The Influence of Inflammatory and Nutritional Status on the Long-Term Outcomes in Advanced Stage Ovarian Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Statistical Analysis
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Ervik, M.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11; International Agency for Research on Cancer: Lyon, France, 2013; Available online: http://globocan.iarc.fr (accessed on 9 September 2016).
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chan, W.C.; Ngai, C.H.; Lok, V.; Zhang, L.; Lucero-Prisno, D.E., 3rd; Xu, W.; Zheng, Z.J.; Elcarte, E.; Withers, M.; et al. Worldwide Burden, Risk Factors, and Temporal Trends of Ovarian Cancer: A Global Study. Cancers 2022, 14, 2230. [Google Scholar] [CrossRef] [PubMed]
- Allemani, C.; Weir, H.K.; Carreira, H.; Harewood, R.; Spika, D.; Wang, X.S.; Bannon, F.; Ahn, J.V.; Johnson, C.J.; Bonaventure, A.; et al. CONCORD Working Group. Global surveillance of cancer survival 1995–2009: Analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries. Lancet 2015, 385, 977–1010. [Google Scholar] [CrossRef] [PubMed]
- Schorge, J.O.; McCann, C.; Del Carmen, M.G. Surgical debulking of ovarian cancer: What difference does it make? Rev. Obstet. Gynecol. 2010, 3, 111–117. [Google Scholar] [PubMed]
- Rutten, M.J.; Sonke, G.S.; Westermann, A.M.; van Driel, W.J.; Trum, J.W.; Kenter, G.G.; Buist, M.R. Prognostic Value of Residual Disease after Interval Debulking Surgery for FIGO Stage IIIC and IV Epithelial Ovarian Cancer. Obstet. Gynecol. Int. 2015, 2015, 464123. [Google Scholar] [CrossRef] [PubMed]
- Greer, A.; Gockley, A.; Manning-Geist, B.; Melamed, A.; Sisodia, R.C.; Berkowitz, R.; Horowitz, N.; Del Carmen, M.; Growdon, W.B.; Worley, M., Jr. Impact of residual disease at interval debulking surgery on platinum resistance and patterns of recurrence for advanced-stage ovarian cancer. Int. J. Gynecol. Cancer 2021, 31, 1341–1347. [Google Scholar] [CrossRef] [PubMed]
- Okunade, K.S.; Adetuyi, I.E.; Adenekan, M.; Ohazurike, E.; Anorlu, R.I. Risk predictors of early recurrence in women with epithelial ovarian cancer in Lagos, Nigeria. Pan Afr. Med. J. 2020, 12, 272. [Google Scholar] [CrossRef] [PubMed]
- Capriglione, S.; Luvero, D.; Plotti, F.; Terranova, C.; Montera, R.; Scaletta, G.; Schirò, T.; Rossini, G.; Benedetti Panici, P.; Angioli, R. Ovarian cancer recurrence and early detection: May HE4 play a key role in this open challenge? A systematic review of literature. Med. Oncol. 2017, 34, 164. [Google Scholar] [CrossRef]
- Gupta, S.; Nag, S.; Aggarwal, S.; Rauthan, A.; Warrier, N. Maintenance therapy for recurrent epithelial ovarian cancer: Current therapies and future perspectives—A review. J. Ovarian Res. 2019, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Wattenberg, M.M.; Beatty, G.L. Overcoming immunotherapeutic resistance by targeting the cancer inflammation cycle. Semin. Cancer Biol. 2020, 65, 38–50. [Google Scholar] [CrossRef]
- Pinheiro, S.P.; Tworoger, S.S.; Cramer, D.W.; Rosner, B.A.; Hankinson, S.E. Use of nonsteroidal antiinflammatory agents and incidence of ovarian cancer in 2 large prospective cohorts. Am. J. Epidemiol. 2009, 169, 1378–1387. [Google Scholar] [CrossRef] [PubMed]
- Prizment, A.E.; Folsom, A.R.; Anderson, K.E. Nonsteroidal anti-inflammatory drugs and risk for ovarian and endometrial cancers in the Iowa Women’s Health Study. Cancer Epidemiol. Biomark. Prev. 2010, 19, 435–442. [Google Scholar] [CrossRef]
- Trabert, B.; Ness, R.B.; Lo-Ciganic, W.H.; Murphy, M.A.; Goode, E.L.; Poole, E.M.; Brinton, L.A.; Webb, P.M.; Nagle, C.M.; Jordan, S.J.; et al. Aspirin, nonaspirin nonsteroidal anti-inflammatory drug, and acetaminophen use and risk of invasive epithelial ovarian cancer: A pooled analysis in the ovarian cancer association consortium. J. Natl. Cancer Inst. 2014, 106, djt431. [Google Scholar] [CrossRef]
- Kumar, A.; Torres, M.L.; Cliby, W.A.; Kalli, K.R.; Bogani, G.; Aletti, G.; Nitschmann, C.C.; Multinu, F.; Weaver, A.L.; Block, M.S.; et al. Inflammatory and nutritional serum markers as predictors of peri-operative morbidity and survival in ovarian cancer. Anticancer Res. 2017, 37, 3673–3677. [Google Scholar] [PubMed]
- Bizzarri, N.; D’Indinosante, M.; Marchetti, C.; Tudisco, R.; Turchiano, F.; Scambia, G.; Fagotti, A. The prognostic role of systemic inflammatory markers in apparent early-stage ovarian cancer. Int. J. Clin. Oncol. 2023, 28, 314–320. [Google Scholar] [CrossRef]
- Zeng, F.; Wei, H.; Yeoh, E.; Zhang, Z.; Ren, Z.F.; Colditz, G.A.; Tworoger, S.S.; Su, X. Inflammatory Markers of CRP, IL6, TNFalpha, and Soluble TNFR2 and the Risk of Ovarian Cancer: A Meta-analysis of Prospective Studies. Cancer Epidemiol Biomark. Prev. 2016, 25, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Y.; Mi, X.; Shao, M.; Liu, L. The prognostic value of prognostic nutritional index (PNI) and neutrophil to lymphocyte ratio (NLR) for advanced non-small cell lung cancer treated with platinum-based chemotherapeutics. Ann. Palliat. Med. 2020, 9, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Long, Z.Q.; Huang, X.; Deng, J.P.; He, Z.Y.; Guo, L.; Zhang, W.W.; Lin, H.X. The Value of Prognostic Nutritional Index (PNI) in Predicting Survival and Guiding Radiotherapy of Patients With T1-2N1 Breast Cancer. Front. Oncol. 2020, 9, 1562. [Google Scholar] [CrossRef]
- Kinoshita, A.; Onoda, H.; Imai, N.; Iwaku, A.; Oishi, M.; Tanaka, K.; Fushiya, N.; Koike, K.; Nishino, H.; Matsushima, M. The C-reactive protein/albumin ratio, a novel inflammation-based prognostic score, predicts outcomes in patients with hepatocellular carcinoma. Ann. Surg. Oncol. 2015, 22, 803–810. [Google Scholar] [CrossRef]
- Li, J.; Jiao, X.; Yuan, Z.; Qiu, H.; Guo, R. C-reactive protein and risk of ovarian cancer: A systematic review and meta-analysis. Medicine 2017, 96, e7822. [Google Scholar] [CrossRef]
- Kawahara, N.; Kawaguchi, R.; Waki, K.; Maehana, T.; Yamanaka, S.; Yamada, Y.; Kimura, F. The prognosis predictive score around primary debulking surgery (PPSP) improves diagnostic efficacy in predicting the prognosis of ovarian cancer. Sci Rep. 2022, 12, 22636. [Google Scholar] [CrossRef] [PubMed]
- Hefler, L.A.; Concin, N.; Hofstetter, G.; Marth, C.; Mustea, A.; Sehouli, J.; Zeillinger, R.; Leipold, H.; Lass, H.; Grimm, C.; et al. Serum C-reactive protein as independent prognostic variable in patients with ovarian cancer. Clin. Cancer Res. 2008, 14, 710–714. [Google Scholar] [CrossRef] [PubMed]
- Kemik, O.; Sumer, A.; Kemik, A.S.; Hasirci, I.; Purisa, S.; Dulger, A.C.; Demiriz, B.; Tuzun, S. The relationship among acute-phase response proteins, cytokines and hormones in cachectic patients with colon cancer. World J. Surg. Oncol. 2010, 28, 85. [Google Scholar] [CrossRef]
- Berek, J.S.; Kehoe, S.T.; Kumar, L.; Friedlander, M. Cancer of the ovary, fallopian tube, and peritoneum. Int. J. Gynaecol. Obstet. 2018, 143, 59–78. [Google Scholar] [CrossRef]
- Jacquet, P.; Sugarbaker, P. Current methodologics for clinical assesment of patients with peritoneal carcinomatosis. J. Exp. Clin. Cancer Res. 1996, 15, 49–57. [Google Scholar]
- Adhikari, L.; Hassell, L.A. WHO Classification. PathologyOutlines.com Website. Ovarian Neoplasms WHO Classification Review 2020. Available online: https://www.pathologyoutlines.com/topic/ovarytumorwhoclassif.html (accessed on 15 April 2024).
- Bast, R.C., Jr.; Xu, F.J.; Yu, Y.H.; Barnhill, S.; Zhang, Z.; Mills, G.B. CA 125: The past and the future. Int. J. Biol. Markers 1998, 13, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, N.; Yoshida, K.; Tamauchi, S.; Ikeda, Y.; Nishino, K.; Niimi, K.; Suzuki, S.; Kikkawa, F.; Kajiyama, H. The Preoperative Prognostic Nutritional Index for the Prediction of Outcomes in Patients with Early-Stage Ovarian Clear Cell Carcinoma. Sci. Rep. 2020, 10, 7135. [Google Scholar] [CrossRef]
- Komura, N.; Mabuchi, S.; Shimura, K.; Kawano, M.; Matsumoto, Y.; Kimura, T. Significance of pretreatment C-reactive protein, albumin, and C-reactive protein to albumin ratio in predicting poor prognosis in epithelial ovarian cancer patients. Nutr. Cancer 2021, 73, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Liu, M.; Lei, L.; Lu, S. Prognostic significance of preoperative prognostic nutritional index in ovarian cancer: A systematic review and meta-analysis. Medicine 2020, 99, e21840. [Google Scholar] [CrossRef]
- Ravindranathan, D.; Master, V.A.; Bilen, M.A. Inflammatory markers in cancer immunotherapy. Biology 2021, 10, 325. [Google Scholar] [CrossRef]
- Roncolato, F.T.; Berton-Rigaud, D.; O’Connell, R.; Lanceley, A.; Sehouli, J.; Buizen, L.; Okamoto, A.; Aotani, E.; Lorusso, D.; Donnellan, P.; et al. Validation of the modified Glasgow Prognostic Score (mGPS) in recurrent ovarian cancer (ROC)—Analysis of patients enrolled in the GCIG Symptom Benefit Study (SBS). Gynecol Oncol. 2018, 148, 36–41. [Google Scholar] [CrossRef]
- Feng, Z.; Wen, H.; Ju, X.; Bi, R.; Chen, X.; Yang, W.; Wu, X. The preoperative prognostic nutritional index is a predictive and prognostic factor of high-grade serous ovarian cancer. BMC Cancer 2018, 18, 883. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Li, S.; Yan, Q.; Li, B.; Feng, Y. Prognostic significance of preoperative prognostic nutritional index in epithelial ovarian cancer patients treated with platinum-based chemotherapy. Oncol. Res. Treat. 2016, 39, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Omichi, C.; Nakamura, K.; Haraga, J.; Masuyama, H.; Hiramatsu, Y. Glasgow prognostic score is an independent marker for poor prognosis with all cases of epithelial ovarian cancer. Cancer Med. 2016, 5, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar] [PubMed]
- McMillan, D.C.; Crozier, J.E.; Canna, K.; Angerson, W.J.; McArdle, C.S. Evaluation of an inflammation-based prognostic score (GPS) in patients undergoing resection for colon and rectal cancer. Int. J. Colorectal. Dis. 2007, 22, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Ishiyama, Y.; Kondo, T.; Nemoto, Y.; Kobari, Y.; Ishihara, H.; Tachibana, H.; Yoshida, K.; Hashimoto, Y.; Takagi, T.; Iizuka, J.; et al. Predictive impact of prognostic nutritional index on pembrolizumab for metastatic urothelial carcinoma resistant to platinum-based chemotherapy. Anticancer Res. 2021, 41, 1607–1614. [Google Scholar] [CrossRef] [PubMed]
- Buzby, G.P.; Mullen, J.L.; Matthews, D.C.; Hobbs, C.L.; Rosato, E.F. Prognostic nutritional index in gastrointestinal surgery. Am. J. Surg. 1980, 139, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Wu, Y.; Jiang, C.; Cai, L.; Li, D.; Cao, J. Progress in Applicability of Scoring Systems Based on Nutritional and Inflammatory Parameters for Ovarian Cancer. Front. Nutr. 2022, 9, 809091. [Google Scholar] [CrossRef]
- Komura, N.; Mabuchi, S.; Yokoi, E.; Shimura, K.; Kawano, M.; Matsumoto, Y.; Kimura, T. Pre-treatment prognostic nutritional index is superior to platelet count in predicting disease-specific survival in patients with epithelial ovarian cancer. Int. J. Gynecol. Cancer 2019, 29, 1057–1063. [Google Scholar] [CrossRef]
- Kudou, K.; Saeki, H.; Nakashima, Y.; Kamori, T.; Kawazoe, T.; Haruta, Y.; Fujimoto, Y.; Matsuoka, H.; Sasaki, S.; Jogo, T.; et al. C-reactive protein/albumin ratio is a poor prognostic factor of esophagogastric junction and upper gastric cancer. J. Gastroenterol. Hepatol. 2019, 34, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.L.; Wang, F.H.; Zhang, D.S.; Qiu, M.Z.; Ren, C.; Jin, Y.; Zhou, Y.X.; Wang, D.S.; He, M.M.; Bai, L.; et al. A novel inflammation-based prognostic score in esophageal squamous cell carcinoma: The C-reactive protein/albumin ratio. BMC Cancer 2015, 15, 350. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sun, X.; Liu, J.; Kong, P.; Chen, S.; Zhan, Y.; Xu, D. Preoperative C-Reactive Protein/Albumin Ratio Predicts Prognosis of Patients after Curative Resection for Gastric Cancer. Transl. Oncol. 2015, 8, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Toriola, A.T.; Grankvist, K.; Agborsangaya, C.B.; Lukanova, A.; Lehtinen, M.; Surcel, H.M. Changes in pre-diagnostic serum C-reactive protein concentrations and ovarian cancer risk: A longitudinal study. Ann. Oncol. 2011, 22, 1916–1921. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, S.; Zheng, C.; Ding, M.; Zhang, L.; Wang, L.; Xie, M.; Zhou, J. The prognostic value of the preoperative c-reactive protein/albumin ratio in ovarian cancer. BMC Cancer 2017, 17, 285. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, H.; Liu, C.C.; Lu, Y.; Tang, H. The Glasgow Prognostic Score (GPS) is a novel prognostic indicator in advanced epithelial ovarian cancer: A multicenter retrospective study. J. Cancer Res. Clin. Oncol. 2016, 142, 2339–2345. [Google Scholar] [CrossRef] [PubMed]
- Enshaei, A.; Robson, C.N.; Edmondson, R.J. Artificial intelligence systems as prognostic and predictive tools in ovarian cancer. Ann. Surg. Oncol. 2015, 22, 3970–3975. [Google Scholar] [CrossRef]
- Havrilesky, L.J.; Sanders, G.D.; Kulasingam, S.; Chino, J.P.; Berchuck, A.; Marks, J.R.; Myers, E.R. Development of an ovarian cancer screening decision model that incorporates disease heterogeneity: Implications for potential mortality reduction. Cancer 2011, 117, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Z.; Rong, Y.; Zhou, B.; Bai, Y.; Wei, W.; Wei, W.; Wang, M.; Guo, Y.; Tian, J. Deep learning provides a new computed tomography-based prognostic biomarker for recurrence prediction in high-grade serous ovarian cancer. Radiother. Oncol. J. 2019, 132, 171–177. [Google Scholar] [CrossRef]
- Lu, H.; Arshad, M.; Thornton, A.; Avesani, G.; Cunnea, P.; Curry, E.; Kanavati, F.; Liang, J.; Nixon, K.; Williams, S.T.; et al. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat. Commun. 2019, 10, 764. [Google Scholar] [CrossRef]
- Bogani, G.; Rossetti, D.; Ditto, A.; Martinelli, F.; Chiappa, V.; Mosca, L.; Leone Roberti Maggiore, U.; Ferla, S.; Lorusso, D.; Raspagliesi, F. Artificial intelligence weights the importance of factors predicting complete cytoreduction at secondary cytoreductive surgery for recurrent ovarian cancer. J. Gynecol. Oncol. 2018, 29, e6. [Google Scholar] [CrossRef] [PubMed]
CRP (mg/L) | Albumin (mg/L) | Value | |
---|---|---|---|
Glasgow score | <10 mg/L | >35 g/L | 0 |
<10 mg/L | <35 g/L | 1 | |
>10 mg/L | <35 g/L | 2 | |
Modified Glasgow score | <10 mg/L | >35 g/L | 0 |
<10 mg/L | <35 g/L | 0 | |
>10 mg/L | <35 g/L | 1 |
Parameter/Number of Cases | CRP/Alb < 0.05 (n = 9 Cases) | CRP/Alb > 0.05 (n = 48 Cases) | p-Value |
---|---|---|---|
Age (years, mean) | 48 | 53 | 0.091 |
Associated comorbidities | |||
| 2 (22.2%) | 14 (29.1%) | 1 |
| 7 (77.8%) | 34 (70.9%) | |
FIGO stage: | |||
| 7 (77.8%) | 44 (91.6%) | 0.232 |
| 2 (22.2%) | 4 (8.4%) | |
CA125 (U/dL) | 1142 | 2825 | 0.003 |
Ascites (mL, mean value) | 1292 | 3561 | <0.001 |
PCI: | |||
<10 | 4 (44.4%) | 7 (14.5%) | 0.065 |
>10 | 5 (55.6%) | 41 (85.4%) | |
Histopathological subtype: | |||
| 5 (55.6%) | 4 (8.4%) | 0.003 |
| 4 (44.4%) | 44 (91.6%) | |
Differentiation degree: | |||
| 5 (55.6%) | 11 (23%) | 0.098 |
| 4 (44.4%) | 37 (77%) | |
Maximum diameter of the tumor: | |||
| 6 (66.6%) | 16 (33.4%) | 0.074 |
| 3 (33.4%) | 32 (66.6%) | |
Lymphatic metastases: | |||
| 2 (22.2%) | 28 (58.3%) | 0.071 |
| 7 (77.8%) | 20 (41.7%) | |
NLR | 1.75 | 4.71 | <0.001 |
PLR | 133 | 352 | 0.001 |
MLR | 0.17 | 0.62 | 0.011 |
SII | 519,920 | 1,989,540 | 0.004 |
Total serum protein (g/dL) | 7.3 | 5.7 | 0.003 |
Hb (g/dL) | 13.1 | 11.6 | 0.015 |
Extended upper abdominal resections | |||
| 8 (88.9%) | 32 (66.7%) | 0.254 |
| 1 (11.1%) | 16 (33.3%) | |
Postoperative complications: | |||
| 0 (0%) | 16 (33.3%) | 0.049 |
| 9 (100%) | 32 (66.7%) | |
Disease-free survival (mean, months) | 9 | 6 | 0.019 |
Overall survival (mean, months) | 20 | 9 | 0.01 |
Parameter No of Cases | GS0 (n = 19) | GS1 (n = 21) | GS2 (n = 17) | p-Value |
---|---|---|---|---|
Age (years, mean) | 52.8 | 52.9 | 64.6 | 0.005 |
CA125 (U/dL) | 547 | 2317 | 6223 | <0.001 |
Ascites (mL, mean value) | 1610 | 2009 | 3600 | <0.001 |
NLR | 2.1 | 3.6 | 7.3 | <0.001 |
PLR | 162 | 310 | 499 | <0.001 |
MLR | 0.24 | 0.45 | 1 | <0.001 |
SII | 634,924 | 1,383,884 | 3,532,475 | <0.001 |
Total serum protein (g/dL) | 7.1 | 6.3 | 4.3 | <0.001 |
Hb (g/dL) | 12.9 | 12.2 | 10.2 | 0.032 |
CRP/Albumin | 0.07 | 0.3 | 0.93 | <0.001 |
Disease-free survival (mean, months) | 35 | 18 | 6 | 0.041 |
Overall survival (mean, months) | 42 | 27 | 12 | 0.044 |
Parameter No of Cases | MGS | |||
---|---|---|---|---|
0 (n = 32) | 1 (n = 8) | 2 (n = 17) | p-Value | |
Age (years, mean) | 51 | 58 | 64 | 0.023 |
CA125 (U/dL, mean) | 1014 | 3324 | 6223 | <0.001 |
Ascites (mL, mean) | 1618 | 2625 | 3600 | <0.001 |
NLR | 2.6 | 4.13 | 7.36 | <0.001 |
MLR | 0.29 | 0.61 | 1 | <0.001 |
SII | 808,231 | 1,782,716 | 3,532,475 | <0.001 |
CRP/albumin | 0.14 | 0.41 | 0.94 | 0.023 |
Total serum protein (g/dL) | 6.68 | 6.93 | 4.39 | 0.012 |
Hb (g/dL) | 12.75 | 11.79 | 10.29 | 0.081 |
Disease-free survival (mean, months) | 31 | 13 | 6 | 0.01 |
Overall survival (mean, months) | 50 | 19 | 12 | 0.01 |
Parameter/No of Cases | PNI = 0 (n = 18 Cases) | PNI = 1 (n = 39 Cases) | p-Value |
---|---|---|---|
Age (years, mean) | 53 | 57 | 0.131 |
Associated comorbidities | |||
| 1 (5.56%) | 13 (33.3%) | 0.045 |
| 17 (94.4%) | 26 (66.7%) | |
FIGO stage: | |||
| 16 (88.9%) | 35 (89.8%) | 1 |
| 2 (11.1%) | 4 (10.2%) | |
CA125 (U/dL) | 682 | 3912 | 0.003 |
Ascites (mL, mean) | 1661 | 2669 | 0.295 |
PCI: | |||
<10 | 9 (50%) | 2 (5.1%) | <0.001 |
>10 | 9 (50%) | 37 (94.9%) | |
Histopathological type: | |||
| 3 (16.7%) | 6 (15.4%) | 1 |
| 15 (83.3%) | 33 (84.6%) | |
Differentiation degree: | |||
| 11 (61.1%) | 6 (15.4%) | 0.001 |
| 7 (38.9%) | 33 (84.6%) | |
Maximal diameter of the tumor: | |||
<5 cm | 5 (27.8%) | 17 (43.6%) | 0.382 |
>5 cm | 13 (72.2%) | 22 (56.4%) | |
Lymph node metastases: | |||
| 3 (16.7%) | 27 (69.2) | <0.001 |
| 15 (83.3%) | 12 (30.8%) | |
NLR | 1.99 | 5.28 | 0.001 |
PLR | 128 | 401 | 0.001 |
MLR | 0.2 | 0.7 | 0.008 |
SII | 598,145 | 2,292,579 | 0.015 |
Total serum proteins (g/dL) | 7.19 | 5.49 | 0.018 |
Hb (g/dL) | 12.87 | 11.43 | 0.848 |
Upper abdominal resections: | |||
| 10 (55.5%) | 30 (76.9%) | 0.126 |
| 8 (44.5%) | 9 (23.1%) | |
Postoperative complications: | |||
| 1 (5.5%) | 15 (38.5%) | 0.011 |
| 17 (94.5%) | 24 (61.5%) | |
Disease-free survival (mean, months) | 35 | 11 | <0.001 |
Overall survival (mean, months) | 54 | 21 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacalbasa, N.; Petrea, S.; Gaspar, B.; Pop, L.; Varlas, V.; Hasegan, A.; Gorecki, G.; Martac, C.; Stoian, M.; Zgura, A.; et al. The Influence of Inflammatory and Nutritional Status on the Long-Term Outcomes in Advanced Stage Ovarian Cancer. Cancers 2024, 16, 2504. https://doi.org/10.3390/cancers16142504
Bacalbasa N, Petrea S, Gaspar B, Pop L, Varlas V, Hasegan A, Gorecki G, Martac C, Stoian M, Zgura A, et al. The Influence of Inflammatory and Nutritional Status on the Long-Term Outcomes in Advanced Stage Ovarian Cancer. Cancers. 2024; 16(14):2504. https://doi.org/10.3390/cancers16142504
Chicago/Turabian StyleBacalbasa, Nicolae, Sorin Petrea, Bogdan Gaspar, Lucian Pop, Valentin Varlas, Adrian Hasegan, Gabriel Gorecki, Cristina Martac, Marilena Stoian, Anca Zgura, and et al. 2024. "The Influence of Inflammatory and Nutritional Status on the Long-Term Outcomes in Advanced Stage Ovarian Cancer" Cancers 16, no. 14: 2504. https://doi.org/10.3390/cancers16142504
APA StyleBacalbasa, N., Petrea, S., Gaspar, B., Pop, L., Varlas, V., Hasegan, A., Gorecki, G., Martac, C., Stoian, M., Zgura, A., & Balescu, I. (2024). The Influence of Inflammatory and Nutritional Status on the Long-Term Outcomes in Advanced Stage Ovarian Cancer. Cancers, 16(14), 2504. https://doi.org/10.3390/cancers16142504