Non-Invasive Markers for the Detection of Gastric Precancerous Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Gastric Precancerous Conditions
1.2. Screening Programs and Preventive Measures for Gastric Cancer
1.3. Blood Biomarkers
1.3.1. Validated and Commercially Available Biomarkers of Gastric Atrophy
Pepsinogens—PG I and PG II Blood Concentration
Gastrin
Gastropanel®
Study (Year) | Study Type, Country | Targeted Condition | Cut-Off Value | Test Method | No. of Patients Included | Age, Mean ± SD (Range) | Sensitivity % (95% CI) | Specificity % (95% CI) |
---|---|---|---|---|---|---|---|---|
Dondov [73] (2022) | Single center, Mongolia | AG, GC | PG I≤ 75.07 ng/mL, PGI/II ratio ≤ 6.25, G-17 ≤ 23.42 pmol/L | ELISA | 114 (AG: 40, GC: 36) | 59.98 ± 10.88 | 80.0 | 60.5 |
Syrjänen [64] 2022 | Meta-analysis, 49 studies | corpus AG | PG I lower than threshold, PG I/II lower than threshold, G-17 higher than threshold | different | 22 597 | n/a | 70 (64–76) | 93 (90–95) |
Chiang [65] (2020) | Multicenter (population-based screening), Taiwan | AG | PG I < 30 μg/L; PGI/PGII ratio < 3 G17b < 1; HpAb < 30 * | ELISA | 465 | n/a | 80.6 (70.0–88.3) | 48.8 (42.5–55.0) |
Chapelle [43] (2020) | Multicenter, France | AG | PG I < 30 μg/L; PGI/PGII ratio < 3 G17b < 1; HpAb < 30 | ELISA | 344 (AG: 148) | 58.8 ± 14.2 | 39.9 (31.9–48.2) | 93.4 (88.9–96.4) |
Mattar [46] (2020) | Single center, Brasil | AG | n/a | 308 (AG: 135) | 64.6 ± 10.3 | |||
Zagari [60] (2017) ** | Meta-analysis of 20 studies | AG | PGI;PGI/PGI/II ratio; G17b; HpAb; different cut-offs | ELISA | 4241 | n/a | 74.7 (62.0–84.3) | 95.6 (92.6–97.4) |
Syrjänen [67] (2016) | Meta-analysis of 27 studies | corpus AG | PGI;PGI/PGI/II ratio; G17b; HpAb; cut-offs n/a | n/a | 8654 | n/a | 70.2 (64.3–77.5) | 93.9 (91.0–96.0) |
antrum AG | 53.8 (38.3–68.7) | 84.1 (71.3–91.9) | ||||||
McNicholl [68] (2014) | Multicenter, Spain | AG | PGI < 25 μg/L G-17b < 0.1 HpAb < 30 | n/a | 85 | 44 | 50 (39–61) | 80 (71–88) |
1.3.2. Other Potential Biomarkers
MicroRNAs and Long Non-Coding RNA Polymorphism
2. Hormones
2.1. Leptin
2.2. Adiponectin
2.3. Insulin-like Growth Factor
3. Autoantibodies
4. Other Potential Biomarkers
4.1. Human Epididymal Protein 4
4.2. Interleukin-6
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Laurén, P. The Two Histological Main Types of Gastric Carcinoma: Diffuse and so-Called Intestinal-Type Carcinoma. Acta Pathol. Microbiol. Scand. 1965, 64, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Correa, P. A Human Model of Gastric Carcinogenesis. Cancer Res. 1988, 48, 3554–3560. [Google Scholar]
- Leung, W.K.; Lin, S.R.; Ching, J.Y.L.; To, K.F.; Ng, E.K.W.; Chan, F.K.L.; Lau, J.Y.W.; Sung, J.J.Y. Factors Predicting Progression of Gastric Intestinal Metaplasia: Results of a Randomised Trial on Helicobacter pylori Eradication. Gut 2004, 53, 1244–1249. [Google Scholar] [CrossRef] [PubMed]
- Fukase, K.; Kato, M.; Kikuchi, S.; Inoue, K.; Uemura, N.; Okamoto, S.; Terao, S.; Amagai, K.; Hayashi, S.; Asaka, M. Effect of Eradication of Helicobacter pylori on Incidence of Metachronous Gastric Carcinoma after Endoscopic Resection of Early Gastric Cancer: An Open-Label, Randomised Controlled Trial. Lancet 2008, 372, 392–397. [Google Scholar] [CrossRef]
- Massironi, S.; Zilli, A.; Elvevi, A.; Invernizzi, P. The Changing Face of Chronic Autoimmune Atrophic Gastritis: An Updated Comprehensive Perspective. Autoimmun. Rev. 2019, 18, 215–222. [Google Scholar] [CrossRef]
- Coati, I.; Fassan, M.; Farinati, F.; Graham, D.Y.; Genta, R.M.; Rugge, M. Autoimmune Gastritis: Pathologist’s Viewpoint. World J. Gastroenterol. 2015, 21, 12179–12189. [Google Scholar] [CrossRef]
- Capelle, L.G.; de Vries, A.C.; Haringsma, J.; Ter Borg, F.; de Vries, R.A.; Bruno, M.J.; van Dekken, H.; Meijer, J.; van Grieken, N.C.T.; Kuipers, E.J. The Staging of Gastritis with the OLGA System by Using Intestinal Metaplasia as an Accurate Alternative for Atrophic Gastritis. Gastrointest. Endosc. 2010, 71, 1150–1158. [Google Scholar] [CrossRef]
- de Vries, A.C.; van Grieken, N.C.T.; Looman, C.W.N.; Casparie, M.K.; de Vries, E.; Meijer, G.A.; Kuipers, E.J. Gastric Cancer Risk in Patients with Premalignant Gastric Lesions: A Nationwide Cohort Study in the Netherlands. Gastroenterology 2008, 134, 945–952. [Google Scholar] [CrossRef]
- Den Hollander, W.J.; Holster, I.L.; Den Hoed, C.M.; Capelle, L.G.; Tang, T.J.; Anten, M.P.; Prytz-Berset, I.; Witteman, E.M.; Ter Borg, F.; Hartog, G.D.; et al. Surveillance of Premalignant Gastric Lesions: A Multicentre Prospective Cohort Study from Low Incidence Regions. Gut 2019, 68, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Pimentel-Nunes, P.; Libânio, D.; Marcos-Pinto, R.; Areia, M.; Leja, M.; Esposito, G.; Garrido, M.; Kikuste, I.; Megraud, F.; Matysiak-Budnik, T.; et al. Management of Epithelial Precancerous Conditions and Lesions in the Stomach (MAPS II): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG), European Society of Pathology (ESP), and Sociedade Port. Endoscopy 2019, 51, 365–388. [Google Scholar] [CrossRef] [PubMed]
- Leja, M.; Park, J.Y.; Murillo, R.; Liepniece-Karele, I.; Isajevs, S.; Kikuste, I.; Rudzite, D.; Krike, P.; Parshutin, S.; Polaka, I.; et al. Multicentric Randomised Study of Helicobacter pylori Eradication and Pepsinogen Testing for Prevention of Gastric Cancer Mortality: The GISTAR Study. BMJ Open 2017, 7, e016999. [Google Scholar] [CrossRef] [PubMed]
- Whiting, J.L.; Sigurdsson, A.; Rowlands, D.C.; Hallissey, M.T.; Fielding, J.W.L. The Long Term Results of Endoscopic Surveillance of Premalignant Gastric Lesions. Gut 2002, 50, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Areia, M.; Spaander, M.C.W.; Kuipers, E.J.; Dinis-Ribeiro, M. Endoscopic Screening for Gastric Cancer: A Cost-Utility Analysis for Countries with an Intermediate Gastric Cancer Risk. United Eur. Gastroenterol. J. 2018, 6, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Romańczyk, M.; Ostrowski, B.; Budzyń, K.; Koziej, M.; Wdowiak, M.; Romańczyk, T.; Błaszczyńska, M.; Kajor, M.; Januszewski, K.; Zajęcki, W.; et al. The Role of Endoscopic and Demographic Features in the Diagnosis of Gastric Precancerous Conditions. Pol. Arch. Intern. Med. 2022, 132, 16200. [Google Scholar] [CrossRef] [PubMed]
- Honing, J.; Tan, W.; Dieninyte, E.; O’Donovan, M.; Brosens, L.; Weusten, B.; di Pietro, M. Adequacy of Endoscopic Recognition and Surveillance of Gastric Intestinal Metaplasia and Atrophic Gastritis: A Multicentre Retrospective Study in Low Incidence Countries. PLoS ONE 2023, 18, e0287587. [Google Scholar] [CrossRef] [PubMed]
- Miwata, T.; Quach, D.T.; Hiyama, T.; Aoki, R.; Le, H.M.; Tran, P.L.N.; Ito, M.; Tanaka, S.; Arihiro, K.; Uemura, N.; et al. Interobserver and Intraobserver Agreement for Gastric Mucosa Atrophy. BMC Gastroenterol. 2015, 15, 95. [Google Scholar] [CrossRef] [PubMed]
- Kaji, K.; Hashiba, A.; Uotani, C.; Yamaguchi, Y.; Ueno, T.; Ohno, K.; Takabatake, I.; Wakabayashi, T.; Doyama, H.; Ninomiya, I.; et al. Grading of Atrophic Gastritis Is Useful for Risk Stratification in Endoscopic Screening for Gastric Cancer. Am. J. Gastroenterol. 2018, 114, 71–79. [Google Scholar] [CrossRef]
- Shichijo, S.; Hirata, Y.; Niikura, R.; Hayakawa, Y.; Yamada, A.; Ushiku, T.; Fukayama, M.; Koike, K. Histologic Intestinal Metaplasia and Endoscopic Atrophy Are Predictors of Gastric Cancer Development after Helicobacter pylori Eradication. Gastrointest. Endosc. 2016, 84, 618–624. [Google Scholar] [CrossRef]
- Kimura, K.; Takemoto, T. An Endoscopic Recognition of the Atrophic Border and Its Significance in Chronic Gastritis. Endoscopy 1969, 1, 87–97. [Google Scholar] [CrossRef]
- Rokkas, T.; Ekmektzoglou, K. Current Role of Narrow Band Imaging in Diagnosing Gastric Intestinal Metaplasia: A Systematic Review and Meta-Analysis of Its Diagnostic Accuracy. Ann. Gastroenterol. 2023, 36, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Pimentel-Nunes, P.; Angeletti, S.; Castro, R.; Libânio, D.; Galli, G.; Lahner, E.; Di Giulio, E.; Annibale, B.; Dinis-Ribeiro, M. Endoscopic Grading of Gastric Intestinal Metaplasia (EGGIM): A Multicenter Validation Study. Endoscopy 2019, 51, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Marcos, P.; Brito-Gonçalves, G.; Libânio, D.; Pita, I.; Castro, R.; Sá, I.; Dinis-Ribeiro, M.; Pimentel-Nunes, P. Endoscopic Grading of Gastric Intestinal Metaplasia on Risk Assessment for Early Gastric Neoplasia: Can We Replace Histology Assessment Also in the West? Gut 2020, 69, 1762–1768. [Google Scholar] [CrossRef]
- Kanemitsu, T.; Uedo, N.; Ono, T.; Nimura, S.; Hasegawa, R.; Imamura, K.; Ohtsu, K.; Ono, Y.; Miyaoka, M.; Ueki, T.; et al. Magnifying Endoscopy with Narrow-band Imaging for Diagnosis of Subtype of Gastric Intestinal Metaplasia. J. Gastroenterol. Hepatol. 2023, 38, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Sieg, A.; Hachmoeller-Eisenbach, U.; Eisenbach, T. Prospective Evaluation of Complications in Outpatient GI Endoscopy: A Survey among German Gastroenterologists. Gastrointest. Endosc. 2001, 53, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Romańczyk, M.; Ostrowski, B.; Barański, K.; Romańczyk, T.; Błaszczyńska, M.; Budzyń, K.; Didkowska, J.; Wojciechowska, U.; Hartleb, M. Potential Benefits of One-Time Gastroscopy in Searching for Precancerous Conditions. Pol. Arch. Intern. Med. 2023, 23, 16401. [Google Scholar] [CrossRef] [PubMed]
- Budzyń, K.; Pelczar, M.; Romańczyk, M.; Barański, K.; Hartleb, M. The Survey of Willingness to Undergo Screening Gastroscopy in the Population of Low-to-Moderate Prevalence Rate of Esophageal and Gastric Cancers. Pol. Arch. Intern. Med. 2024, 134, 16671. [Google Scholar] [CrossRef]
- Koivurova, O.P.; Koskela, R.; Blomster, T.; Ala-Rämi, A.; Lumme, H.; Kettunen, O.; Hukkanen, J.; Karttunen, T.J.; Mäkinen, M.; Ronkainen, J.; et al. Serological Biomarker Panel in Diagnosis of Atrophic Gastritis and Helicobacter pylori Infection in Gastroscopy Referral Patients: Clinical Validation of the New-Generation Gastropanel® Test. Anticancer Res. 2021, 41, 5527–5537. [Google Scholar] [CrossRef]
- Chapelle, N.; Martin, J.; Osmola, M.; Hémont, C.; Leroy, M.; Vibet, M.A.; Tougeron, D.; Moussata, D.; Lamarque, D.; Bigot-Corbel, E.; et al. Serum Pepsinogens Can Help to Discriminate between H. Pylori-Induced and Auto-Immune Atrophic Gastritis: Results from a Prospective Multicenter Study. Dig. Liver Dis. 2023, 55, 1345–1351. [Google Scholar] [CrossRef]
- Chapelle, N.; Osmola, M.; Martin, J.; Blin, J.; Leroy, M.; Jirka, I.; Moussata, D.; Lamarque, D.; Olivier, R.; Tougeron, D.; et al. Serum Pepsinogens Combined with New Biomarkers Testing Using Chemiluminescent Enzyme Immunoassay for Non-Invasive Diagnosis of Atrophic Gastritis: A Prospective, Multicenter Study. Diagnostics 2022, 12, 695. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.L.; Dao, T.T.; Phi, T.T.N.; Nguyen, T.P.; Pham, V.T.; Vu, T.K. Serum Pepsinogen: A Potential Non-Invasive Screening Method for Moderate and Severe Atrophic Gastritis among an Asian Population. Ann. Med. Surg. 2022, 78, 103844. [Google Scholar] [CrossRef] [PubMed]
- Ogutmen Koc, D.; Bektas, S. Serum Pepsinogen Levels and OLGA/OLGIM Staging in the Assessment of Atrophic Gastritis Types. Postgrad. Med. J. 2021, 98, 441–445. [Google Scholar] [CrossRef]
- Cai, H.L.; Tong, Y.L. Association of Serum Pepsinogen with Degree of Gastric Mucosal Atrophy in an Asymptomatic Population. World J. Clin. Cases 2021, 9, 9431–9439. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Zhang, S.; Yang, L.; Wei, W.; Gao, J.; Guo, N.; Wu, F. Serum MiR-101-3p Combined with Pepsinogen Contributes to the Early Diagnosis of Gastric Cancer. BMC Med. Genet. 2020, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Leja, M.; Camargo, M.C.; Polaka, I.; Isajevs, S.; Liepniece-Karele, I.; Janciauskas, D.; Rudzite, D.; Kikuste, I.; Vanags, A.; Kojalo, I.; et al. Detection of Gastric Atrophy by Circulating Pepsinogens: A Comparison of Three Assays. Helicobacter 2017, 22, e12393. [Google Scholar] [CrossRef] [PubMed]
- Loong, T.H.; Soon, N.C.; Nik Mahmud, N.R.K.; Naidu, J.; Abdul Rani, R.; Abdul Hamid, N.; Hikmah Elias, M.; Rose, I.M.; Tamil, A.; Mokhtar, N.M.; et al. Serum Pepsinogen and Gastrin-17 as Potential Biomarkers for Pre-malignant Lesions in the Gastric Corpus. Biomed. Rep. 2017, 7, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Bang, C.S.; Lee, J.J.; Baik, G.H. Prediction of Chronic Atrophic Gastritis and Gastric Neoplasms by Serum Pepsinogen Assay: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. J. Clin. Med. 2019, 8, 657. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.K.; Wang, W.L. Analysis of High Risk Factors for Chronic Atrophic Gastritis. Saudi J. Gastroenterol. 2023, 29, 127–134. [Google Scholar] [CrossRef]
- Reza Sivandzadeh, G.; Amiri Zadeh Fard, S.; Zahmatkesh, A.; Hossein Anbardar, M.; Lankarani, K.B.; Author, C. Value of Serological Biomarker Panel in Diagnosis of Atrophic Gastritis and Helicobacter pylori Infection. Middle East. J. Dig. Dis. 2023, 15, 37–44. [Google Scholar]
- Huang, R.J.; Park, S.; Shen, J.; Longacre, T.; Ji, H.; Hwang, J.H. Pepsinogens and Gastrin Demonstrate Low Discrimination for Gastric Precancerous Lesions in a Multi-Ethnic United States Cohort. Clin. Gastroenterol. Hepatol. 2022, 20, 950–952.e3. [Google Scholar] [CrossRef]
- Miftahussurur, M.; Waskito, L.A.; Syam, A.F.; Nusi, I.A.; Dewa Nyoman Wibawa, I.; Rezkitha, Y.A.A.; Fauzia, K.A.; Siregar, G.A.; Akil, F.; Waleleng, B.J.; et al. Serum Pepsinogen Level as a Biomarker for Atrophy, Reflux Esophagitis, and Gastric Cancer Screening in Indonesia. J. Res. Med. Sci. 2022, 27, 90. [Google Scholar] [CrossRef]
- Chapelle, N.; Petryszyn, P.; Blin, J.; Leroy, M.; Le Berre-Scoul, C.; Jirka, I.; Neunlist, M.; Moussata, D.; Lamarque, D.; Olivier, R.; et al. A Panel of Stomach-Specific Biomarkers (GastroPanel®) for the Diagnosis of Atrophic Gastritis: A Prospective, Multicenter Study in a Low Gastric Cancer Incidence Area. Helicobacter 2020, 25, e12727. [Google Scholar] [CrossRef]
- Whary, M.T.; Avenia, J.M.R.; Bravo, L.E.; Lofgren, J.L.; Lertpiriyapong, K.; Mera-Giler, R.; Piazuelo, M.B.; Correa, P.; Peek, R.M.; Wilson, K.T.; et al. Contrasting Serum Biomarker Profiles in Two Colombian Populations with Different Risks for Progression of Premalignant Gastric Lesions during Chronic Helicobacter pylori Infection. Cancer Epidemiol. 2020, 67, 101726. [Google Scholar] [CrossRef]
- Miftahussurur, M.; Agung Waskito, L.; Aftab, H.; Vilaichone, R.; Subsomwong, P.; Nusi, I.A.; Syam, A.F.; Ratanachu-Ek, T.; Doohan, D.; Siregar, G.; et al. Serum Pepsinogens as a Gastric Cancer and Gastritis Biomarker in South and Southeast Asian Populations. PLoS ONE 2020, 15, e0230064. [Google Scholar] [CrossRef]
- Mattar, R.; Marques, S.B.; Ribeiro, I.B.; Visconti, T.A.d.C.; Funari, M.; de Moura, E.G.H. Diagnostic Accuracy of Gastropanel® for Atrophic Gastritis in Brazilian Subjects and the Effect of Proton Pump Inhibitors. Arq. Gastroenterol. 2020, 57, 154–160. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Wang, L.; Zhang, Z.; Li, Z.; Li, M. A Comparative Study on Changes in Intestinal Flora, Pepsinogen and Gastrin in Patients with Gastric Cancer and Atrophic Gastritis. JBUON 2020, 25, 995–1000. [Google Scholar]
- Mezmale, L.; Isajevs, S.; Bogdanova, I.; Polaka1, I.; Krigere, A.; Rudzite, D.; Rudule, A.; Kikuste, I.; Parshutin, S.; Tazhedinov, A.; et al. Prevalence of Atrophic Gastritis in Kazakhstan and the Accuracy of Pepsinogen Tests to Detect Gastric Mucosal Atrophy. Asian Pac. J. Cancer Prev. 2019, 20, 3825–3829. [Google Scholar] [CrossRef]
- Huang, Y.K.; Yu, J.C.; Kang, W.M.; Ma, Z.Q.; Ye, X.; Tian, S.B.; Yan, C. Significance of Serum Pepsinogens as a Biomarker for Gastric Cancer and Atrophic Gastritis Screening: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0142080. [Google Scholar] [CrossRef]
- Dinis-Ribeiro, M.; Areia, M.; De Vries, A.C.; Marcos-Pinto, R.; Monteiro-Soares, M.; Oconnor, A.; Pereira, C.; Pimentel-Nunes, P.; Correia, R.; Ensari, A.; et al. Management of Precancerous Conditions and Lesions in the Stomach (MAPS): Guideline from the European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter Study Group (EHSG), European Society of Pathology (ESP), and the Sociedade Portuguesa de Endoscopia Digestiva (SPED). Endoscopy 2012, 44, 74–94. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Megraud, F.; Rokkas, T.; Gisbert, J.P.; Liou, J.M.; Schulz, C.; Gasbarrini, A.; Hunt, R.H.; Leja, M.; O’Morain, C.; et al. Management of Helicobacter pylori Infection: The Maastricht VI/Florence Consensus Report. Gut 2022, 71, 1724–1762. [Google Scholar] [CrossRef]
- Sugano, K.; Tack, J.; Kuipers, E.J.; Graham, D.Y.; El-Omar, E.M.; Miura, S.; Haruma, K.; Asaka, M.; Uemura, N.; Malfertheiner, P.; et al. Kyoto Global Consensus Report on Helicobacter pylori Gastritis. Gut 2015, 64, 1353–1367. [Google Scholar] [CrossRef] [PubMed]
- Kamada, T.; Maruyama, Y.; Monobe, Y.; Haruma, K. Endoscopic Features and Clinical Importance of Autoimmune Gastritis. Dig. Endosc. 2022, 34, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Lim, C.-H.; Kim, J.S.; Cho, Y.K.; Park, J.M.; Choi, M.-G. Impact of Autoimmune Gastritis on Occurrence of Metachronous Gastric Neoplasms after Endoscopic Resection for Gastric Neoplasms. Cancers 2023, 15, 4859. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.A.; Grabowska, A.M.; El-Zaatari, M.; Takhar, A. Gastrin—Active Participant or Bystander in Gastric Carcinogenesis? Nat. Rev. Cancer 2006, 6, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Copps, J.; Murphy, R.F.; Lovas, S. The Production and Role of Gastrin-17 and Gastrin-17-Gly in Gastrointestinal Cancers. Protein Pept. Lett. 2009, 16, 1504–1518. [Google Scholar] [CrossRef] [PubMed]
- Leja, M.; Kupcinskas, L.; Funka, K.; Sudraba, A.; Jonaitis, L.; Ivanauskas, A.; Janciauskas, D.; Kuidelis, G.; Chiu, H.M.; Lin, J.T. Value of Gastrin-17 in Detecting Antral Atrophy. Adv. Med. Sci. 2011, 56, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Korstanje, A.; Den Hartog, G.; Biemond, I.; Lamers, C.B.H.W. The Serological Gastric Biopsy: A Non-Endoscopical Diagnostic Approach in Management of the Dyspeptic Patient Signi Cance for Primary Care Based on a Survey of the Literature. Scand. J. Gastroenterol. Suppl. 2002, 37, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Lundell, L.; Vieth, M.; Gibson, F.; Nagy, P.; Kahrilas, P.J. Systematic Review: The Effects of Long-Term Proton Pump Inhibitor Use on Serum Gastrin Levels and Gastric Histology. Aliment. Pharmacol. Ther. 2015, 42, 649–663. [Google Scholar] [CrossRef]
- Zagari, R.M.; Rabitti, S.; Greenwood, D.C.; Eusebi, L.H.; Vestito, A.; Bazzoli, F. Systematic Review with Meta-analysis: Diagnostic Performance of the Combination of Pepsinogen, Gastrin-17 and Anti-Helicobacter pylori Antibodies Serum Assays for the Diagnosis of Atrophic Gastritis. Aliment. Pharmacol. Ther. 2017, 46, 657–667. [Google Scholar] [CrossRef]
- Syrjänen, K.; Eskelinen, M.; Peetsalu, A.; Sillakivi, T.; Sipponen, P.; Härkönen, M.; Paloheimo, L.; Mäki, M.; Tiusanen, T.; Suovaniemi, O.; et al. GastroPanel® Biomarker Assay: The Most Comprehensive Test for Helicobacter pylori Infection and Its Clinical Sequelae. A Critical Review. Anticancer Res. 2019, 39, 1091–1104. [Google Scholar] [CrossRef]
- Agréus, L.; Kuipers, E.J.; Kupcinskas, L.; Malfertheiner, P.; Di Mario, F.; Leja, M.; Mahachai, V.; Yaron, N.; van Oijen, M.; Perez Perez, G.; et al. Rationale in Diagnosis and Screening of Atrophic Gastritis with Stomach-Specific Plasma Biomarkers. Scand. J. Gastroenterol. 2012, 47, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Mäki, M.; Söderström, D.; Paloheimo, L.; Hendolin, P.; Suovaniemi, O.; Syrjänen, K. Helicobacter pylori (Hp) IgG ELISA of the New-Generation GastroPanel® Is Highly Accurate in Diagnosis of Hp-Infection in Gastroscopy Referral Patients. Anticancer Res. 2020, 40, 6387–6398. [Google Scholar] [CrossRef] [PubMed]
- Syrjänen, K. Accuracy of Serum Biomarker Panel (GastroPanel ®) in the Diagnosis of Atrophic Gastritis of the Corpus. Systematic Review and Meta-Analysis. Anticancer Res. 2022, 42, 1679–1696. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.; Maeda, M.; Yamada, H.; Chan, C.; Chen, S.L.; Chiu, S.Y.; Chen, Y.; Chou, Y.; Shieh, C.; Liu, C.; et al. Risk Stratification for Gastric Cancer after Helicobacter pylori Eradication: A Population-based Study on Matsu Islands. J. Gastroenterol. Hepatol. 2021, 36, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.H.; Chen, Y.N.; Chen, Y.R.; Tseng, Y.H.; Shieh, C.F.; Liu, C.Y.; Chiu, H.M.; Chiang, H.; Shun, C.T.; Wu, M.S.; et al. Brand Interchangeability of Pepsinogen Tests in the Real-World Setting after Eradication of Helicobacter pylori: A Community-Based Study. BMC Gastroenterol. 2022, 22, 69. [Google Scholar] [CrossRef]
- Syrjänen, K. A Panel of Serum Biomarkers (Gastropanel®) in Non-Invasive Diagnosis of Atrophic Gastritis. Systematic Review and Meta-Analysis. Anticancer Res. 2016, 36, 5133–5144. [Google Scholar] [CrossRef] [PubMed]
- McNicholl, A.G.; Forné, M.; Barrio, J.; De la Coba, C.; González, B.; Rivera, R.; Esteve, M.; Fernandez-Bañares, F.; Madrigal, B.; Gras-Miralles, B.; et al. Accuracy of GastroPanel for the Diagnosis of Atrophic Gastritis. Eur. J. Gastroenterol. Hepatol. 2014, 26, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Grad, C.; Pop, A.; Gaborean, E.; Grad, S.; Dumitrascu, D. Value of GastroPanel in the Diagnosis of Atrophic Gastritis. Exp. Ther. Med. 2021, 22, 1347. [Google Scholar] [CrossRef]
- Franceschi, M.; Rodriguez-Castro, K.I.; Ferronato, A.; Massella, A.; Brozzi, L.; Panozzo, M.P.; Antico, A.; Pertoldi, B.; Morini, A.; Barchi, A.; et al. A Non-Invasive Combined Strategy to Improve the Appropriateness of Upper Gastrointestinal Endoscopy. Acta Biomed. 2022, 93, e2022210. [Google Scholar] [CrossRef]
- Pei, B.; Wen, Z.; Yang, Q.; Wang, J.; Cao, Q.; Dai, L.; Li, X. Risk Factors Analysis and Prediction Model Establishment of Intestinal Metaplasia or Dysplasia in Patients with Chronic Atrophic Gastritis: A Multi-Center Retrospective Study. Front. Med. 2022, 9, 912331. [Google Scholar] [CrossRef]
- Guo, X.; Schreurs, M.W.J.; Marijnissen, F.E.; Mommersteeg, M.C.; Nieuwenburg, S.A.V.; Doukas, M.; Erler, N.S.; Capelle, L.G.; Bruno, M.J.; Peppelenbosch, M.P.; et al. Increased Prevalence of Autoimmune Gastritis in Patients with a Gastric Precancerous Lesion. J. Clin. Med. 2023, 12, 6152. [Google Scholar] [CrossRef] [PubMed]
- Dondov, G.; Amarbayasgalan, D.; Batsaikhan, B.; Badamjav, T.; Batbaatar, B.; Tuvdenjamts, B.; Tumurbat, N.; Davaa, B.; Purevdorj, E.; Nyamaa, B.; et al. Diagnostic Performances of Pepsinogens and Gastrin-17 for Atrophic Gastritis and Gastric Cancer in Mongolian Subjects. PLoS ONE 2022, 17, e0274938. [Google Scholar] [CrossRef] [PubMed]
- Ambros, V. The Functions of Animal MicroRNAs. Nature 2004, 431, 350–355. [Google Scholar] [CrossRef]
- Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.-C.; Hung, T.; Argani, P.; Rinn, J.L.; et al. Long Non-Coding RNA HOTAIR Reprograms Chromatin State to Promote Cancer Metastasis. Nature 2010, 464, 1071–1076. [Google Scholar] [CrossRef]
- Link, J.; Thon, C.; Petkevicius, V.; Steponaitiene, R.; Malfertheiner, P.; Kupcinskas, J.; Link, A. The Translational Impact of Plant-Derived Xeno-MiRNA MiR-168 in Gastrointestinal Cancers and Preneoplastic Conditions. Diagnostics 2023, 13, 2701. [Google Scholar] [CrossRef]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA Circles Function as Efficient MicroRNA Sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef]
- Meltzer, P.S. Small RNAs with Big Impacts. Nature 2005, 435, 745–746. [Google Scholar] [CrossRef] [PubMed]
- Leja, M.; Wex, T.; Malfertheiner, P. Markers for Gastric Cancer Premalignant Lesions: Where Do We Go? Dig. Dis. 2012, 30, 268–276. [Google Scholar] [CrossRef]
- Link, A.; Kupcinskas, J.; Wex, T.; Malfertheiner, P. Macro-Role of MicroRNA in Gastric Cancer. Dig. Dis. 2012, 30, 255–267. [Google Scholar] [CrossRef]
- Link, A.; Schirrmeister, W.; Langner, C.; Varbanova, M.; Bornschein, J.; Wex, T.; Malfertheiner, P. Differential Expression of MicroRNAs in Preneoplastic Gastric Mucosa. Sci. Rep. 2015, 5, 8270. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Márquez, A.C.; Mendoza-Elizalde, S.; Arenas-Huertero, F.; Trillo-Tinoco, J.; Valencia-Mayoral, P.; Consuelo-Sánchez, A.; Zarate-Franco, J.; Dionicio-Avendaño, A.R.; Herrera-Esquivel, J.d.J.; Recinos-Carrera, E.G.; et al. Differential Expression of MiRNA-146a and MiRNA-155 in Gastritis Induced by Helicobacter pylori Infection in Paediatric Patients, Adults, and an Animal Model. BMC Infect. Dis. 2018, 18, 463. [Google Scholar] [CrossRef]
- Vasapolli, R.; Venerito, M.; Schirrmeister, W.; Thon, C.; Weigt, J.; Wex, T.; Malfertheiner, P.; Link, A. Inflammatory MicroRNAs in Gastric Mucosa Are Modulated by Helicobacter pylori Infection and Proton-Pump Inhibitors but Not by Aspirin or NSAIDs. PLoS ONE 2021, 16, e0249282. [Google Scholar] [CrossRef]
- Matsushima, K.; Isomoto, H.; Inoue, N.; Nakayama, T.; Hayashi, T.; Nakayama, M.; Nakao, K.; Hirayama, T.; Kohno, S. MicroRNA Signatures in Helicobacter pylori Infected Gastric Mucosa. Int. J. Cancer 2011, 128, 361–370. [Google Scholar] [CrossRef]
- Jonaitis, P.; Kupcinskas, L.; Kupcinskas, J. Molecular Alterations in Gastric Intestinal Metaplasia. Int. J. Mol. Sci. 2021, 22, 5758. [Google Scholar] [CrossRef]
- Okubo, M.; Tahara, T.; Shibata, T.; Yamashita, H.; Nakamura, M.; Yoshioka, D.; Yonemura, J.; Kamiya, Y.; Ishizuka, T.; Nakagawa, Y.; et al. Association between Common Genetic Variants in Pre-MicroRNAs and the Clinicopathological Characteristics and Survival of Gastric Cancer Patients. Exp. Ther. Med. 2010, 1, 1035–1040. [Google Scholar] [CrossRef]
- Christodoulidis, G.; Koumarelas, K.-E.; Kouliou, M.-N.; Thodou, E.; Samara, M. Gastric Cancer in the Era of Epigenetics. Int. J. Mol. Sci. 2024, 25, 3381. [Google Scholar] [CrossRef] [PubMed]
- Prinz, C.; Mese, K.; Weber, D. MicroRNA Changes in Gastric Carcinogenesis: Differential Dysregulation during Helicobacter pylori and EBV Infection. Genes 2021, 12, 597. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Kono, K. Landscape of EBV-Positive Gastric Cancer. Gastric Cancer 2021, 24, 983–989. [Google Scholar] [CrossRef]
- Petkevicius, V.; Thon, C.; Steponaitiene, R.; Skieceviciene, J.; Janciauskas, D.; Jechorek, D.; Malfertheiner, P.; Kupcinskas, J.; Link, A. Differential Expression of Long Noncoding RNA HOTAIR in Intestinal Metaplasia and Gastric Cancer. Clin. Transl. Gastroenterol. 2022, 13, e00483. [Google Scholar] [CrossRef]
- Link, A.; Kupcinskas, J. MicroRNAs as Non-Invasive Diagnostic Biomarkers for Gastric Cancer: Current Insights and Future Perspectives. World J. Gastroenterol. 2018, 24, 3313–3329. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, P.-W.; Yang, W.-Q.; Mi, H.; Pan, J.-L.; Huang, Y.-C.; Hou, Z.-K.; Hou, Q.-K.; Luo, Q.; Liu, F.-B. Identification of Non-Invasive Biomarkers for Chronic Atrophic Gastritis from Serum Exosomal MicroRNAs. BMC Cancer 2019, 19, 129. [Google Scholar] [CrossRef] [PubMed]
- Bado, A.; Levasseur, S.; Attoub, S.; Kermorgant, S.; Laigneau, J.-P.; Bortoluzzi, M.-N.; Moizo, L.; Lehy, T.; Guerre-Millo, M.; Le Marchand-Brustel, Y.; et al. The Stomach Is a Source of Leptin. Nature 1998, 394, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Inagaki-Ohara, K. Gastric Leptin and Tumorigenesis: Beyond Obesity. Int. J. Mol. Sci. 2019, 20, 2622. [Google Scholar] [CrossRef] [PubMed]
- Boutari, C.; Perakakis, N.; Mantzoros, C.S. Association of Adipokines with Development and Progression of Nonalcoholic Fatty Liver Disease. Endocrinol. Metab. 2018, 33, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Arita, S.; Inagaki-Ohara, K. High-Fat-Diet–Induced Modulations of Leptin Signaling and Gastric Microbiota Drive Precancerous Lesions in the Stomach. Nutrition 2019, 67–68, 110556. [Google Scholar] [CrossRef] [PubMed]
- Francois, F.; Roper, J.; Goodman, A.J.; Pei, Z.; Ghumman, M.; Mourad, M.; de Perez, A.Z.O.; Perez-Perez, G.I.; Tseng, C.-H.; Blaser, M.J. The Association of Gastric Leptin with Oesophageal Inflammation and Metaplasia. Gut 2007, 57, 16–24. [Google Scholar] [CrossRef]
- Capelle, L.G.; De Vries, A.C.; Haringsma, J.; Steyerberg, E.W.; Looman, C.W.N.; Nagtzaam, N.M.A.; Van Dekken, H.; Ter Borg, F.; De Vries, R.A.; Kuipers, E.J. Serum Levels of Leptin As Marker For Patients At High Risk of Gastric Cancer. Helicobacter 2009, 14, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Kendall, B.J.; Macdonald, G.A.; Hayward, N.K.; Prins, J.B.; Brown, I.; Walker, N.; Pandeya, N.; Green, A.C.; Webb, P.M.; Whiteman, D.C. Leptin and the Risk of Barrett’s Oesophagus. Gut 2007, 57, 448–454. [Google Scholar] [CrossRef]
- Zhao, L. Possible Involvement of Leptin and Leptin Receptor in Developing Gastric Adenocarcinoma. World J. Gastroenterol. 2005, 11, 7666–7670. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, K.; Zhu, Z.; Chen, S.; Hu, R. Correlation between Expression of Leptin and Clinicopathological Features and Prognosis in Patients with Gastric Cancer. J. Gastroenterol. Hepatol. 2007, 22, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M. Expression Pattern of Leptin and Leptin Receptor (OB-R) in Human Gastric Cancer. World J. Gastroenterol. 2006, 12, 5517–5522. [Google Scholar] [CrossRef] [PubMed]
- Monks, M.; Irakleidis, F.; Tan Peng, H. Complex Interaction of Adiponectin-Mediated Pathways on Cancer Treatment: A Novel Therapeutic Target. J. Cancer Metastasis Treat. 2019, 5, 24. [Google Scholar] [CrossRef]
- Ando, T.; Ishikawa, T.; Takagi, T.; Imamoto, E.; Kishimoto, E.; Okajima, A.; Uchiyama, K.; Handa, O.; Yagi, N.; Kokura, S.; et al. Impact of Helicobacter pylori Eradication on Circulating Adiponectin in Humans. Helicobacter 2013, 18, 158–164. [Google Scholar] [CrossRef]
- Torisu, T.; Takata, Y.; Ansai, T.; Matsumoto, T.; Sonoki, K.; Soh, I.; Awano, S.; Yoshida, A.; Hamasaki, T.; Kagiyama, S.; et al. Possible Association of Atrophic Gastritis and Arterial Stiffness in Healthy Middle-Aged Japanese. J. Atheroscler. Thromb. 2009, 16, 691–697. [Google Scholar] [CrossRef]
- Kishida, K.; Funahashi, T.; Shimomura, I. Adiponectin as a Routine Clinical Biomarker. Best. Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 119–130. [Google Scholar] [CrossRef]
- Ishikawa, M.; Kitayama, J.; Kazama, S.; Hiramatsu, T.; Hatano, K.; Nagawa, H. Plasma Adiponectin and Gastric Cancer. Clin. Cancer Res. 2005, 11, 466–472. [Google Scholar] [CrossRef]
- Seker, M.; Bilici, A.; Sonmez, B.; Ustaalioğlu, B.B.O.; Gumus, M.; Gozu, H.; Sargin, M.; Orcun, A.; Gezen, C.; Eser, M.; et al. The Association of Serum Adiponectin Levels with Histopathological Variables in Gastric Cancer Patients. Med. Oncol. 2010, 27, 1319–1323. [Google Scholar] [CrossRef] [PubMed]
- Laron, Z. Insulin-like Growth Factor 1 (IGF-1): A Growth Hormone. Mol. Pathol. 2001, 54, 311–316. [Google Scholar] [CrossRef]
- Werner, H.; Bruchim, I. The Insulin-like Growth Factor-I Receptor as an Oncogene. Arch. Physiol. Biochem. 2009, 115, 58–71. [Google Scholar] [CrossRef]
- Yi, H.K.; Hwang, P.H.; Yang, D.-H.; Kang, C.-W.; Lee, D.-Y. Expression of the Insulin-like Growth Factors (IGFs) and the IGF-Binding Proteins (IGFBPs) in Human Gastric Cancer Cells. Eur. J. Cancer 2001, 37, 2257–2263. [Google Scholar] [CrossRef] [PubMed]
- Kędzierska, L.; Madej-Michniewicz, A.; Marczuk, N.; Dołęgowska, B.; Starzyńska, T.; Błogowski, W. Clinical Significance of Various Growth Factors in Patients with Different Gastric Neoplasms. Am. J. Transl. Res. 2020, 12, 118–129. [Google Scholar] [PubMed]
- Ennishi, D.; Shitara, K.; Ito, H.; Hosono, S.; Watanabe, M.; Ito, S.; Sawaki, A.; Yatabe, Y.; Yamao, K.; Tajima, K.; et al. Association between Insulin-like Growth Factor-1 Polymorphisms and Stomach Cancer Risk in a Japanese Population. Cancer Sci. 2011, 102, 2231–2235. [Google Scholar] [CrossRef] [PubMed]
- Pavelić, K.; Kolak, T.; Kapitanović, S.; Radošević, S.; Spaventi, Š.; Krušlin, B.; Pavelić, J. Gastric Cancer: The Role of Insulin-like Growth Factor 2 (IGF 2) and Its Receptors (IGF 1R and M6-P/IGF 2R). J. Pathol. 2003, 201, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Ustundag, Y.; Sahin, H.; İlikhan, S.; Dogan, B.G.; Kokturk, F.; Kar, F. Helicobacter pylori Eradication Does Not Change Circulating Insulin-Like Growth Factor 1 and Insulin-Like Growth Factor Binding Protein 3 Levels in Patients with and without Precancerous Gastric Lesions. Am. J. Med. Sci. 2013, 346, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Park, J.Y.; Camargo, M.C.; Lunet, N.; Forman, D.; Soerjomataram, I. Is Gastric Cancer Becoming a Rare Disease? A Global Assessment of Predicted Incidence Trends to 2035. Gut 2020, 69, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.F.; Rabkin, C.S.; Turner, N.; Fraumeni, J.F.; Rosenberg, P.S.; Camargo, M.C. The Changing Face of Noncardia Gastric Cancer Incidence Among US Non-Hispanic Whites. JNCI J. Natl. Cancer Inst. 2018, 110, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Blaser, M.J.; Chen, Y. A New Gastric Cancer Among Us. JNCI J. Natl. Cancer Inst. 2018, 110, 549–550. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Camargo, M.C.; Katki, H.A.; Weinstein, S.J.; Männistö, S.; Albanes, D.; Surcel, H.-M.; Rabkin, C.S. Association of Antiparietal Cell and Anti-Intrinsic Factor Antibodies with Risk of Gastric Cancer. JAMA Oncol. 2022, 8, 268–274. [Google Scholar] [CrossRef]
- Song, M.; Latorre, G.; Ivanovic-Zuvic, D.; Camargo, M.C.; Rabkin, C.S. Autoimmune Diseases and Gastric Cancer Risk: A Systematic Review and Meta-Analysis. Cancer Res. Treat. 2019, 51, 841–850. [Google Scholar] [CrossRef]
- Zádori, N.; Szakó, L.; Váncsa, S.; Vörhendi, N.; Oštarijaš, E.; Kiss, S.; Frim, L.; Hegyi, P.; Czimmer, J. Six Autoimmune Disorders Are Associated with Increased Incidence of Gastric Cancer: A Systematic Review and Meta-Analysis of Half a Million Patients. Front. Immunol. 2021, 12, 750533. [Google Scholar] [CrossRef]
- Landgren, A.M.; Landgren, O.; Gridley, G.; Dores, G.M.; Linet, M.S.; Morton, L.M. Autoimmune Disease and Subsequent Risk of Developing Alimentary Tract Cancers among 4.5 Million US Male Veterans. Cancer 2011, 117, 1163–1171. [Google Scholar] [CrossRef] [PubMed]
- Osmola, M.; Hemont, C.; Chapelle, N.; Vibet, M.-A.; Tougeron, D.; Moussata, D.; Lamarque, D.; Bigot-Corbel, E.; Masson, D.; Blin, J.; et al. Atrophic Gastritis and Autoimmunity: Results from a Prospective, Multicenter Study. Diagnostics 2023, 13, 1599. [Google Scholar] [CrossRef] [PubMed]
- Presotto, F.; Sabini, B.; Cecchetto, A.; Plebani, M.; Lazzari, F.D.; Pedini, B.; Betterle, C. Helicobacter pylori Infection and Gastric Autoimmune Diseases: Is There a Link? Helicobacter 2003, 8, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Allakky, A. Exploring the Association of Helicobacter pylori with Anti-Intrinsic Factor and Anti-Parietal Cell Antibodies in Pernicious Anemia: A Systematic Review. Cureus 2023, 15, e45887. [Google Scholar] [CrossRef]
- Nozaki, K.; Ogawa, M.; Williams, J.A.; Lafleur, B.J.; Ng, V.; Drapkin, R.I.; Mills, J.C.; Konieczny, S.F.; Nomura, S.; Goldenring, J.R. A Molecular Signature of Gastric Metaplasia Arising in Response to Acute Parietal Cell Loss. Gastroenterology 2008, 134, 511–522. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, R.L.; Nam, K.T.; LaFleur, B.J.; Barlow, B.; Nozaki, K.; Lee, H.-J.; Kim, W.H.; Yang, H.-K.; Shi, C.; Maitra, A.; et al. Human Epididymis Protein 4 Is Up-Regulated in Gastric and Pancreatic Adenocarcinomas. Hum. Pathol. 2013, 44, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-D.; Wang, J.-H.; Lu, H.; Li, X.-N.; Song, W.-W.; Zhang, X.-D.; Zhang, W.-M. The Human Epididymis Protein 4 Acts as a Prognostic Factor and Promotes Progression of Gastric Cancer. Tumor Biol. 2015, 36, 2457–2464. [Google Scholar] [CrossRef]
- Piao, J.; Lee, H.G.; Kim, S.; Kim, D.; Han, H.; Ngo, H.; Park, S.; Woo, J.; Lee, J.; Na, H.; et al. Helicobacter pylori Activates IL-6-STAT3 Signaling in Human Gastric Cancer Cells: Potential Roles for Reactive Oxygen Species. Helicobacter 2016, 21, 405–416. [Google Scholar] [CrossRef]
- Nakagawa, H.; Tamura, T.; Mitsuda, Y.; Goto, Y.; Kamiya, Y.; Kondo, T.; Wakai, K.; Hamajima, N. Significant Association between Serum Interleukin-6 and Helicobacter pylori Antibody Levels among H. Pylori Positive Japanese Adults. Mediators Inflamm. 2013, 2013, 142358. [Google Scholar] [CrossRef]
- Kim, D.-K.; Oh, S.Y.; Kwon, H.-C.; Lee, S.; Kwon, K.A.; Kim, B.G.; Kim, S.-G.; Kim, S.-H.; Jang, J.S.; Kim, M.C.; et al. Clinical Significances of Preoperative Serum Interleukin-6 and C-Reactive Protein Level in Operable Gastric Cancer. BMC Cancer 2009, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Zauco, N.; Torres, J.; Gómez, A.; Camorlinga-Ponce, M.; Muñoz-Pérez, L.; Herrera-Goepfert, R.; Medrano-Guzmán, R.; Giono-Cerezo, S.; Maldonado-Bernal, C. Circulating Blood Levels of IL-6, IFN-γ, and IL-10 as Potential Diagnostic Biomarkers in Gastric Cancer: A Controlled Study. BMC Cancer 2017, 17, 384. [Google Scholar] [CrossRef] [PubMed]
- Vainer, N.; Dehlendorff, C.; Johansen, J.S. Systematic Literature Review of IL-6 as a Biomarker or Treatment Target in Patients with Gastric, Bile Duct, Pancreatic and Colorectal Cancer. Oncotarget 2018, 9, 29820–29841. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Recommendations on the Diagnosis of HIV Infection in Infants and Children; Department of HIV/AIDS, World Health Organization: Geneva, Switzerland, 2010; ISBN 9789241599085. [Google Scholar]
Study (Year) | Study Type, Country | Targeted Condition | Cut-Off Values | Test Method | No. of Patients Included | Age, Mean ± SD (Range) Years | Sensitivity % (95% CI) | Specificity % (95% CI) | AUC ROC (95% CI) |
---|---|---|---|---|---|---|---|---|---|
Lin [39] (2023) | Single center, China | AG | PG I ≤ 70 ng/mL, PGI/PGII ratio ≤ 3 | n/a | 965 (AG: 275) | n/a | 8.7 | 94.5 | n/a |
PG II > 11.05 ng/mL, PGI/PGII ratio < 3.75 | 21.8 | 86.1 | n/a | ||||||
Sivandzadeh [40] (2023) | Single center, Iran | AG | PG II > 30.28 μg/L for corpus atrophy | ELISA | 153 | 63.7 female; 64.9 male | 28.6 (8.6–58.1) | 93.5 (88.1–97.0) | n/a |
PG I for corpus atrophy | n/a | n/a | 0.551 | ||||||
PGI/II ratio for corpus atrophy | n/a | n/a | 0.544 | ||||||
Chapelle [31] (2022) | Multicenter, France | AG | PGI ≤ 21.1 ng/mL | CLEIA | 356 (AG: 152) | 58.6 ± 14.2 | 40.8 (32.9–49.0) | 94.6 (90.6–97.3) | 0.642 |
PGI/PGII ratio ≤ 3.03 | 46.7 (38.6–55.0) | 92.6 (88.2–95.8) | 0.685 | ||||||
Huang [41] 2022 | Single center, United States of America | AG, IM | PGI < 67 μg/L | ELISA | 135 (AG or IM: 59) | n/a | 41 (29–54) | 78 (68–87) | 0.567 |
PGI/PGII ratio < 8.2 | 43 (30–56) | 45 (34–56) | 0.503 | ||||||
Nguyen [32] (2022) | Single center, Vietnam | AG moderate to severe | PGI ≤ 63.5 ng/mL | CMIA | 273 (moderate to severe AG: 77) | 56.3 ± 9.7 | 79.2 | 41.3 | 0.612 |
PGI/PGII ratio ≤ 5.2 | 61 | 68.9 | 0.689 | ||||||
PGI ≤ 63.5 ng/mL, PGI/PGII ratio ≤5.2 | 49.4 | 82.1 | n/a | ||||||
PGI ≤ 63.5 ng/mL, PGI/PGII ratio ≤ 5.2 | 90.9 | 28.1 | n/a | ||||||
Miftahussurur [42] (2022) | Multicenter, Indonesia | AG, GC, gastroesophageal reflux | PG I ≤ 70 ng/mL, PGI/PGII ratio ≤ 3 | ELISA | 646 (AG: 171) | 44.93 ± 12.98 | 7.6 (4.5–9.2) | 99.2 (98.2–99.8) | n/a |
PGII ≥ 12.45 ng/mL | 646 (AG: 27) | 59.3 (38.8–77.6) | 77.1 (73.0–80.8) | 0.755 (0.702–0.811) | |||||
PGI/II ratio ≤ 4.75 | 81.5 (61.9–93.7) | 78.7 (74.3–82.3) | 0.821 (0.763–0.855) | ||||||
Koc [33] (2022) | Single center, Turkey | AG, autoimmune AG | PGI/II ratio ≤ 11.9 for AG and autoimmune AG | ELISA | 147 (AG:79, autoimmune AG: 16) | 57.7 ± 12 | 45.6 | 84.4 | 0.644 |
PGI/II ratio ≤ 9.2 for AG | 47.5 | 90.6 | 0.711 | ||||||
PGI/II ratio ≤ 1.9 for autoimmune AG | 100 | 100 | 1 | ||||||
PGI ≤ 13.5 ng/mL for autoimmune AG | 100 | 100 | 1 | ||||||
Cai [34] (2021) | Multicenter, China | AG | PGI ≤ 73.14 ng/mL OLGA 0 versus I/II | CLIA | 1922 (OLGA 0: 1590, Olga I/II: 273, OLGA III/IV: 49) | 52.3 ± 9.8 | 62.1 | 53.8 | 0.585 |
PGI/PGII ratio ≤ 11.54 ng/mL OLGA 0 versus I/II | 43.2 | 77.7 | 0.611 | ||||||
PGI ≤ 64.0 ng/mL OLGA 0/I/II versus III/IV | 67.2 | 61.2 | 0.631 | ||||||
PGI/PGII ratio ≤ 9.11 ng/mL OLGA 0/I/II versus III/IV | 53.0 | 91.8 | 0.740 | ||||||
Chapelle [43] (2020) | Multicenter, France | AG | PG I < 30 μg/L | ELISA | 344 (AG: 148) | 58.8 ± 14.2 | 31.8 (24.4–39.9) | 98.0 (94.9–99.4) | 0.629 (0.565–0.692 |
PG I < 43.6 μg/L | 37.8 (30.0–46.2) | 95.9 (92.1–98.2) | |||||||
PGI/PGII ratio < 3 | 30.6 (23.3–38.7) | 97.4 (94.1–99.2) | 0.679 (0.619–0.738) | ||||||
PGI/PGII ratio < 7 | 50.3 (42.0–58.7) | 83.7 (77.7–88.6) | |||||||
Whary [44] (2020) | Single center, Colombia | AG/GC | PGI/PGII ratio n/a value for AG/GC | ELISA | 153 | n/a | 44.7 | 83 | n/a |
Miftahussurur [45] (2020) | Multicenter, Southeast Asia | AG, Helicobacter pylori infection | PG I ≤ 70 ng/mL and PGI/PGII ratio ≤ 3 | ELISA | 1206 | 44 (13–88) | 15.9 | 96.9 | n/a |
PGII ≥ 10.35 ng/mL | 72.6 | 56.9 | 0.664 | ||||||
PGI/PGII ratio ≤ 4.95 | 66.2 | 67.5 | 0.718 | ||||||
Zeng [35] 2020 | Single center, China | AG, GC | PG I < 71.56 μg/L | ELISA | 197 (GC: 86 AG: 61) | n/a | 77.1 | 66.0 | 0.719 (0.621–0.816) |
PG I/II ratio < 5.6 | 60.1 | 82.0 | 0.755 (0.666–0.844) | ||||||
PG I < 71.56 μg/L, PG I/II ratio < 5.6 | 67.2 | 84.0 | 0.807 (0.727–0.888) | ||||||
Mattar [46] (2020) | Single center, Brasil | AG | PGI < 30 µg/L | n/a | 308 (corpus AG: 29) | 64.6 ± 10.3 | 50 (27.8–72.1) | 93.2 (84.3–97.5) | n/a |
PGI < 30 µg/L | 308 (multifocal AG: 29) | 42.1 (21.1–66) | n/a | n/a | |||||
PGI/PGII ratio < 3 | 308 (corpus AG: 29) | 55 (32–76.2) | 93.2 (84.3–97.4%) | n/a | |||||
PGI/PGII ratio < 3 | 308 (multifocal AG: 29) | 21 (6.9–46) | n/a | n/a | |||||
Wang [47] (2020) | Single center, China | AG, GC | PG I < 91.45 μg/L | ELISA | 630 (AG: 245) | 55.2 ± 10.8 | 73.15 | 50.00 | 0.691 (0.652–0.876) |
PGI/PGII ratio < 9 | 72.70 | 53.31 | 0.650 (0.612–0.856) | ||||||
Mezmale [48] (2019) | Multicenter, Kazakhstan | AG | PG I ≤ 70 ng/mL and PGI/PGII ratio ≤ 3 | L-AA | 157 | 51 ± 6.9 | 50.0 (1.2–98.7) | 50.0 (1.2–98.7) | n/a |
PG I ≤ 30 ng/mL and PGI/PGII ratio ≤ 2 | 73.5 (65.8–80.3) | 90.9 (85.3–94.9) | n/a | ||||||
Loong [37] (2017) | Single center, Malaysia | AG, IM | PGI ≤ 87.2 μg/L) | ELISA | 69 (AG: 34 AG) | 56.2 ± 16 | 66.7 | 85.3 | 0.659 |
PG I/II ratio ≤ 10 | 83.3 | 77.9 | 0.902 | ||||||
G-17b < 5.6 pmol/L | 68.8 | 44.8 | <0.5 | ||||||
Leja [36] (2017) | Case-control Multicenter, Latvia | corpus AG | PGI/PGII < 6.9 | ELISA Biohit | 805 (AG: 50) | 51 (18–88) | 70.0 (57.3–82.7) | 62.6 (59.2–66.1) | 0.7 |
PGI/PGII < 4.1 | ELISA Vector Best | 70.0 (57.3–82.7) | 71.5 (68.3–74.7) | 0.76 | |||||
PGI/PGII < 2.7 | L-AA | 70.0 (57.3–82.7) | 71.9 (68.7–75.1) | 0.77 | |||||
Bang [38] (2019) | Meta-analysis: 14 studies for AG, 43 for GC | AG, GC | PG I ≤ 70 ng/mL and PGI/PGII ratio ≤ 3 | ELISA, L-TIA, RIA | 5541 (AG: 2220) | n/a | 59 (38–78) | 89 (70–97) | 0.81 (0.77–0.84 |
Huang [49] (2015) | Meta-analysis: 14 studies for AG, 17 for GC | AG, GC | PGI/PGII ratio ≤ 3 | ELISA, L-TIA, RIA, CLIA | AG: 2220 | n/a | 50 (28–72) | 94 (82–98) | 0.85 (0.81–0.88) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romańczyk, M.; Osmola, M.; Link, A.; Druet, A.; Hémont, C.; Martin, J.; Chapelle, N.; Matysiak-Budnik, T. Non-Invasive Markers for the Detection of Gastric Precancerous Conditions. Cancers 2024, 16, 2254. https://doi.org/10.3390/cancers16122254
Romańczyk M, Osmola M, Link A, Druet A, Hémont C, Martin J, Chapelle N, Matysiak-Budnik T. Non-Invasive Markers for the Detection of Gastric Precancerous Conditions. Cancers. 2024; 16(12):2254. https://doi.org/10.3390/cancers16122254
Chicago/Turabian StyleRomańczyk, Marcin, Malgorzata Osmola, Alexander Link, Amaury Druet, Caroline Hémont, Jerome Martin, Nicolas Chapelle, and Tamara Matysiak-Budnik. 2024. "Non-Invasive Markers for the Detection of Gastric Precancerous Conditions" Cancers 16, no. 12: 2254. https://doi.org/10.3390/cancers16122254
APA StyleRomańczyk, M., Osmola, M., Link, A., Druet, A., Hémont, C., Martin, J., Chapelle, N., & Matysiak-Budnik, T. (2024). Non-Invasive Markers for the Detection of Gastric Precancerous Conditions. Cancers, 16(12), 2254. https://doi.org/10.3390/cancers16122254