A Prospective Observational Cohort Study for Newly Diagnosed Osteosarcoma Patients in the UK: ICONIC Study Initial Results
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Objectives
2.2. Participants
2.3. Data Collection
2.3.1. Clinical Data
2.3.2. Research Samples
2.3.3. Patient-Reported Outcomes (PROs)
2.3.4. Routes to Diagnosis
2.3.5. Statistical Analyses
2.3.6. Future Analyses
3. Results
3.1. Recruitment
3.2. Patient Characteristics
3.3. Clinical Data
3.3.1. Imaging
3.3.2. Treatment Plan
3.3.3. Surgery Data
3.4. Research Samples
3.5. PROs and Routes to Diagnosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Pinieux, G.; Karanian, M.; Le Loarer, F.; Le Guellec, S.; Chabaud, S.; Terrier, P.; Bouvier, C.; Batistella, M.; Neuville, A.; Robin, Y.-M.; et al. Nationwide incidence of sarcomas and connective tissue tumors of intermediate malignancy over four years using an expert pathology review network. PLoS ONE 2021, 16, e0246958. [Google Scholar] [CrossRef] [PubMed]
- Whelan, J.S.; Jinks, R.C.; McTiernan, A.; Sydes, M.R.; Hook, J.M.; Trani, L.; Uscinska, B.; Bramwell, V.; Lewis, I.J.; Nooij, M.A.; et al. Survival from high-grade localised extremity osteosarcoma: Combined results and prognostic factors from three European Osteosarcoma Intergroup randomised controlled trials. Ann. Oncol. 2012, 23, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Tan, G.J.S.; Gerrand, C.H.; Rankin, K.S. Blood-borne biomarkers of osteosarcoma: A systematic review. Pediatr. Blood Cancer 2019, 66, e27462. [Google Scholar] [CrossRef] [PubMed]
- Smeland, S.; Bielack, S.S.; Whelan, J.; Bernstein, M.; Hogendoorn, P.; Krailo, M.D.; Gorlick, R.; Janeway, K.A.; Ingleby, F.C.; Anninga, J.; et al. Survival and prognosis with osteosarcoma: Outcomes in more than 2000 patients in the EURAMOS-1 (European and American Osteosarcoma Study) cohort. Eur. J. Cancer 2019, 109, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Eyre, R.; Feltbower, R.G.; James, P.W.; Blakey, K.; Mubwandarikwa, E.; Forman, D.; McKinney, P.A.; Pearce, M.S.; McNally, R.J. The epidemiology of bone cancer in 0–39 year olds in northern England, 1981–2002. BMC Cancer 2010, 10, 357. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.; Wilhelm, M.; Conyers, R.; Herschtal, A.; Whelan, J.; Bielack, S.; Kager, L.; Kühne, T.; Sydes, M.; Gelderblom, H.; et al. Benefits and adverse events in younger versus older patients receiving neoadjuvant chemotherapy for osteosarcoma: Findings from a meta-analysis. J. Clin. Oncol. 2013, 31, 2303–2312. [Google Scholar] [CrossRef] [PubMed]
- Strauss, S.J.; Frezza, A.M.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Blay, J.Y.; Bolle, S.; Bonvalot, S.; et al. Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 1520–1536. [Google Scholar] [CrossRef] [PubMed]
- Link, M.P.; Goorin, A.M.; Miser, A.W.; Green, A.A.; Pratt, C.B.; Belasco, J.B.; Pritchard, J.; Malpas, J.S.; Baker, A.R.; Kirkpatrick, J.A.; et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N. Engl. J. Med. 1986, 314, 1600–1606. [Google Scholar] [CrossRef] [PubMed]
- Marina, N.M.; Smeland, S.; Bielack, S.S.; Bernstein, M.; Jovic, G.; Krailo, M.D.; Hook, J.M.; Arndt, C.; van den Berg, H.; Brennan, B.; et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): An open-label, international, randomised controlled trial. Lancet Oncol. 2016, 17, 1396–1408. [Google Scholar] [CrossRef]
- Kager, L.; Zoubek, A.; Potschger, U.; Kastner, U.; Flege, S.; Kempf-Bielack, B.; Branscheid, D.; Kotz, R.; Salzer-Kuntschik, M.; Winkelmann, W.; et al. Primary metastatic osteosarcoma: Presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J. Clin. Oncol. 2003, 21, 2011–2018. [Google Scholar] [CrossRef]
- Ferrari, S.; Briccoli, A.; Mercuri, M.; Bertoni, F.; Picci, P.; Tienghi, A.; Del Prever, A.B.; Fagioli, F.; Comandone, A.; Bacci, G. Postrelapse survival in osteosarcoma of the extremities: Prognostic factors for long-term survival. J. Clin. Oncol. 2003, 21, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Behjati, S.; Tarpey, P.S.; Haase, K.; Ye, H.; Young, M.D.; Alexandrov, L.B.; Farndon, A.J.; Collord, G.; Wedge, D.C.; Martincorena, I.; et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat. Commun. 2017, 8, 15936. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Bahrami, A.; Pappo, A.; Easton, J.; Dalton, J.; Hedlund, E.; Ellison, D.; Shurtleff, S.; Wu, G.; Wei, L.; et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 2014, 7, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Smida, J.; Xu, H.; Zhang, Y.; Baumhoer, D.; Ribi, S.; Kovac, M.; von Luettichau, I.; Bielack, S.; O’Leary, V.B.; Leib-Mösch, C.; et al. Genome-wide analysis of somatic copy number alterations and chromosomal breakages in osteosarcoma. Int. J. Cancer 2017, 141, 816–828. [Google Scholar] [CrossRef] [PubMed]
- Sayles, L.C.; Breese, M.R.; Koehne, A.L.; Leung, S.G.; Lee, A.G.; Liu, H.Y.; Spillinger, A.; Shah, A.T.; Tanasa, B.; Straessler, K.; et al. Genome-Informed Targeted Therapy for Osteosarcoma. Cancer Discov. 2019, 9, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Beird, H.C.; Livingston, J.A.; Advani, S.; Mitra, A.; Cao, S.; Reuben, A.; Ingram, D.; Wang, W.-L.; Ju, Z.; et al. Immuno-genomic landscape of osteosarcoma. Nat. Commun. 2020, 11, 1008. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.A.; Kiezun, A.; Tonzi, P.; Van Allen, E.M.; Carter, S.L.; Baca, S.C.; Cowley, G.S.; Bhatt, A.S.; Rheinbay, E.; Pedamallu, C.S.; et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Natl. Acad. Sci. USA 2014, 111, E5564–E5573. [Google Scholar] [CrossRef] [PubMed]
- Brady, S.W.; Ma, X.; Bahrami, A.; Satas, G.; Wu, G.; Newman, S.; Rusch, M.; Putnam, D.K.; Mulder, H.L.; Yergeau, D.A.; et al. The Clonal Evolution of Metastatic Osteosarcoma as Shaped by Cisplatin Treatment. Mol. Cancer Res. 2019, 17, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.; Bennister, L.; Fern, L.A.; Gerrand, C.; Onasanya, M.; Storey, L.; Wells, M.; Whelan, J.S.; Windsor, R.; Woodford, J.; et al. Development of a patient-reported experience questionnaire for patients with sarcoma: The Sarcoma Assessment Measure (SAM). Qual. Life Res. 2020, 29, 2287–2297. [Google Scholar] [CrossRef]
- Juniper, E.F.; Guyatt, G.H.; Willan, A.; Griffith, L.E. Determining a minimal important change in a disease-specific Quality of Life Questionnaire. J. Clin. Epidemiol. 1994, 47, 81–87. [Google Scholar] [CrossRef]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.M.; Wright, J.G.; Williams, J.I.; Bombardier, C.; Griffin, A.; Bell, R.S. Development of a measure of physical function for patients with bone and soft tissue sarcoma. Qual. Life Res. 1996, 5, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Weller, D.; Vedsted, P.; Anandan, C.; Zalounina, A.; Fourkala, E.O.; Desai, R.; Liston, W.; Jensen, H.; Barisic, A.; Gavin, A.; et al. An investigation of routes to cancer diagnosis in 10 international jurisdictions, as part of the International Cancer Benchmarking Partnership: Survey development and implementation. BMJ Open 2016, 6, e009641. [Google Scholar] [CrossRef] [PubMed]
- Mirabello, L.; Zhu, B.; Koster, R.; Karlins, E.; Dean, M.; Yeager, M.; Gianferante, M.; Spector, L.G.; Morton, L.M.; Karyadi, D.; et al. Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients with Osteosarcoma. JAMA Oncol. 2020, 6, 724–734. [Google Scholar] [CrossRef]
- Aldiss, S.; Fern, L.A.; Phillips, R.S.; Callaghan, A.; Dyker, K.; Gravestock, H.; Groszmann, M.; Hamrang, L.; Hough, R.; McGeachy, D.; et al. Research priorities for young people with cancer: A UK priority setting partnership with the James Lind Alliance. BMJ Open 2019, 9, e028119. [Google Scholar] [CrossRef] [PubMed]
- Barr, R. Diagnostic timelines of cancer in adolescents and young adults. Lancet Child Adolesc. Health 2018, 2, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, S.C.; Abel, G.A.; Lyratzopoulos, G. Pre-referral GP consultations in patients subsequently diagnosed with rarer cancers: A study of patient-reported data. Br. J. Gen. Pract. 2016, 66, e171–e181. [Google Scholar] [CrossRef] [PubMed]
- Elyes, M.; Heesen, P.; Schelling, G.; Bode-Lesniewska, B.; Studer, G.; Fuchs, B. Swiss Sarcoma Network. Enhancing healthcare for sarcoma patients: Lessons from a diagnostic pathway efficiency analysis. Cancers 2023, 15, 4892. [Google Scholar] [CrossRef]
- Ginsberg, J.P.; Rai, S.N.; Carlson, C.A.; Meadows, A.T.; Hinds, P.S.; Spearing, E.M.; Zhang, L.; Callaway, L.; Neel, M.D.; Rao, B.N.; et al. A comparative analysis of functional outcomes in adolescents and young adults with lower-extremity bone sarcoma. Pediatr. Blood Cancer 2007, 49, 964–969. [Google Scholar] [CrossRef]
- Hinds, P.S.; Billups, C.A.; Cao, X.; Gattuso, J.S.; Burghen, E.; West, N.; Rubnitz, J.E.; Daw, N.C. Health-related quality of life in adolescents at the time of diagnosis with osteosarcoma or acute myeloid leukemia. Eur. J. Oncol. Nurs. 2009, 13, 156–163. [Google Scholar] [CrossRef]
- Brasme, J.F.; Morfouace, M.; Grill, J.; Martinot, A.; Amalberti, R.; Bons-Letouzey, C.; Chalumeau, M. Delays in diagnosis of paediatric cancers: A systematic review and comparison with expert testimony in lawsuits. Lancet Oncol. 2012, 13, e445-59. [Google Scholar] [CrossRef] [PubMed]
- Hollander, D.; Fiore, M.; Martin-Broto, J.; Kasper, B.; Casado Herraez, A.; Kulis, D.; Nixon, I.; Sodergren, S.C.; Eichler, M.; van Houdt, W.J.; et al. Incorporating the patient voice in sarcoma research: How can we assess health-related quality of life in this heterogenous group of patients? A Study protocol. Cancers 2020, 13, 3390. [Google Scholar] [CrossRef] [PubMed]
- Soomers, V.; Desar, I.M.; van de Poll-Franse, L.V.; Husson, O.; van der Graaf, W.T. Quality of life and experiences of sarcoma trajectories (the QUEST study): Protocol for an international observational cohort study on diagnostic pathways of sarcoma patients. BMJ Open 2020, 10, e039309. [Google Scholar] [CrossRef] [PubMed]
- The FOSTER Consortium (Fight Osteosarcoma through European Research). 2022. Updated 1 November 2022. Available online: https://fosterconsortium.org (accessed on 13 May 2024).
Registered Patients | N = 100 |
---|---|
Age, median (range) | 17 (5–82) |
Age | |
Under 16 | 38 (38%) |
16–24 | 34 (34%) |
25–50 | 19 (19%) |
Over 50 | 9 (9%) |
Stage at diagnosis | |
IA | 6 (6%) |
IB | 6 (6%) |
IIA | 20 (20%) |
IIB | 36 (36%) |
III | 5 (5%) |
IVA | 12 (12%) |
IVB | 14 (14%) |
Unknown | 1 |
Sex | |
Female | 45 (45%) |
Male | 55 (55%) |
Cancer signs or symptoms | 95 (95%) |
Limb/other body part changes | 44 (44%) |
Swelling | 58 (58%) |
Redness | 6 (6%) |
Reduced movement | 43 (43%) |
Night pain only | 9 (9%) |
Pain | 87 (87%) |
Night sweats | 5 (5%) |
Weight loss | 13 (13%) |
Other | 26 (26%) |
Duration of symptoms | N = 95 |
1–2 weeks | 3 (3%) |
3–4 weeks | 12 (13%) |
5–7 weeks | 12 (13%) |
2–5 months | 47 (49%) |
6–12 months | 16 (17%) |
More than 12 months | 3 (3%) |
Unknown | 2 |
Smoking status | |
Never | 84 (84%) |
Current | 6 (6%) |
Ex-smoker | 10 (10%) |
WHO performance status (age 16+) | N = 62 |
0 | 12 (21%) |
1 | 26 (46%) |
2 | 16 (28%) |
3 | 1 (2%) |
4 | 2 (4%) |
Unknown | 5 |
Karnofsky performance status (age < 16) | N = 38 |
30 | 1 (4%) |
50 | 2 (7%) |
60 | 2 (7%) |
70 | 4 (14%) |
80 | 4 (14%) |
90 | 10 (36%) |
100 | 5 (18%) |
Unknown | 10 |
Primary imaging type | |
CT | 17 (17%) |
MRI | 83 (83%) |
Site of primary tumour | |
Femur | 49 (49%) |
Humerus | 12 (12%) |
Maxilla/mandible | 4 (4%) |
Metatarsal | 1 (1%) |
Pelvis/sacrum | 4 (4%) |
Radius/ulna | 3 (3%) |
Rib/chest wall | 4 (4%) |
Scapula/clavicle | 1 (1%) |
Skull | 1 (1%) |
Tibia/fibula | 21 (21%) |
Imaging to assess extent of disease | |
CT chest | 99 (99%) |
No metastases | 64/99 (65%) |
Metastases confirmed | 25/99 (25%) |
Indeterminate | 10/99 (10%) |
PET scan | 19 (19%) |
No metastases | 13/19 (68%) |
Metastases confirmed | 5/19 (26%) |
Indeterminate | 1/19 (5%) |
Isotope bone scan | 26 (26%) |
No metastases | 25/26 (96%) |
Metastases confirmed | 1/26 (4%) |
WB MRI for metastases | 49 (49%) |
No metastases | 42/49 (86%) |
Metastases confirmed | 5/49 (10%) |
Indeterminate | 1/49 (2%) |
Report unavailable | 1/49 (2%) |
Registered Patients | N = 100 |
---|---|
Treatment plan | |
Chemo only | 8 (8%) |
Radiotherapy with chemo | 2 (2%) |
Radiotherapy with surgery and chemo | 4 (4%) |
Surgery only | 8 (8%) |
Surgery with chemo | 78 (78%) |
Chemotherapy plan | |
Neoadjuvant only | 7 (7%) |
Neoadjuvant + adjuvant | 69 (69%) |
Adjuvant only | 16 (16%) |
No chemotherapy planned | 8 (8%) |
Neoadjuvant chemotherapy planned | N = 76 (76%) |
AP (doxorubicin, cisplatin) | 5/76 (7%) |
MAP (methotrexate, doxorubicin, cisplatin) | 69/76 (91%) |
Other | 2/76 (3%) |
Adjuvant chemotherapy planned | N = 85 (85%) |
AP (doxorubicin, cisplatin) | 13/85 (15%) |
MAP (methotrexate, doxorubicin, cisplatin) | 47/85 (55%) |
MAP + mifamurtide | 20/85 (24%) |
Other | 5/85 (6%) |
Surgery planned | N = 90 (90%) |
Amputation | 13/90 (14%) |
Limb salvage | 66/90 (73%) |
Craniofacial resection | 4/90 (4%) |
Pelvis/sacrum resection | 2/90 (2%) |
Rib/chest wall resection | 4/90 (4%) |
Other | 1/90 (1%) |
Patients Planned for Surgery | N = 90 |
---|---|
Patient had resection of primary tumour | |
Yes | 87 (97%) |
No | 3 (3%) |
Type of surgery | N = 87 |
Amputation | 13 (15%) |
Limb salvage | 64 (74%) |
Reconstruction: | |
Implant | 54/64 (84%) |
Autograft reconstruction | 9/64 (14%) |
Allograft reconstruction | 1/64 (2%) |
Craniofacial resection | 3 (3%) |
Pelvis/sacrum resection | 1 (1%) |
Rib/chest wall | 4 (5%) |
Other | 2 (2%) |
Maximum tumour dimension—length (mm) | N = 87 |
Median (range) | 117 mm (0–465) |
≤80 mm | 27 (31%) |
>80 mm | 59 (69%) |
Unknown | 1 |
Maximum tumour dimension—width (mm) | N = 87 |
Median (range) | 52.5 mm (0–200) |
<50 mm | 36 (44%) |
≥50 mm | 46 (56%) |
Unknown | 5 |
Narrowest bone margin (mm) | N = 87 |
Median (range) | 37 mm (0–200) |
<50 mm | 54 (65%) |
≥50 mm | 29 (35%) |
Unknown | 4 |
Narrowest soft tissue resection margin (mm) | N = 87 |
<1 mm | 20 (24%) |
<2 mm | 9 (11%) |
≥2 mm | 44 (53%) |
Tumour at surface of specimen | 2 (2%) |
Unknown | 12 |
Post-chemotherapy necrosis (among those known to receive neoadjuvant chemotherapy) | N = 66 |
Median (range) | 82.5% (10–100) |
<90% | 38 (58%) |
≥90% | 28 (42%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Childs, A.; Gerrand, C.; Brennan, B.; Young, R.; Rankin, K.S.; Parry, M.; Stevenson, J.; Flanagan, A.M.; Taylor, R.M.; Fern, L.; et al. A Prospective Observational Cohort Study for Newly Diagnosed Osteosarcoma Patients in the UK: ICONIC Study Initial Results. Cancers 2024, 16, 2351. https://doi.org/10.3390/cancers16132351
Childs A, Gerrand C, Brennan B, Young R, Rankin KS, Parry M, Stevenson J, Flanagan AM, Taylor RM, Fern L, et al. A Prospective Observational Cohort Study for Newly Diagnosed Osteosarcoma Patients in the UK: ICONIC Study Initial Results. Cancers. 2024; 16(13):2351. https://doi.org/10.3390/cancers16132351
Chicago/Turabian StyleChilds, Alexa, Craig Gerrand, Bernadette Brennan, Robin Young, Kenneth S. Rankin, Michael Parry, Jonathan Stevenson, Adrienne M. Flanagan, Rachel M. Taylor, Lorna Fern, and et al. 2024. "A Prospective Observational Cohort Study for Newly Diagnosed Osteosarcoma Patients in the UK: ICONIC Study Initial Results" Cancers 16, no. 13: 2351. https://doi.org/10.3390/cancers16132351
APA StyleChilds, A., Gerrand, C., Brennan, B., Young, R., Rankin, K. S., Parry, M., Stevenson, J., Flanagan, A. M., Taylor, R. M., Fern, L., Heymann, D., Vance, F., Sherriff, J., Singh, S., Begum, R., Forsyth, S. L., Reczko, K., Sparksman, K., Wilson, W., & Strauss, S. J. (2024). A Prospective Observational Cohort Study for Newly Diagnosed Osteosarcoma Patients in the UK: ICONIC Study Initial Results. Cancers, 16(13), 2351. https://doi.org/10.3390/cancers16132351