > 35) | Robotic | No difference in EBL, postoperative complication rates, rate of intraoperative conversion, need for transfusion, length of ICU stay, and length of hospital stay based on BMI. |
Lin et al. [97] | Retrospective review | 2010–2020 | N = 208 * | BMI and surgical approach (BMI < 25, BMI > 25) | Robotic versus Open | Robotic resection associated with shorter operative time, less EBL, shorter postoperative length of stay, less risk of surgical site infection and lower rates of blood transfusion. Differences between operative time, EBL and length of stay were more significant in obese patients. |
Conticchio et al. [99] | Retrospective review | 2009–2019 | N = 224 | BMI (BMI < 30, BMI > 30) | Laparoscopic | No significant difference in operative time, complication rate, and length of stay based on BMI. |
Uchida et al. [101] | Retrospective review | 2010–2015 | N = 68 | BMI and surgical approach | Laparoscopic versus Open | Open resection associated with longer operation time and higher blood loss than laparoscopic resection. Differences were more pronounced in obese patients. |
Zhao et al. [102] | Retrospective review | 2003–2016 | N = 201 | BMI (BMI < 18.5, BMI 18.5–23, BMI > 23) | Laparoscopic | No difference in OS and RFS after laparoscopic hepatectomy based on BMI. Underweight (BMI < 18.5) associated with higher perioperative complication rates. |
Xiangfei et al. [98] | Meta-analysis | 1990–2017 | N = 6812 | Surgical approach | Laparoscopic versus Open | Laparoscopic resection associated with lower blood transfusion rate, hospital LOS, 30-day mortality rate and morbidity than open resection. Rates of 1- and 5-year OS significantly higher in the laparoscopic resection groups than open resection. |
Author | Year | Molecule of Interest | Conclusion |
---|---|---|---|
Heinrich et al. [157] | 2021 | N-acetylcysteine | Mice with steatohepatitis given N-acetylcysteine had slowed hepatic tumor growth via restoration of CD4+ T cells and effector memory cells |
Wabitsch et al. [158] | 2022 | Metformin | Metformin rescued efficacy of anti-PD-1 therapy against liver tumors in NASH |
Zhang et al. [160] | 2022 | Neuregulin 4 | Neuregulin 4 prevents exhaustion of cytotoxic CD8+ T cells in the liver and induction of tumor-associated macrophages |
Leslie et al. [16] | 2022 | CXCR2 Inhibitor | Combination CXCR2 antagonist + anti-PD-1 therapy increased CD8+ T cells and tumor-associated neutrophils which switched from a protumor to anti-tumor phenotype |
Zhang et al. [161] | 2019 | Neutrophil Extracellular Traps | Neutrophil extracellular traps blockade suppressed tumor growth by reducing PD-L1 and PD-1 expression, which are markers of T cell exhaustion |
Ramadori et al. [162] | 2022 | Atezolizumab + Bevacizumab | Anti-PD-1 + anti-VEGF combination therapy can prolong progression free survival rates |
Allard et al. [163] | 2023 | Adenosine A2A Receptor | A2A receptor functions as a tumor suppressor and restrains HCC progression by suppression of TNF-α secretion by macrophages |
Beavis et al. [164] | 2015 | Adenosine A2A Receptor | Efficacy of anti-PD-1 mAB can be enhanced by A2A combination therapy by reversing features of CD8+ T cell exhaustion |
10. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
AFP | Alpha-fetoprotein |
AFP-L3 | Lectin-bound alpha-fetoprotein |
BCLC | Barcelona clinic liver cancer |
BMI | Body mass index |
DCP | Des-gamma carboxyprothrombin |
DM | Diabetes mellitus |
EBL | Estimated blood loss |
Fib-4 | Non-invasive fibrosis score |
GLP-1RA | Glucagon-like-peptide-1 receptor agonist |
HBV | Hepatitis B |
HCC | Hepatocellular carcinoma |
HCV | Hepatitis C |
HFS | Hepamet fibrosis score |
ICI | Immune checkpoint inhibitor |
LI-RADS | Liver imaging reporting and data system |
MAFLD | Metabolic syndrome-associated fatty liver disease |
MR | Magnetic resonance |
MRE | Magnetic resonance elastography |
MRI-PDFF | Magnetic resonance imaging proton density fat fraction |
MVI | Microvascular invasion |
NASH | Nonalcoholic steatohepatitis |
NASH-HCC | Nonalcoholic steatohepatitis-related hepatocellular carcinoma |
NFS | NAFLD fibrosis score |
PD-1 | Programmed cell death protein 1 |
PD-L1 | Programmed death-ligand 1 |
PPAR-γ | Peroxisome proliferator-activated receptor gamma |
TACE | Transarterial chemoembolization |
TIME | Tumor immune microenvironment |
VEGF | Vascular endothelial growth factor |
VTE | Venous thromboembolism |
y90 | Yttrium 90 |
References
- Anstee, Q.M.; Reeves, H.L.; Kotsiliti, E.; Govaere, O.; Heikenwalder, M. From NASH to HCC: Current concepts and future challenges. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 411–428. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Chen, Q.; Chhatwal, J. Changing Epidemiology of Hepatocellular Carcinoma and Role of Surveillance. In Hepatocellular Carcinoma; Hoshida, Y., Ed.; Molecular and Translational Medicine; Springer International Publishing: Cham, Switzerland, 2019; pp. 53–67. ISBN 978-3-030-21539-2. [Google Scholar]
- Pinter, M.; Pinato, D.J.; Ramadori, P.; Heikenwalder, M. NASH and Hepatocellular Carcinoma: Immunology and Immunotherapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2023, 29, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Pal Chaudhary, S.; Reyes, S.; Chase, M.L.; Govindan, A.; Zhao, L.; Luther, J.; Bhan, I.; Bethea, E.; Franses, J.W.; Paige Walsh, E.; et al. Resection of NAFLD/NASH-related Hepatocellular Carcinoma (HCC): Clinical Features and Outcomes Compared with HCC Due to Other Etiologies. Oncologist 2023, 28, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Shao, G.; Liu, Y.; Lu, L.; Zhang, G.; Zhou, W.; Wu, T.; Wang, L.; Xu, H.; Ji, G. The Pathogenesis of HCC Driven by NASH and the Preventive and Therapeutic Effects of Natural Products. Front. Pharmacol. 2022, 13, 944088. [Google Scholar] [CrossRef] [PubMed]
- Daher, D.; Dahan, K.S.E.; Singal, A.G. Non-alcoholic fatty liver disease-related hepatocellular carcinoma. J. Liver Cancer 2023, 23, 127–142. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Singh, C.; Ganie, M.A.; Alsayari, K. NASH: The Hepatic injury of Metabolic syndrome: A brief update. Int. J. Health Sci. 2009, 3, 265–270. [Google Scholar]
- Kampf, S.; Sponder, M.; Fitschek, F.; Laxar, D.; Bodingbauer, M.; Binder, C.; Stremitzer, S.; Kaczirek, K.; Schwarz, C. Obesity and its influence on liver dysfunction, morbidity and mortality after liver resection. Hepatobiliary Surg. Nutr. 2023, 12, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Berardi, G.; Ratti, F.; Sposito, C.; Nebbia, M.; D’Souza, D.M.; Pascual, F.; Dogeas, E.; Tohme, S.; D’Amico, F.E.; Alessandris, R.; et al. Model to predict major complications following liver resection for HCC in patients with metabolic syndrome. Hepatology 2023, 77, 1527–1539. [Google Scholar] [CrossRef]
- Murtha-Lemekhova, A.; Fuchs, J.; Feiler, S.; Schulz, E.; Teroerde, M.; Kalkum, E.; Klotz, R.; Billeter, A.; Probst, P.; Hoffmann, K. Is metabolic syndrome a risk factor in hepatectomy? A meta-analysis with subgroup analysis for histologically confirmed hepatic manifestations. BMC Med. 2022, 20, 47. [Google Scholar] [CrossRef]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Renzulli, M.; Pecorelli, A.; Brandi, N.; Marasco, G.; Adduci, F.; Tovoli, F.; Stefanini, B.; Granito, A.; Golfieri, R. Radiological Features of Microvascular Invasion of Hepatocellular Carcinoma in Patients with Non-Alcoholic Fatty Liver Disease. Gastroenterol. Insights 2022, 13, 275–285. [Google Scholar] [CrossRef]
- Pinyol, R.; Torrecilla, S.; Wang, H.; Montironi, C.; Piqué-Gili, M.; Torres-Martin, M.; Wei-Qiang, L.; Willoughby, C.E.; Ramadori, P.; Andreu-Oller, C.; et al. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J. Hepatol. 2021, 75, 865–878. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Wong, C.C.; Yu, J. The paradox of immunotherapy in NASH-HCC. Signal Transduct. Target. Ther. 2021, 6, 228. [Google Scholar] [CrossRef] [PubMed]
- Leslie, J.; Mackey, J.B.G.; Jamieson, T.; Ramon-Gil, E.; Drake, T.M.; Fercoq, F.; Clark, W.; Gilroy, K.; Hedley, A.; Nixon, C.; et al. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut 2022, 71, 2093–2106. [Google Scholar] [CrossRef] [PubMed]
- Volponi, C.; Gazzillo, A.; Bonavita, E. The Tumor Microenvironment of Hepatocellular Carcinoma: Untying an Intricate Immunological Network. Cancers 2022, 14, 6151. [Google Scholar] [CrossRef]
- Huang, D.Q.; El-Serag, H.B.; Loomba, R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.D.W.; George, J.; Qiao, L. From MAFLD to hepatocellular carcinoma and everything in between. Chin. Med. J. 2022, 135, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Fernando, D.H.; Forbes, J.M.; Angus, P.W.; Herath, C.B. Development and Progression of Non-Alcoholic Fatty Liver Disease: The Role of Advanced Glycation End Products. Int. J. Mol. Sci. 2019, 20, 5037. [Google Scholar] [CrossRef]
- Oda, K.; Uto, H.; Mawatari, S.; Ido, A. Clinical features of hepatocellular carcinoma associated with nonalcoholic fatty liver disease: A review of human studies. Clin. J. Gastroenterol. 2015, 8, 1–9. [Google Scholar] [CrossRef]
- Yu, S.; Wang, J.; Zheng, H.; Wang, R.; Johnson, N.; Li, T.; Li, P.; Lin, J.; Li, Y.; Yan, J.; et al. Pathogenesis from Inflammation to Cancer in NASH-Derived HCC. J. Hepatocell. Carcinoma 2022, 9, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Glass, L.M.; Hunt, C.M.; Fuchs, M.; Su, G.L. Comorbidities and Nonalcoholic Fatty Liver Disease: The Chicken, the Egg, or Both? Fed. Pract. 2019, 36, 64–71. [Google Scholar] [PubMed]
- Chen, Y.; Wang, W.; Morgan, M.P.; Robson, T.; Annett, S. Obesity, non-alcoholic fatty liver disease and hepatocellular carcinoma: Current status and therapeutic targets. Front. Endocrinol. 2023, 14, 1148934. [Google Scholar] [CrossRef] [PubMed]
- Filipovic, B.; Marjanovic-Haljilji, M.; Mijac, D.; Lukic, S.; Kapor, S.; Kapor, S.; Starcevic, A.; Popovic, D.; Djokovic, A. Molecular Aspects of MAFLD-New Insights on Pathogenesis and Treatment. Curr. Issues Mol. Biol. 2023, 45, 9132–9148. [Google Scholar] [CrossRef] [PubMed]
- Arvanitakis, K.; Papadakos, S.P.; Lekakis, V.; Koufakis, T.; Lempesis, I.G.; Papantoniou, E.; Kalopitas, G.; Georgakopoulou, V.E.; Stergiou, I.E.; Theocharis, S.; et al. Meeting at the Crossroad between Obesity and Hepatic Carcinogenesis: Unique Pathophysiological Pathways Raise Expectations for Innovative Therapeutic Approaches. Int. J. Mol. Sci. 2023, 24, 14704. [Google Scholar] [CrossRef] [PubMed]
- Motta, B.M.; Masarone, M.; Torre, P.; Persico, M. From Non-Alcoholic Steatohepatitis (NASH) to Hepatocellular Carcinoma (HCC): Epidemiology, Incidence, Predictions, Risk Factors, and Prevention. Cancers 2023, 15, 5458. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef] [PubMed]
- Choudhuri, G.; Shah, S.; Kulkarni, A.; Jagtap, N.; Gaonkar, P.; Desai, A.; Adhav, C. Non-alcoholic Steatohepatitis in Asians: Current Perspectives and Future Directions. Cureus 2023, 15, e42852. [Google Scholar] [CrossRef] [PubMed]
- Pocha, C.; Xie, C. Hepatocellular carcinoma in alcoholic and non-alcoholic fatty liver disease-one of a kind or two different enemies? Transl. Gastroenterol. Hepatol. 2019, 4, 72. [Google Scholar] [CrossRef]
- Lee, Y.-T.; Wang, J.J.; Zhu, Y.; Agopian, V.G.; Tseng, H.-R.; Yang, J.D. Diagnostic Criteria and LI-RADS for Hepatocellular Carcinoma. Clin. Liver Dis. 2021, 17, 409–413. [Google Scholar] [CrossRef]
- Ayuso, C.; Rimola, J.; Vilana, R.; Burrel, M.; Darnell, A.; García-Criado, Á.; Bianchi, L.; Belmonte, E.; Caparroz, C.; Barrufet, M.; et al. Diagnosis and staging of hepatocellular carcinoma (HCC): Current guidelines. Eur. J. Radiol. 2018, 101, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Crane, H.; Gofton, C.; Sharma, A.; George, J. MAFLD: An optimal framework for understanding liver cancer phenotypes. J. Gastroenterol. 2023, 58, 947–964. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.Q.; Singal, A.G.; Kanwal, F.; Lampertico, P.; Buti, M.; Sirlin, C.B.; Nguyen, M.H.; Loomba, R. Hepatocellular carcinoma surveillance-utilization, barriers and the impact of changing aetiology. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 797–809. [Google Scholar] [CrossRef] [PubMed]
- Cadar, R.; Lupascu Ursulescu, C.; Vasilescu, A.M.; Trofin, A.M.; Zabara, M.; Rusu-Andriesi, D.; Ciuntu, B.; Muzica, C.; Lupascu, C.D. Challenges and Solutions in the Management of Hepatocellular Carcinoma Associated with Non-Alcoholic Fatty Liver Disease. Life 2023, 13, 1987. [Google Scholar] [CrossRef] [PubMed]
- Simmons, O.; Fetzer, D.T.; Yokoo, T.; Marrero, J.A.; Yopp, A.; Kono, Y.; Parikh, N.D.; Browning, T.; Singal, A.G. Predictors of adequate ultrasound quality for hepatocellular carcinoma surveillance in patients with cirrhosis. Aliment. Pharmacol. Ther. 2017, 45, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Saitta, C.; Pollicino, T.; Raimondo, G. Obesity and liver cancer. Ann. Hepatol. 2019, 18, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Lim, J.K.; Patton, H.; El-Serag, H.B. AGA Clinical Practice Update on Screening and Surveillance for Hepatocellular Carcinoma in Patients With Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology 2020, 158, 1822–1830. [Google Scholar] [CrossRef] [PubMed]
- Best, J.; Bechmann, L.P.; Sowa, J.-P.; Sydor, S.; Dechêne, A.; Pflanz, K.; Bedreli, S.; Schotten, C.; Geier, A.; Berg, T.; et al. GALAD Score Detects Early Hepatocellular Carcinoma in an International Cohort of Patients with Nonalcoholic Steatohepatitis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2020, 18, 728–735.e4. [Google Scholar] [CrossRef]
- Tovo, C.V.; de Mattos, A.Z.; Coral, G.P.; Sartori, G.D.P.; Nogueira, L.V.; Both, G.T.; Villela-Nogueira, C.A.; de Mattos, A.A. Hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis. World J. Gastroenterol. 2023, 29, 343–356. [Google Scholar] [CrossRef]
- Alexander, M.; Loomis, A.K.; van der Lei, J.; Duarte-Salles, T.; Prieto-Alhambra, D.; Ansell, D.; Pasqua, A.; Lapi, F.; Rijnbeek, P.; Mosseveld, M.; et al. Risks and clinical predictors of cirrhosis and hepatocellular carcinoma diagnoses in adults with diagnosed NAFLD: Real-world study of 18 million patients in four European cohorts. BMC Med. 2019, 17, 95. [Google Scholar] [CrossRef]
- Younes, R.; Caviglia, G.P.; Govaere, O.; Rosso, C.; Armandi, A.; Sanavia, T.; Pennisi, G.; Liguori, A.; Francione, P.; Gallego-Durán, R.; et al. Long-term outcomes and predictive ability of non-invasive scoring systems in patients with non-alcoholic fatty liver disease. J. Hepatol. 2021, 75, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Dulai, P.S.; Sirlin, C.B.; Loomba, R. MRI and MRE for non-invasive quantitative assessment of hepatic steatosis and fibrosis in NAFLD and NASH: Clinical trials to clinical practice. J. Hepatol. 2016, 65, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Fowler, K.J.; Ozturk, A.; Potu, C.K.; Louie, A.L.; Montes, V.; Henderson, W.C.; Wang, K.; Andre, M.P.; Samir, A.E.; et al. Liver fibrosis imaging: A clinical review of ultrasound and magnetic resonance elastography. J. Magn. Reson. Imaging 2020, 51, 25–42. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, S.K.; Yin, M.; Ehman, R.L. Magnetic resonance elastography of liver: Technique, analysis, and clinical applications. J. Magn. Reson. Imaging 2013, 37, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.; Kelly, M.; Imajo, K.; Nakajima, A.; Fallowfield, J.A.; Hirschfield, G.; Pavlides, M.; Sanyal, A.J.; Noureddin, M.; Banerjee, R.; et al. Clinical Utility of Magnetic Resonance Imaging Biomarkers for Identifying Nonalcoholic Steatohepatitis Patients at High Risk of Progression: A Multicenter Pooled Data and Meta-Analysis. Clin. Gastroenterol. Hepatol. 2022, 20, 2451–2461.e3. [Google Scholar] [CrossRef]
- Alsaqal, S.; Hockings, P.; Ahlström, H.; Gummesson, A.; Hedström, A.; Hulthe, J.; Johansson, L.; Niessen, H.G.; Schoelch, C.; Schultheis, C.; et al. The Combination of MR Elastography and Proton Density Fat Fraction Improves Diagnosis of Nonalcoholic Steatohepatitis. Magn. Reson. Imaging 2022, 56, 368–379. [Google Scholar] [CrossRef]
- Jayakumar, S.; Middleton, M.S.; Lawitz, E.J.; Mantry, P.S.; Caldwell, S.H.; Arnold, H.; Mae Diehl, A.; Ghalib, R.; Elkhashab, M.; Abdelmalek, M.F.; et al. Longitudinal correlations between MRE, MRI-PDFF, and liver histology in patients with non-alcoholic steatohepatitis: Analysis of data from a phase II trial of selonsertib. J. Hepatol. 2019, 70, 133–141. [Google Scholar] [CrossRef]
- Feuille, C.; Kari, S.; Patel, R.; Oberoi, R.; Liu, J.; Ohliger, M.; Khalili, M.; Tana, M. Utility and impact of magnetic resonance elastography in the clinical course and management of chronic liver disease. Sci. Rep. 2024, 14, 1765. [Google Scholar] [CrossRef]
- Liu, L.; Tang, H.; Wang, K.; Liu, J.; Luo, N.; Jin, G. A three-gene signature reveals changes in the tumor immune microenvironment in the progression from NAFLD to HCC. Sci. Rep. 2023, 13, 22295. [Google Scholar] [CrossRef]
- Chalasani, N.P.; Porter, K.; Bhattacharya, A.; Book, A.J.; Neis, B.M.; Xiong, K.M.; Ramasubramanian, T.S.; Edwards, D.K.; Chen, I.; Johnson, S.; et al. Validation of a Novel Multitarget Blood Test Shows High Sensitivity to Detect Early Stage Hepatocellular Carcinoma. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2022, 20, 173–182.e7. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; George, J.; Eslam, M.; Villanueva, A.; Bolondi, L.; Reeves, H.L.; McCain, M.; Chambers, E.; Ward, C.; Sartika, D.; et al. Discriminatory Changes in Circulating Metabolites as a Predictor of Hepatocellular Cancer in Patients with Metabolic (Dysfunction) Associated Fatty Liver Disease. Liver Cancer 2023, 12, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Ni, B.; Lian, Q.; Qiu, X.; He, Y.; Zhang, Q.; Zou, X.; He, F.; Chen, W. Key genes associated with non-alcoholic fatty liver disease and hepatocellular carcinoma with metabolic risk factors. Front. Genet. 2023, 14, 1066410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Mao, Y. Artificial Intelligence in NAFLD: Will Liver Biopsy Still Be Necessary in the Future? Healthcare 2022, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Naderi Yaghouti, A.R.; Zamanian, H.; Shalbaf, A. Machine learning approaches for early detection of non-alcoholic steatohepatitis based on clinical and blood parameters. Sci. Rep. 2024, 14, 2442. [Google Scholar] [CrossRef] [PubMed]
- Schattenberg, J.M.; Chalasani, N.; Alkhouri, N. Artificial Intelligence Applications in Hepatology. Clin. Gastroenterol. Hepatol. 2023, 21, 2015–2025. [Google Scholar] [CrossRef] [PubMed]
- Cernea, S.; Onișor, D. Screening and interventions to prevent nonalcoholic fatty liver disease/nonalcoholic steatohepatitis-associated hepatocellular carcinoma. World J. Gastroenterol. 2023, 29, 286–309. [Google Scholar] [CrossRef] [PubMed]
- Kaibori, M.; Matsui, K.; Yoshii, K.; Ishizaki, M.; Iwasaka, J.; Miyauchi, T.; Kimura, Y. Perioperative exercise capacity in chronic liver injury patients with hepatocellular carcinoma undergoing hepatectomy. PLoS ONE 2019, 14, e0221079. [Google Scholar] [CrossRef] [PubMed]
- García-Compeán, D.; Kumar, R.; Cueto-Aguilera, Á.N.D.; Maldonado-Garza, H.J.; Villarreal-Pérez, J.Z. Body weight loss and glycemic control on the outcomes of patients with NAFLD. The role of new antidiabetic agents. Ann. Hepatol. 2023, 28, 100751. [Google Scholar] [CrossRef]
- Li, X.; Liu, L.; Hu, Y. Statin use and the prognosis of patients with hepatocellular carcinoma: A meta-analysis. Biosci. Rep. 2020, 40, BSR20200232. [Google Scholar] [CrossRef]
- Lassailly, G.; Caiazzo, R.; Buob, D.; Pigeyre, M.; Verkindt, H.; Labreuche, J.; Raverdy, V.; Leteurtre, E.; Dharancy, S.; Louvet, A.; et al. Bariatric Surgery Reduces Features of Nonalcoholic Steatohepatitis in Morbidly Obese Patients. Gastroenterology 2015, 149, 379–388; quiz e15–e16. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, B.; Reca, A.; Wang, B.; Friess, H.; Feldstein, A.E.; Hartmann, D. Mechanisms of nonalcoholic fatty liver disease and implications for surgery. Langenbecks Arch. Surg. 2021, 406, 1–17. [Google Scholar] [CrossRef]
- Zunica, E.R.M.; Heintz, E.C.; Axelrod, C.L.; Kirwan, J.P. Obesity Management in the Primary Prevention of Hepatocellular Carcinoma. Cancers 2022, 14, 4051. [Google Scholar] [CrossRef]
- Kwak, M.; Mehaffey, J.H.; Hawkins, R.B.; Hsu, A.; Schirmer, B.; Hallowell, P.T. Bariatric surgery is associated with reduction in non-alcoholic steatohepatitis and hepatocellular carcinoma: A propensity matched analysis. Am. J. Surg. 2020, 219, 504–507. [Google Scholar] [CrossRef]
- Mattar, S.G.; Velcu, L.M.; Rabinovitz, M.; Demetris, A.J.; Krasinskas, A.M.; Barinas-Mitchell, E.; Eid, G.M.; Ramanathan, R.; Taylor, D.S.; Schauer, P.R. Surgically-Induced Weight Loss Significantly Improves Nonalcoholic Fatty Liver Disease and the Metabolic Syndrome. Ann. Surg. 2005, 242, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.H.; Al-Kalifah, N.; Ser, K.-H.; Lee, Y.-C.; Chen, J.-C.; Lee, W.-J. Long-term effect of bariatric surgery on resolution of nonalcoholic steatohepatitis (NASH): An external validation and application of a clinical NASH score. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2018, 14, 1600–1606. [Google Scholar] [CrossRef] [PubMed]
- Lazzati, A.; Iannelli, A.; Schneck, A.-S.; Nelson, A.C.; Katsahian, S.; Gugenheim, J.; Azoulay, D. Bariatric Surgery and Liver Transplantation: A Systematic Review a New Frontier for Bariatric Surgery. Obes. Surg. 2015, 25, 134–142. [Google Scholar] [CrossRef]
- Widmer, J.; Eden, J.; Abbassi, F.; Angelico, R.; Rössler, F.; Müllhaupt, B.; Dutkowski, P.; Bueter, M.; Schlegel, A. How best to combine liver transplantation and bariatric surgery?—Results from a global, web-based survey. Liver Int. 2024, 44, 566–576. [Google Scholar] [CrossRef]
- Heimbach, J.K.; Watt, K.D.S.; Poterucha, J.J.; Ziller, N.F.; Cecco, S.D.; Charlton, M.R.; Hay, J.E.; Wiesner, R.H.; Sanchez, W.; Rosen, C.B.; et al. Combined Liver Transplantation and Gastric Sleeve Resection for Patients With Medically Complicated Obesity and End-Stage Liver Disease. Am. J. Transplant. 2013, 13, 363–368. [Google Scholar] [CrossRef]
- Libia, A. Liver Resection and Simultaneous Sleeve Gastrectomy for MS-HCC (LIRESS). Published Online 8 September 2023. Available online: https://clinicaltrials.gov/study/NCT06060847?cond=HCC%20-%20Hepatocellular%20Carcinoma&term=Obesity&rank=1&tab=table (accessed on 15 January 2024).
- Suraweera, D.; Dutson, E.; Saab, S. Liver Transplantation and Bariatric Surgery. Clin. Liver Dis. 2017, 21, 215–230. [Google Scholar] [CrossRef]
- Urdaneta Perez, M.G.; Garwe, T.; Stewart, K.; Sarwar, Z.; Morris, K.T. Obesity is an Independent Risk Factor for Mortality in Otherwise Healthy Patients After Hepatectomy. J. Surg. Res. 2020, 255, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Ri, M.; Miyata, H.; Aikou, S.; Seto, Y.; Akazawa, K.; Takeuchi, M.; Matsui, Y.; Konno, H.; Gotoh, M.; Mori, M.; et al. Effects of body mass index (BMI) on surgical outcomes: A nationwide survey using a Japanese web-based database. Surg. Today 2015, 45, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Balzan, S.; Nagarajan, G.; Farges, O.; Galleano, C.Z.; Dokmak, S.; Paugam, C.; Belghiti, J. Safety of liver resections in obese and overweight patients. World J. Surg. 2010, 34, 2960–2968. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.J.; Shen, F.; Chen, T.H.; Liang, L.; Han, J.; Xing, H.; Zhou, Y.H.; Wang, H.; Gu, W.M.; Lau, W.Y.; et al. Multicentre study of the prognostic impact of preoperative bodyweight on long-term prognosis of hepatocellular carcinoma. Br. J. Surg. 2019, 106, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Bhayani, N.H.; Hyder, O.; Frederick, W.; Schulick, R.D.; Wolgang, C.L.; Hirose, K.; Edil, B.; Herman, J.M.; Choti, M.A.; Pawlik, T.M. Effect of metabolic syndrome on perioperative outcomes after liver surgery: A National Surgical Quality Improvement Program (NSQIP) analysis. Surgery 2012, 152, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.K.; Ghaferi, A.A.; Sell, K.; Sonnenday, C.J.; Englesbe, M.J.; Welling, T.H. Influence of Body Mass Index on Complications and Oncologic Outcomes Following Hepatectomy for Malignancy. J. Gastrointest. Surg. 2010, 14, 858–866. [Google Scholar] [CrossRef]
- Viganò, L.; Kluger, M.D.; Laurent, A.; Tayar, C.; Merle, J.-C.; Lauzet, J.-Y.; Andreoletti, M.; Cherqui, D. Liver resection in obese patients: Results of a case-control study. HPB 2011, 13, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; De Staercke, C.; Hooper, W.C. The effects of obesity on venous thromboembolism: A review. Open J. Prev. Med. 2012, 2, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Schlick, C.J.R.; Ellis, R.J.; Merkow, R.P.; Yang, A.D.; Bentrem, D.J. Development and validation of a risk calculator for post-discharge venous thromboembolism following hepatectomy for malignancy. HPB 2021, 23, 723–732. [Google Scholar] [CrossRef]
- Melloul, E.; Dondéro, F.; Vilgrain, V.; Raptis, D.A.; Paugam-Burtz, C.; Belghiti, J. Pulmonary embolism after elective liver resection: A prospective analysis of risk factors. J. Hepatol. 2012, 57, 1268–1275. [Google Scholar] [CrossRef]
- Beal, E.W.; Tumin, D.; Chakedis, J.; Porter, E.; Moris, D.; Zhang, X.; Abdel-Misih, S.; Dillhoff, M.; Manilchuk, A.; Cloyd, J.; et al. Identification of patients at high risk for post-discharge venous thromboembolism after hepato-pancreato-biliary surgery: Which patients benefit from extended thromboprophylaxis? HPB 2018, 20, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Bellini, G.; Teng, A.; Kotecha, N.; Sutton, E.; Yang, C.K.; Passeri, M.; Lee, D.Y.; Rose, K. The identification of risk factors for venous thromboembolism in gastrointestinal oncologic surgery. J. Surg. Res. 2016, 205, 279–285. [Google Scholar] [CrossRef]
- Lancellotti, F.; Coletta, D.; de’Liguori Carino, N.; Satyadas, T.; Jegatheeswaran, S.; Maruccio, M.; Sheen, A.J.; Siriwardena, A.K.; Jamdar, S. Venous thromboembolism (VTE) after open hepatectomy compared to minimally invasive liver resection: A systematic review and meta-analysis. HPB 2023, 25, 872–880. [Google Scholar] [CrossRef]
- Cauchy, F.; Zalinski, S.; Dokmak, S.; Fuks, D.; Farges, O.; Castera, L.; Paradis, V.; Belghiti, J. Surgical treatment of hepatocellular carcinoma associated with the metabolic syndrome. Br. J. Surg. 2013, 100, 113–121. [Google Scholar] [CrossRef]
- Cao, L.; Wang, X.; Yan, Y.; Ning, Z.; Ma, L.; Li, Y. Analysis of competing risks of cardiovascular death in patients with hepatocellular carcinoma: A population-based study. Medicine 2023, 102, e36705. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.-M.; Wang, W.; Jiang, Y.-Y.; Feng, J. Patterns of Comorbidity in Hepatocellular Carcinoma: A Network Perspective. Int. J. Environ. Res. Public Health 2020, 17, 3108. [Google Scholar] [CrossRef]
- Tran, T.B.; Worhunsky, D.J.; Spain, D.A.; Dua, M.M.; Visser, B.C.; Norton, J.A.; Poultsides, G.A. The significance of underlying cardiac comorbidity on major adverse cardiac events after major liver resection. HPB 2016, 18, 742–747. [Google Scholar] [CrossRef]
- Marcacuzco Quinto, A.; Nutu, O.-A.; San Román Manso, R.; Justo Alonso, I.; Calvo Pulido, J.; Manrique Municio, A.; García-Sesma, Á.; Loinaz Segurola, C.; Martínez Caballero, J.; Carlos Jiménez Romero, L. Complications of Transarterial Chemoembolization (TACE) in the Treatment of Liver Tumors. Cirugía Española (Engl. Ed.) 2018, 96, 560–567. [Google Scholar] [CrossRef]
- Carballo-Folgoso, L.; Álvarez-Velasco, R.; Lorca, R.; Castaño-García, A.; Cuevas, J.; González-Diéguez, M.L.; Martín, M.; Álvarez-Navascués, C.; Cadahía, V.; Morís, C.; et al. Evaluation of cardiovascular events in patients with hepatocellular carcinoma treated with sorafenib in the clinical practice. The CARDIO-SOR study. Liver Int. 2021, 41, 2200–2211. [Google Scholar] [CrossRef] [PubMed]
- Dorn, D.P.; Bryant, M.K.; Zarzour, J.; Smith, J.K.; Redden, D.T.; Saddekni, S.; Aal, A.K.A.; Gray, S.; White, J.; Eckhoff, D.E.; et al. Chemoembolization outcomes for hepatocellular carcinoma in cirrhotic patients with compromised liver function. HPB 2014, 16, 648–655. [Google Scholar] [CrossRef]
- Taura, K.; Ikai, I.; Hatano, E.; Yasuchika, K.; Nakajima, A.; Tada, M.; Seo, S.; Machimoto, T.; Uemoto, S. Influence of coexisting cirrhosis on outcomes after partial hepatic resection for hepatocellular carcinoma fulfilling the Milan criteria: An analysis of 293 patients. Surgery 2007, 142, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Hung, T.-H.; Tsai, C.-C.; Lee, H.-F. The role of hepatic reserve in the mortality of cirrhotic patients with small hepatocellular carcinoma receiving radiofrequency ablation. Medicine 2022, 101, e30918. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, H.; Sucandy, I.; Ross, S.; Crespo, K.; Syblis, C.; App, S.; Rosemurgy, A. Does metabolic syndrome affect perioperative outcomes in patients undergoing robotic hepatectomy? A propensity score-matched analysis. Surg. Endosc. 2023, 37, 6379–6384. [Google Scholar] [CrossRef] [PubMed]
- Sucandy, I.; Attili, A.; Spence, J.; Bordeau, T.; Ross, S.; Rosemurgy, A. The impact of body mass index on perioperative outcomes after robotic liver resection. J. Robot. Surg. 2020, 14, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.-Y.; Zhang, X.-P.; Zhao, G.-D.; Li, C.-G.; Wang, Z.-H.; Liu, R.; Hu, M.-G. Short-term outcomes of robotic versus open hepatectomy among overweight patients with hepatocellular carcinoma: A propensity score-matched study. BMC Surg. 2023, 23, 153. [Google Scholar] [CrossRef] [PubMed]
- Xiangfei, M.; Yinzhe, X.; Yingwei, P.; Shichun, L.; Weidong, D. Open versus laparoscopic hepatic resection for hepatocellular carcinoma: A systematic review and meta-analysis. Surg. Endosc. 2019, 33, 2396–2418. [Google Scholar] [CrossRef] [PubMed]
- Conticchio, M.; Inchingolo, R.; Delvecchio, A.; Ratti, F.; Gelli, M.; Anelli, M.F.; Laurent, A.; Vitali, G.C.; Magistri, P.; Assirati, G.; et al. Impact of body mass index in elderly patients treated with laparoscopic liver resection for hepatocellular carcinoma. World J. Gastrointest. Surg. 2023, 15, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Vibert, E.; Schwartz, M.; Olthoff, K.M. Advances in resection and transplantation for hepatocellular carcinoma. J. Hepatol. 2020, 72, 262–276. [Google Scholar] [CrossRef]
- Uchida, H.; Iwashita, Y.; Saga, K.; Takayama, H.; Watanabe, K.; Endo, Y.; Yada, K.; Ohta, M.; Inomata, M. Benefit of laparoscopic liver resection in high body mass index patients. World J. Gastroenterol. 2016, 22, 3015–3022. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, J.; Kong, J.; Zheng, X.; Yu, X. The impact of body mass index on short-term and long-term surgical outcomes of laparoscopic hepatectomy in liver carcinoma patients: A retrospective study. World J. Surg. Oncol. 2022, 20, 150. [Google Scholar] [CrossRef]
- Van Der Poel, M.J.; Besselink, M.G.; Cipriani, F.; Armstrong, T.; Takhar, A.S.; Van Dieren, S.; Primrose, J.N.; Pearce, N.W.; Abu Hilal, M. Outcome and Learning Curve in 159 Consecutive Patients Undergoing Total Laparoscopic Hemihepatectomy. JAMA Surg. 2016, 151, 923. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Yu, J.; Liu, F.; Yu, X.; Cheng, Z.; Han, Z.; Liang, P. Percutaneous microwave ablation versus robot-assisted hepatectomy for early hepatocellular carcinoma: A real-world single-center study. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2022, 54, 243–250. [Google Scholar] [CrossRef]
- Su, T.-S.; Liang, P.; Liang, J.; Lu, H.-Z.; Jiang, H.-Y.; Cheng, T.; Huang, Y.; Tang, Y.; Deng, X. Long-Term Survival Analysis of Stereotactic Ablative Radiotherapy Versus Liver Resection for Small Hepatocellular Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, T.; Yata, Y.; Saito, N.; Nakano, S.; Nakano, Y.; Hazama, Y.; Yoshida, S.; Hachisu, Y.; Tanaka, Y.; Yoshinaga, T.; et al. Relationship between Being Overweight and Clinical Outcomes of Ablation Therapy for Hepatocellular Carcinoma under Ultrasound Guidance: A Retrospective Analysis. Cancers 2023, 15, 1289. [Google Scholar] [CrossRef]
- Ohki, T.; Tateishi, R.; Shiina, S.; Sato, T.; Masuzaki, R.; Yoshida, H.; Kanai, F.; Obi, S.; Yoshida, H.; Omata, M. Obesity did not diminish the efficacy of percutaneous ablation for hepatocellular carcinoma. Liver Int. Off. J. Int. Assoc. Study Liver 2007, 27, 360–367. [Google Scholar] [CrossRef]
- Ohki, T.; Tateishi, R.; Shiina, S.; Goto, E.; Sato, T.; Nakagawa, H.; Masuzaki, R.; Goto, T.; Hamamura, K.; Kanai, F.; et al. Visceral fat accumulation is an independent risk factor for hepatocellular carcinoma recurrence after curative treatment in patients with suspected NASH. Gut 2009, 58, 839–844. [Google Scholar] [CrossRef]
- De la Garza-Ramos, C.; Montazeri, S.A.; Musto, K.R.; Kapp, M.D.; Lewis, A.R.; Frey, G.; Paz-Fumagalli, R.; Ilyas, S.; Harnois, D.M.; Majeed, U.; et al. Outcomes of Radiation Segmentectomy for Hepatocellular Carcinoma in Patients with Non-Alcoholic Fatty Liver Disease versus Chronic Viral Hepatitis. J. Hepatocell. Carcinoma 2023, 10, 987–996. [Google Scholar] [CrossRef]
- Su, J.-Y.; Deng, Z.-J.; Teng, Y.-X.; Koh, Y.X.; Zhang, W.-G.; Zheng, M.-H.; Xie, S.; Huo, R.-R.; Chen, C.-J.; Ma, L.; et al. Prognosis after hepatic resection of patients with hepatocellular carcinoma related to non-alcoholic fatty liver disease: Meta-analysis. BJS Open 2023, 7, zrac167. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.E.; Charles, H.W.; Park, J.S.; Goldenberg, A.S.; Deipolyi, A.R. Obesity conveys poor outcome in patients with hepatocellular carcinoma treated by transarterial chemoembolization. Diagn. Interv. Imaging 2017, 98, 37–42. [Google Scholar] [CrossRef]
- Liu, G.; Xia, F.; Fan, G.; Yu, J.; Bao, L.; Zhang, C.; Chi, R.; Zhang, T.; Wang, L.; Shen, F.; et al. Type 2 diabetes mellitus worsens the prognosis of intermediate-stage hepatocellular carcinoma after transarterial chemoembolization. Diabetes Res. Clin. Pract. 2020, 169, 108375. [Google Scholar] [CrossRef]
- Chen, T.-M.; Lin, C.-C.; Huang, P.-T.; Wen, C.-F. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. J. Gastroenterol. Hepatol. 2011, 26, 858–865. [Google Scholar] [CrossRef]
- Chen, M.-L.; Wu, C.-X.; Zhang, J.-B.; Zhang, H.; Sun, Y.-D.; Tian, S.-L.; Han, J.-J. Transarterial chemoembolization combined with metformin improves the prognosis of hepatocellular carcinoma patients with type 2 diabetes. Front. Endocrinol. 2022, 13, 996228. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.-M.; Kuo, C.-F.; Hsu, J.-T.; Chiou, M.-J.; Wang, Y.-C.; Wu, T.-H.; Lee, C.-F.; Wu, T.-J.; Chou, H.-S.; Lee, W.-C. Metformin confers risk reduction for developing hepatocellular carcinoma recurrence after liver resection. Liver Int. Off. J. Int. Assoc. Study Liver 2017, 37, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Alder, L.; Nguyen, M.; Dougherty, S.C.; Qu, Y.; Thacker, L.R.; Poklepovic, A. Long-term outcome analysis of Y90 radioembolization in hepatocellular carcinoma. J. Gastrointest. Oncol. 2023, 14, 1378–1391. [Google Scholar] [CrossRef]
- Schotten, C.; Bechmann, L.P.; Manka, P.; Theysohn, J.; Dechêne, A.; El Fouly, A.; Barbato, F.; Neumann, U.; Radünz, S.; Sydor, S.; et al. NAFLD-Associated Comorbidities in Advanced Stage HCC Do Not Alter the Safety and Efficacy of Yttrium-90 Radioembolization. Liver Cancer 2019, 8, 491–504. [Google Scholar] [CrossRef] [PubMed]
- Barakat, O.; Skolkin, M.D.; Toombs, B.D.; Fischer, J.H.; Ozaki, C.F.; Wood, R.P. Major liver resection for hepatocellular carcinoma in the morbidly obese: A proposed strategy to improve outcome. World J. Surg. Onc. 2008, 6, 100. [Google Scholar] [CrossRef]
- Salem, R.; Gordon, A.C.; Mouli, S.; Hickey, R.; Kallini, J.; Gabr, A.; Mulcahy, M.F.; Baker, T.; Abecassis, M.; Miller, F.H.; et al. Y90 Radioembolization Significantly Prolongs Time to Progression Compared With Chemoembolization in Patients With Hepatocellular Carcinoma. Gastroenterology 2016, 151, 1155–1163.e2. [Google Scholar] [CrossRef]
- Salem, R.; Johnson, G.E.; Kim, E.; Riaz, A.; Bishay, V.; Boucher, E.; Fowers, K.; Lewandowski, R.; Padia, S.A. Yttrium-90 Radioembolization for the Treatment of Solitary, Unresectable HCC: The LEGACY Study. Hepatology 2021, 74, 2342–2352. [Google Scholar] [CrossRef] [PubMed]
- Chaikajornwat, J.; Tanasoontrarat, W.; Phathong, C.; Pinjaroen, N.; Chaiteerakij, R. Clinical outcome of Yttrium-90 selective internal radiation therapy (Y-90 SIRT) in unresectable hepatocellular carcinoma: Experience from a tertiary care center. Liver Res. 2022, 6, 30–38. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Wakai, T.; Shirai, Y.; Sakata, J.; Korita, P.V.; Ajioka, Y.; Hatakeyama, K. Surgical Outcomes for Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease. J. Gastrointest. Surg. 2011, 15, 1450–1458. [Google Scholar] [CrossRef] [PubMed]
- Takuma, Y. Nonalcoholic steatohepatitis-associated hepatocellular carcinoma: Our case series and literature review. World J. Gastroenterol. 2010, 16, 1436. [Google Scholar] [CrossRef] [PubMed]
- Erstad, D.J.; Tanabe, K.K. Prognostic and Therapeutic Implications of Microvascular Invasion in Hepatocellular Carcinoma. Ann. Surg. Oncol. 2019, 26, 1474–1493. [Google Scholar] [CrossRef] [PubMed]
- Ünal, E.; İdilman, İ.S.; Akata, D.; Özmen, M.N.; Karçaaltıncaba, M. Microvascular invasion in hepatocellular carcinoma. Diagn. Interv. Radiol. 2016, 22, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Fujita, N.; Ushijima, Y.; Ishimatsu, K.; Okamoto, D.; Wada, N.; Takao, S.; Murayama, R.; Itoyama, M.; Harada, N.; Maehara, J.; et al. Multiparametric assessment of microvascular invasion in hepatocellular carcinoma using gadoxetic acid-enhanced MRI. Abdom. Radiol. 2024, 49, 1467–1478. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-H.; Jiang, C.; Qiang, Z.-Y.; Zhou, Y.-F.; Ji, J.; Zeng, Y.; Huang, J.-W. Role of microvascular invasion in early recurrence of hepatocellular carcinoma after liver resection: A literature review. Asian J. Surg. 2024, 47, 2138–2143. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Feng, B.; Wan, M.; Xu, K.; Cui, J.; Ma, C.; Sun, J.; Yao, C.; Gan, S.; Shi, J.; et al. Predicting microvascular invasion in hepatocellular carcinoma with a CT- and MRI-based multimodal deep learning model. Abdom. Radiol. 2024, 49, 1397–1410. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, Y.; Zhong, J.; Wang, Q.; Wang, X.; Wei, H.; Li, J.; Xiu, P. The clinical significance of microvascular invasion in the surgical planning and postoperative sequential treatment in hepatocellular carcinoma. Sci. Rep. 2021, 11, 2415. [Google Scholar] [CrossRef]
- Al-Azzawi, Y.; Rouanet, E.; Hendrix, R.J.; Spaho, L.; Malik, H.; Devuni, D.; Szabo, G.; Barnard, G. Segmental Distribution of Hepatocellular Carcinoma Correlates with Microvascular Invasion in Liver Explants Undergoing Transplantation. J. Cancer Epidemiol. 2019, 2019, 8534372. [Google Scholar] [CrossRef]
- Molinari, M.; Kaltenmeier, C.; Samra, P.-B.; Liu, H.; Wessel, C.; Lou Klem, M.; Dharmayan, S.; Emmanuel, B.; Al Harakeh, H.; Tohme, S.; et al. Hepatic Resection for Hepatocellular Carcinoma in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of 7226 Patients. Ann. Surg. Open 2021, 2, e065. [Google Scholar] [CrossRef]
- Chin, K.M.; Prieto, M.; Cheong, C.K.; Di Martino, M.; Ielpo, B.; Goh, B.K.P.; Koh, Y.X. Outcomes after curative therapy for hepatocellular carcinoma in patients with non-alcoholic fatty liver disease: A meta-analysis and review of current literature. HPB 2021, 23, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.-H.; Kuo, F.-Y.; Eng, H.-L.; Liu, Y.-W.; Yong, C.-C.; Wang, C.-C.; Li, W.-F.; Lin, C.-Y. Patients undergoing liver resection for non-alcoholic fatty liver disease-related hepatocellular carcinoma and those for viral hepatitis-related hepatocellular carcinoma have similar survival outcomes. Updates Surg. 2024, 76, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.K.; Steel, J.L.; Chen, H.-W.; DeMateo, D.J.; Cardinal, J.; Behari, J.; Humar, A.; Marsh, J.W.; Geller, D.A.; Tsung, A. Outcomes of curative treatment for hepatocellular cancer in nonalcoholic steatohepatitis versus hepatitis C and alcoholic liver disease. Hepatology 2012, 55, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Qian, J.; Wu, Z.; Zhang, W.; Yin, Z.; Shen, W.; He, K.; He, Y.; Liu, L. Exploring the factors affecting the occurrence of postoperative MVI and the prognosis of hepatocellular carcinoma patients treated with hepatectomy: A multicenter retrospective study. Cancer Med. 2024, 13, e6933. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Aikawa, M.; Oshima, Y.; Kato, T.; Takase, K.; Watanabe, Y.; Okada, K.; Okamoto, K.; Koyama, I. Short- and long-term outcomes of laparoscopic liver resection for non-alcoholic fatty liver disease-associated hepatocellular carcinoma: A retrospective cohort study. HPB 2023, 25, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.-C.; Lin, Y.-J.; Lee, C.-T.; Chiu, Y.-C.; Chou, T.-C.; Chiu, H.-C.; Tsai, H.-W.; Su, C.-M.; Yang, T.-H.; Chiang, H.-C.; et al. Higher Risk of Tumor Recurrence in NASH-Related Hepatocellular Carcinoma Following Curative Resection. Viruses 2022, 14, 2427. [Google Scholar] [CrossRef]
- Ye, J.-Z.; Chen, J.-Z.; Li, Z.-H.; Bai, T.; Chen, J.; Zhu, S.-L.; Li, L.-Q.; Wu, F.-X. Efficacy of postoperative adjuvant transcatheter arterial chemoembolization in hepatocellular carcinoma patients with microvascular invasion. World J. Gastroenterol. 2017, 23, 7415–7424. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Zhang, X.-P.; Zhou, T.-F.; Wang, K.; Wang, H.; Chai, Z.-T.; Shi, J.; Guo, W.-X.; Cheng, S.-Q. Adjuvant transarterial chemoembolization improves survival outcomes in hepatocellular carcinoma with microvascular invasion: A systematic review and meta-analysis. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2019, 45, 2188–2196. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Lu, L.; Mei, J.; Ling, Y.; Guan, R.; Lin, W.; Wei, W.; Guo, R. Hepatic Arterial Infusion Chemotherapy vs. Transcatheter Arterial Chemoembolization as Adjuvant Therapy Following Surgery for MVI-Positive Hepatocellular Carcinoma: A Multicenter Propensity Score Matching Analysis. J. Hepatocell. Carcinoma 2024, 11, 665–678. [Google Scholar] [CrossRef]
- Pei, Y.-X.; Su, C.-G.; Liao, Z.; Li, W.-W.; Wang, Z.-X.; Liu, J.-L. Comparative effectiveness of several adjuvant therapies after hepatectomy for hepatocellular carcinoma patients with microvascular invasion. World J. Gastrointest. Surg. 2024, 16, 554–570. [Google Scholar] [CrossRef]
- Wang, K.; Xiang, Y.-J.; Yu, H.-M.; Cheng, Y.-Q.; Liu, Z.-H.; Qin, Y.-Y.; Shi, J.; Guo, W.-X.; Lu, C.-D.; Zheng, Y.-X.; et al. Adjuvant sintilimab in resected high-risk hepatocellular carcinoma: A randomized, controlled, phase 2 trial. Nat. Med. 2024, 30, 708–715. [Google Scholar] [CrossRef]
- Amini, N.; Margonis, G.A.; Buttner, S.; Besharati, S.; Kim, Y.; Gani, F.; Sobhani, F.; Kamel, I.R.; Pawlik, T.M. Liver regeneration after major liver hepatectomy: Impact of body mass index. Surgery 2016, 160, 81–91. [Google Scholar] [CrossRef]
- Truant, S.; Bouras, A.F.; Petrovai, G.; Buob, D.; Ernst, O.; Boleslawski, E.; Hebbar, M.; Pruvot, F.-R. Volumetric gain of the liver after major hepatectomy in obese patients: A case-matched study in 84 patients. Ann. Surg. 2013, 258, 696–702; discussion 702–704. [Google Scholar] [CrossRef]
- Younossi, Z.; Stepanova, M.; Ong, J.P.; Jacobson, I.M.; Bugianesi, E.; Duseja, A.; Eguchi, Y.; Wong, V.W.; Negro, F.; Yilmaz, Y.; et al. Nonalcoholic Steatohepatitis Is the Fastest Growing Cause of Hepatocellular Carcinoma in Liver Transplant Candidates. Clin. Gastroenterol. Hepatol. 2019, 17, 748–755.e3. [Google Scholar] [CrossRef] [PubMed]
- El-Domiaty, N.; Saliba, F.; Karam, V.; Sobesky, R.; Ibrahim, W.; Vibert, E.; Pittau, G.; Amer, K.; Saeed, M.A.; Shawky, J.A.; et al. Impact of body mass index on hepatocellular carcinoma recurrence after liver transplantation through long-term follow-up. Hepatobiliary Surg. Nutr. 2021, 10, 598–609. [Google Scholar] [CrossRef]
- Latt, N.L.; Niazi, M.; Pyrsopoulos, N.T. Liver transplant allocation policies and outcomes in United States: A comprehensive review. World J. Methodol. 2022, 12, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, N. Selection for Liver Transplantation: Indications and Evaluation. Curr. Hepatol. Rep. 2020, 19, 203–212. [Google Scholar] [CrossRef]
- Rajendran, L.; Murillo Perez, C.F.; Ivanics, T.; Claasen, M.P.A.W.; Hansen, B.E.; Wallace, D.; Yoon, P.D.; Sapisochin, G. Outcomes of liver transplantation in non-alcoholic steatohepatitis (NASH) versus non-NASH associated hepatocellular carcinoma. HPB 2023, 25, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Verna, E.C.; Phipps, M.M.; Halazun, K.J.; Markovic, D.; Florman, S.S.; Haydel, B.M.; Ruiz, R.; Klintmalm, G.; Lee, D.D.; Taner, B.; et al. Outcomes in liver transplant recipients with nonalcoholic fatty liver disease-related HCC: Results from the US multicenter HCC transplant consortium. Liver Transpl. Off. Publ. Am. Assoc. Study Liver Dis. Int. Liver Transpl. Soc. 2023, 29, 34–47. [Google Scholar] [CrossRef]
- Siegel, A.B.; Lim, E.A.; Wang, S.; Brubaker, W.; Rodriguez, R.D.; Goyal, A.; Jacobson, J.S.; Hershman, D.L.; Verna, E.C.; Zaretsky, J.; et al. Diabetes, Body Mass Index, and Outcomes in Hepatocellular Carcinoma Patients Undergoing Liver Transplantation. Transplantation 2012, 94, 539–543. [Google Scholar] [CrossRef]
- Mathur, A.; Franco, E.S.; Leone, J.P.; Osman-Mohamed, H.; Rojas, H.; Kemmer, N.; Neff, G.W.; Rosemurgy, A.S.; Alsina, A.E. Obesity portends increased morbidity and earlier recurrence following liver transplantation for hepatocellular carcinoma. HPB 2013, 15, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Geh, D.; Manas, D.M.; Reeves, H.L. Hepatocellular carcinoma in non-alcoholic fatty liver disease—A review of an emerging challenge facing clinicians. Hepatobiliary Surg. Nutr. 2021, 10, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Haber, P.K.; Puigvehí, M.; Castet, F.; Lourdusamy, V.; Montal, R.; Tabrizian, P.; Buckstein, M.; Kim, E.; Villanueva, A.; Schwartz, M.; et al. Evidence-Based Management of Hepatocellular Carcinoma: Systematic Review and Meta-analysis of Randomized Controlled Trials (2002–2020). Gastroenterology 2021, 161, 879–898. [Google Scholar] [CrossRef] [PubMed]
- Brown, Z.J.; Ruff, S.M.; Pawlik, T.M. The effect of liver disease on hepatic microenvironment and implications for immune therapy. Front. Pharmacol. 2023, 14, 1225821. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, B.; Brown, Z.J.; Diggs, L.P.; Vormehr, M.; Ma, C.; Subramanyam, V.; Rosato, U.; Ruf, B.; Walz, J.S.; McVey, J.C.; et al. Steatohepatitis Impairs T-cell-Directed Immunotherapies Against Liver Tumors in Mice. Gastroenterology 2021, 160, 331–345.e6. [Google Scholar] [CrossRef]
- Wabitsch, S.; McCallen, J.D.; Kamenyeva, O.; Ruf, B.; McVey, J.C.; Kabat, J.; Walz, J.S.; Rotman, Y.; Bauer, K.C.; Craig, A.J.; et al. Metformin treatment rescues CD8+ T-cell response to immune checkpoint inhibitor therapy in mice with NAFLD. J. Hepatol. 2022, 77, 748–760. [Google Scholar] [CrossRef] [PubMed]
- Dan, Z. Anti-PD-1 mAb Plus Metabolic Modulator in Solid Tumor Malignancies. Published Online 7 February 2024. Available online: https://clinicaltrials.gov/study/NCT04114136?tab=table (accessed on 24 February 2024).
- Zhang, P.; Chen, Z.; Kuang, H.; Liu, T.; Zhu, J.; Zhou, L.; Wang, Q.; Xiong, X.; Meng, Z.; Qiu, X.; et al. Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment. Cell Metab. 2022, 34, 1359–1376.e7. [Google Scholar] [CrossRef]
- Zhang, H.; Van Der Windt, D.J.; Ren, J.; Tsung, A.; Huang, H. The role of neutrophil extracellular traps in nonalcoholic steatohepatitis-associated hepatocellular carcinoma. J. Immunol. 2019, 202 (Suppl. S1), 135.2. [Google Scholar] [CrossRef]
- Ramadori, P.; Kam, S.; Heikenwalder, M. T cells: Friends and foes in NASH pathogenesis and hepatocarcinogenesis. Hepatology 2022, 75, 1038–1049. [Google Scholar] [CrossRef]
- Allard, B.; Jacoberger-Foissac, C.; Cousineau, I.; Bareche, Y.; Buisseret, L.; Chrobak, P.; Allard, D.; Pommey, S.; Ah-Pine, F.; Duquenne, S.; et al. Adenosine A2A receptor is a tumor suppressor of NASH-associated hepatocellular carcinoma. Cell Rep. Med. 2023, 4, 101188. [Google Scholar] [CrossRef]
- Beavis, P.A.; Milenkovski, N.; Henderson, M.A.; John, L.B.; Allard, B.; Loi, S.; Kershaw, M.H.; Stagg, J.; Darcy, P.K. Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1 through Enhanced Antitumor T-cell Responses. Cancer Immunol. Res. 2015, 3, 506–517. [Google Scholar] [CrossRef]
- Wang, D.Y.; Johnson, D.B.; Davis, E.J. Toxicities Associated With PD-1/PD-L1 Blockade. Cancer J. 2018, 24, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Kamba, T.; McDonald, D.M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer 2007, 96, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anbarasu, C.R.; Williams-Perez, S.; Camp, E.R.; Erstad, D.J. Surgical Implications for Nonalcoholic Steatohepatitis-Related Hepatocellular Carcinoma. Cancers 2024, 16, 2773. https://doi.org/10.3390/cancers16162773
Anbarasu CR, Williams-Perez S, Camp ER, Erstad DJ. Surgical Implications for Nonalcoholic Steatohepatitis-Related Hepatocellular Carcinoma. Cancers. 2024; 16(16):2773. https://doi.org/10.3390/cancers16162773
Chicago/Turabian StyleAnbarasu, Centura R., Sophia Williams-Perez, Ernest R. Camp, and Derek J. Erstad. 2024. "Surgical Implications for Nonalcoholic Steatohepatitis-Related Hepatocellular Carcinoma" Cancers 16, no. 16: 2773. https://doi.org/10.3390/cancers16162773
APA StyleAnbarasu, C. R., Williams-Perez, S., Camp, E. R., & Erstad, D. J. (2024). Surgical Implications for Nonalcoholic Steatohepatitis-Related Hepatocellular Carcinoma. Cancers, 16(16), 2773. https://doi.org/10.3390/cancers16162773