The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Mechanisms of Alternative Splicing
1.2. Alternative Splicing and Disease
1.3. Cancer Driver Genes
2. Alternative Splicing and Cancer Driver Genes
2.1. Alternative Splicing in Cancer
2.2. Driver Genes That Control the Alternative Splicing of Other Genes
Gene | Other Roles | References |
---|---|---|
Spliceosome components | ||
SF3B1 | [37,41] | |
U2AF1 | [42,43] | |
EFTUD2 | [44,45] | |
NSD2 | [40] | |
U2AF2 | [35] | |
ZRSR2 | [43] | |
Splicing factors | ||
RBM10 | [46] | |
SPEN | transcriptional repressor | [39] |
SRSF2 | [43,47,48,49] | |
RBM39 | [50] | |
HNRNPA2B1 | [51] | |
RBFOX2 | [52,53] | |
RBM38 | [54] | |
DAZAP1 | [55,56,57,58] | |
Splicing regulators | ||
SOX9 | transcriptional factor | [59,60] |
MTOR | [61] | |
CTCF | [62] | |
RUNX1/RUNX1T1 | transcriptional repressor | [63] |
FUBP1 | [64] | |
RANBP2 | [65] | |
DROSHA | component microprocessor | [66,67] |
ARID1A | component SWI/SNF | [68] |
SETDB1 | histone methyltransferase | [69] |
ZEB1 | transcriptional factor | [70] |
PSIP1 | [71,72] | |
HNF1A | transcriptional factor | [73] |
NONO | transcriptional factor | [74,75] |
WT1 | transcriptional factor | [76,77,78] |
SUZ12 | component Polycomb complex | [79] |
BRD4 | [80] | |
QKI | [53,81] |
2.3. Oncogenic Isoforms of Driver Genes Resulting from Alternative Splicing
3. Some Specific Examples of Alternative Splicing in Driver Genes
3.1. Alternative Splicing Caused by Mutations in Cis Splicing-Determining Elements
3.2. Involvement of Non-Mutated Cis Elements in Alternative Splicing
3.3. Alternative Splicing Caused by the Disruption of Splicing Factor Homeostasis
Gene | Factor | Effects of Upregulating Factor | Physiopathological Effects | Cancer Type | Refs. |
---|---|---|---|---|---|
KMT2C | SRSF3 | e45 sk. alt 3′ SS in e46 | changes in H3K4me3 | A2780 sublines | [120] |
CTNNB1 | hnRNPH1 | isoform shift | none | RMS | [121] |
EGFR | SRSF2 | e17 and e18 sk; alt polyA | sensitivity to gefitinib | LUAD | [122] |
CHD1 | ESRP1, ESRP2 | normal e14 splicing | no induction of EMT | PCa | [123] |
VHL | hnRNPA2B1 | alt translation of VHLα | inhibition of Warburg effect | ccRCC | [119] |
EP300 | SRSF3 | e14 inclusion | sk. e14 promotes tumour | OS | [124] |
AR | RBM39 | cryptic exon | oncogenic isoform AR-V7 | PCa | [50] |
MYD88 | SF3A/B | normal e2 splicing | normal TLR signalling | lymphoma | [125,126,127] |
TCF7L2 | TRA2B * | e4 inclusion | oncogenic isoforms | HCC, organoids | [128,129] |
FGFR2 | ESRP1, ESRP2 | normal e9 splicing | inhibition of EMT | OSCC | [70] |
EZH2 | SF3B3 | e14 inclusion | increased proliferation | ccRCC | [130] |
MAX | hnRNPA1 | inclusion e5, ΔMAX | promotes proliferation | glioma | [131] |
RAC1 | hnRNPA1 | no cryptic e3b | RAC1b tumourigenic variant | HeLa | [132] |
SRSF1, RNPS1 | [133] | ||||
BCLAF1 | SRSF10 | cryptic e5a | tumourigenic variants | CRC | [134] |
FANCD2 | U2 snRNP | proximal polyA | non-malignant | HCT116, RKO | [135] |
PRKCD | SRSF2 | alt 5′ SS in e10 | malignant isoform PKCδVIII | SKOV3 | [136] |
MAP2K7 | MBNL1 | normal e2 splicing | malignant isoform | solid tumours | [137] |
IRF1 | SFPQ | increases e7 sk | decreases IFNγ | Th1 cells | [138] |
FAS | hnRNPA1, SRSF6, SRSF4 | inclusion e6 | proapoptotic isoform | HCT116, HeLa | [139,140,141] |
DHX9 | hnRNPM, SRSF3 | no poison exon | lower expression of DHX9 | Ewing sarcoma | [142] |
SMC1A | SRSF2 | normal splicing | metastasis suppression | CRC | [143] |
KLF4 | SF3B4 | increases e3 sk | inactivation of p27Kip1 | HCC | [144] |
AKT3 | SRSF2 | increases e8 sk | over-expressed isoform | H358, HeLa | [122] |
ARAF | hnRNPH, HNRNPA2B1 | full length isoform | cancer progression | GHD-1, HCT116, NIH3T3 | [145,146] |
RAP1GDS1 | several putative SFs | e5 sk; SmgGDS-558 | increases proliferation | PC3, VCaP | [147] |
MDM4 | RNPS1 | e6 splicing; no MDM4-S; | anti-apoptotic | CC | [133] |
hnRNPH1 | no IR | none | RMS | [121] | |
NUMA1 | MBNL1 | normal e16 splicing | no proliferation | BRCA | [53] |
EWSR1 | hnRNPH1 | e8 sk | reduction fusion oncogenes | Ewing sarcoma | [148] |
3.4. Epigenetic and Chromatin-Associated Causes of AS
3.4.1. Epigenetic Causes of Selection of Alternative Promoters
3.4.2. Influence of Epigenetic Modifications on the Assembly of the Splicing Machinery
3.4.3. Histone Modifications in the Selection of Mutually Exclusive Exons
3.5. Clinical Relevance of the Aberrant Alternative Splicing in Driver Genes
4. Conclusions and Future Prospects
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Beadle, G.W.; Tatum, E.L. Genetic Control of Biochemical Reactions in Neurospora. Proc. Natl. Acad. Sci. USA 1941, 27, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Falk, R. The Gene: A Concept in Tension. In The Concept of the Gene in Development and Evolution; Beurton, P., Falk, R., Rheinberger, H.-J., Eds.; Cambridge University Press: Cambridge, UK, 2000; pp. 317–348. [Google Scholar]
- Griffiths, P.E.; Stotz, K. Gene. In The Cambridge Companion to the Philosophy of Biology; Hull, D., Ruse, M., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 85–102. [Google Scholar]
- Chow, L.T.; Gelinas, R.E.; Broker, T.R.; Roberts, R.J. An Amazing Sequence Arrangement at the 5′ Ends of Adenovirus 2 Messenger RNA. Cell 1977, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Berget, S.M.; Moore, C.; Sharp, P.A. Spliced Segments at the 5’ Terminus of Adenovirus 2 Late mRNA. Proc. Natl. Acad. Sci. USA 1977, 74, 3171–3175. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Rio, D.C. Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu. Rev. Biochem. 2015, 84, 291–323. [Google Scholar] [CrossRef] [PubMed]
- Ramanouskaya, T.V.; Grinev, V.V. The Determinants of Alternative RNA Splicing in Human Cells. Mol. Genet. Genom. 2017, 292, 1175–1195. [Google Scholar] [CrossRef] [PubMed]
- Tellier, M.; Maudlin, I.; Murphy, S. Transcription and Splicing: A Two-Way Street. Wiley Interdiscip. Rev. RNA 2020, 11, e1593. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R. The Nuts and Bolts of the Endogenous Spliceosome. Wiley Interdiscip. Rev. RNA 2017, 8, e1377. [Google Scholar] [CrossRef]
- Dvinge, H.; Bradley, R.K. Widespread Intron Retention Diversifies Most Cancer Transcriptomes. Genome Med. 2015, 7, 45. [Google Scholar] [CrossRef]
- Roca, X.; Krainer, A.R.; Eperon, I.C. Pick One, but Be Quick: 5’ Splice Sites and the Problems of Too Many Choices. Genes Dev. 2013, 27, 129–144. [Google Scholar] [CrossRef]
- Sibley, C.R.; Blazquez, L.; Jernej, U. Lessons from Non-Canonical Splicing. Nat. Rev. Genet. 2016, 17, 407–421. [Google Scholar] [CrossRef]
- Girard, C.; Will, C.L.; Peng, J.; Makarov, E.M.; Kastner, B.; Lemm, I.; Urlaub, H.; Hartmuth, K.; Luhrmann, R. Post-Transcriptional Spliceosomes Are Retained in Nuclear Speckles until Splicing Completion. Nat. Commun. 2012, 5, 994. [Google Scholar] [CrossRef] [PubMed]
- Kornblihtt, A.R.; Schor, I.E.; Alló, M.; Dujardin, G.; Petrillo, E.; Muñoz, M.J. Alternative Splicing: A Pivotal Step between Eukaryotic Transcription and Translation. Nat. Rev. Mol. Cell. Biol. 2013, 14, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Kováčová, T.; Souček, P.; Hujová, P.; Freiberger, T.; Grodecká, L. Splicing Enhancers at Intron–Exon Borders Participate in Acceptor Splice Sites Recognition. Int. J. Mol. Sci. 2020, 21, 6553. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.P.; Singh, S.; Shukla, S. A Saga of Cancer Epigenetics: Linking Epigenetics to Alternative Splicing. Biochem. J. 2017, 474, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, K.M. Nascent RNA and the Coordination of Splicing with Transcription. Cold Spring Harb. Perspect. Biol. 2019, 11, a032227. [Google Scholar] [CrossRef] [PubMed]
- Maita, H.; Nakagawa, S. What Is the Switch for Coupling Transcription and Splicing? RNA Polymerase II C-Terminal Domain Phosphorylation, Phase Separation and Beyond. Wiley Interdiscip. Rev. RNA 2020, 11, e1574. [Google Scholar] [CrossRef] [PubMed]
- Pawlicka, K.; Kalathiya, U.; Alfaro, J. Nonsense-Mediated mRNA Decay: Pathologies and the Potential for Novel Therapeutics. Cancers 2020, 12, 375. [Google Scholar] [CrossRef]
- Cheng, J.; Zhou, T.; Liu, C.; Shapiro, J.; Brauer, M.; Kiefer, M.; Barr, P.; Mountz, P. Protection from Fas-Mediated Apoptosis by a Soluble Form of the Fas Molecule. Science 1994, 263, 1759–1782. [Google Scholar] [CrossRef] [PubMed]
- Marco-Puche, G.; Lois, S.; Benítez, J.; Trivino, J.C. RNA-Seq Perspectives to Improve Clinical Diagnosis. Front. Genet. 2019, 10, 1152. [Google Scholar] [CrossRef]
- Di, C.; Syafrizayanti; Zhang, Q.; Chen, Y.; Wang, Y.; Zhang, X.; Liu, Y.; Sun, C.; Zhang, H.; Hoheisel, J.D. Function, Clinical Application, and Strategies of Pre-mRNA Splicing in Cancer. Cell Death Differ. 2019, 26, 1181–1194. [Google Scholar] [CrossRef]
- Rahman, M.A.; Nasrin, F.; Bhattacharjee, S.; Nandi, S. Hallmarks of Splicing Defects in Cancer: Clinical Applications in the Era of Personalized Medicine. Cancers 2020, 12, 1381. [Google Scholar] [CrossRef] [PubMed]
- Bonnal, S.C.; López-Oreja, I.; Valcárcel, J. Roles and Mechanisms of Alternative Splicing in Cancer—Implications for Care. Nat. Rev. Clin. Oncol. 2020, 17, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.D.; Nam, S.W. Pathogenic Diversity of RNA Variants and RNA Variation-Associated Factors in Cancer Development. Exp. Mol. Med. 2020, 52, 582–593. [Google Scholar] [CrossRef] [PubMed]
- Loeb, L.A.; Harris, C.C. Advances in Chemical Carcinogenesis: A Historical Review and Prospective. Cancer Res. 2008, 68, 6863–6872. [Google Scholar] [CrossRef] [PubMed]
- Stratton, M.R.; Campbell, P.J.; Futreal, P.A. The Cancer Genome. Nature 2009, 458, 719–724. [Google Scholar] [CrossRef] [PubMed]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr.; Kinzler, K.W. Cancer Genome Landscapes. Science 2013, 339, 1546–1558. [Google Scholar] [CrossRef] [PubMed]
- Mazza, M.; Pelicci, P.G. Is PML a Tumor Suppressor? Front. Oncol. 2013, 3, 174. [Google Scholar] [CrossRef] [PubMed]
- Pon, J.R.; Marra, M.A. Driver and Passenger Mutations in Cancer. Annu. Rev. Pathol. Mech. Dis. 2015, 10, 25–50. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Jiménez, F.; Muiños, F.; Sentís, I.; Deu-Pons, J.; Reyes-Salazar, I.; Arnedo-Pac, C.; Mularoni, L.; Pich, O.; Bonet, J.; Kranas, H.; et al. A Compendium of Mutational Cancer Driver Genes. Nat. Rev. Cancer 2020, 20, 555–572. [Google Scholar] [CrossRef]
- Pan, H.; Renaud, L.; Chaligne, R.; Bloehdorn, J.; Tausch, E.; Mertens, D.; Fink, A.M.; Fischer, K.; Zhang, C.; Betel, D.; et al. Discovery of Candidate DNA Methylation Cancer Driver Genes. Cancer Discov. 2021, 11, 2266–2281. [Google Scholar] [CrossRef]
- Gimeno-Valiente, F.; López-Rodas, G.; Castillo, J.; Franco, L. Alternative Splicing, Epigenetic Modifications and Cancer: A Dangerous Triangle, or a Hopeful One? Cancers 2022, 14, 560. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, L.D.; Lee, J.; Gnad, F.; Klijn, C.; Schaub, A.; Reeder, J.; Daemen, A.; Bakalarski, C.E.; Holcomb, T.; Shames, D.S.; et al. Recurrent Loss of NFE2L2 Exon 2 Is a Mechanism for Nrf2 Pathway Activation in Human Cancers. Cell Rep. 2016, 16, 2605–2617. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Rajeevan, A.; Gopalan, V.; Agrawal, P.; Day, C.P.; Hannenhalli, S. Broad Misappropriation of Developmental Splicing Profile by Cancer in Multiple Organs. Nat. Commun. 2022, 13, 7664. [Google Scholar] [CrossRef] [PubMed]
- Darman, R.B.; Seiler, M.; Agrawal, A.A.; Lim, K.H.; Peng, S.; Aird, D.; Bailey, S.L.; Bhavsar, E.B.; Chan, B.; Colla, S.; et al. Cancer-Associated SF3B1 Hotspot Mutations Induce Cryptic 3’ Splice Site Selection through Use of a Different Branch Point. Cell Rep. 2015, 13, 1033–1045. [Google Scholar] [CrossRef]
- Nassar, K.W.; Tan, A.C. The Mutational Landscape of Mucosal Melanoma. Semin. Cancer Biol. 2020, 61, 139–148. [Google Scholar] [CrossRef]
- Wang, L.; Brooks, A.N.; Fan, J.; Wan, Y.; Gambe, R.; Li, S.; Hergert, S.; Yin, S.; Freeman, S.S.; Levin, J.Z.; et al. Transcriptomic Characterization of SF3B1 Mutation Reveals Its Pleiotropic Effects in Chronic Lymphocytic Leukemia. Cancer Cell 2016, 30, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Xia, K.; Yang, X.; Zhang, S.; Wang, L.; Ren, S. Alternative Splicing Acts as an Independent Prognosticator in Ovarian Carcinoma. Sci. Rep. 2021, 11, 10413. [Google Scholar] [CrossRef] [PubMed]
- Mirabella, F.; Murison, A.; Aronson, L.I.; Wardell, C.P.; Thompson, A.J.; Hanrahan, S.J.; Fok, J.H.L.; Pawlyn, C.; Kaiser, M.F.; Walker, B.A.; et al. A Novel Functional Role for MMSET in RNA Processing Based on the Link between the REIIBP Isoform and Its Interaction with the SMN Complex. PLoS ONE 2014, 9, e99493. [Google Scholar] [CrossRef]
- Bauer, M.A.; Ashby, C.; Wardell, C.; Boyle, E.M.; Ortiz, M.; Flynt, E.; Thakurta, A.; Morgan, G.; Walker, B.A. Differential RNA Splicing as a Potentially Important Driver Mechanism in Multiple Myeloma. Haematologica 2021, 106, 736–745. [Google Scholar] [CrossRef]
- Zhao, Y.; Cai, W.; Hua, Y.; Yang, X.; Zhou, J. The Biological and Clinical Consequences of RNA Splicing Factor U2AF1 Mutation in Myeloid Malignancies. Cancers 2022, 14, 4406. [Google Scholar] [CrossRef]
- Pellagatti, A.; Boultwood, J. Splicing Factor Mutations in the Myelodysplastic Syndromes: Role of Key Aberrantly Spliced Genes in Disease Pathophysiology and Treatment. Adv. Biol. Regul. 2023, 87, 100920. [Google Scholar] [CrossRef] [PubMed]
- Lv, C.; Li, X.J.; Hao, L.X.; Zhang, S.; Song, Z.; Ji, X.D.; Gong, B. Over-Activation of EFTUD2 Correlates with Tumor Propagation and Poor Survival Outcomes in Hepatocellular Carcinoma. Clin. Transl. Oncol. 2022, 24, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Beyer, S.; Müller, L.; Mitter, S.; Keilmann, L.; Meister, S.; Buschmann, C.; Kraus, F.; Topalov, N.E.; Czogalla, B.; Trillsch, F.; et al. High RIG-I and EFTUD2 Expression Predicts Poor Survival in Endometrial Cancer. J. Cancer Res. Clin. Oncol. 2023, 149, 4293–4303. [Google Scholar] [CrossRef]
- Zhang, S.; Bao, Y.; Shen, X.; Pan, Y.; Sun, Y.; Xiao, M.; Chen, K.; Wei, H.; Zuo, J.; Saffen, D.; et al. RNA Binding Motif Protein 10 Suppresses Lung Cancer Progression by Controlling Alternative Splicing of Eukaryotic Translation Initiation Factor 4H. EBioMedicine 2020, 61, 103067. [Google Scholar] [CrossRef] [PubMed]
- Comiskey, D.F., Jr.; Montes, M.; Khurshid, S.; Singh, R.K.; Chandler, D.S. SRSF2 Regulation of MDM2 Reveals Splicing as a Therapeutic Vulnerability of the P53 Pathway. Mol. Cancer Res. 2020, 18, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Regimbeau, M.; Mary, R.; Hermetet, F.; Girodon, F. Genetic Background of Polycythemia Vera. Genes 2022, 13, 637. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.; Lee, S.C. Mutations in Spliceosome Genes and Therapeutic Opportunities in Myeloid Malignancies. Genes Chromosomes Cancer 2019, 58, 889–902. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, J.E.; Steri, V.; Nguyen, H.G.; Hwang, Y.C.; Gordan, J.D.; Hann, B.; Feng, F.Y.; Shokat, K.M. Targeting a Splicing-Mediated Drug Resistance Mechanism in Prostate Cancer by Inhibiting Transcriptional Regulation by PKCβ1. Oncogene 2022, 41, 1536–1549. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Zhao, J.; Liu, X.; Li, C.; Feng, S.; Ma, R. HnRNPA2B1 Regulates the Alternative Splicing of BIRC5 to Promote Gastric Cancer Progression. Cancer Cell Int. 2021, 21, 281. [Google Scholar] [CrossRef]
- Tripathi, V.; Shin, J.-H.; Stuekten, C.H.; Zhang, Y.E. TGF-β-Induced Alternative Splicing of TAK1 Promotes EMT and Drug Resistance. Oncogene 2019, 38, 3185–3200. [Google Scholar] [CrossRef]
- Sebestyén, E.; Singh, B.; Miñana, B.; Pagès, A.; Mateo, F.; Pujana, M.A.; Valcárcel, J.; Eyras, E. Large-Scale Analysis of Genome and Transcriptome Alterations in Multiple Tumors Unveils Novel Cancer-Relevant Splicing Networks. Genome Res. 2016, 26, 732–744. [Google Scholar] [CrossRef] [PubMed]
- Ulirsch, J.C.; Nandakumar, S.K.; Wang, L.; Giani, F.C.; Zhang, X.; Rogov, P.; Melnikov, A.; McDonel, P.; Do, R.; Mikkelsen, T.S.; et al. Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits. Cell 2016, 165, 1530–1545. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Hong, W.; Ruan, S.; Guan, R.; Tu, L.; Huang, B.; Hou, B.; Jian, Z.; Ma, L.; Jin, H. Genome-Wide Profiling of Prognostic Alternative Splicing Pattern in Pancreatic Cancer. Front. Oncol. 2019, 9, 773. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, Y.; Ren, Y.; Yuan, J.; Zhang, N.; Kimball, H.; Zhou, L.; Yang, M. Starvation-Induced Suppression of DAZAP1 by MiR-10b Integrates Splicing Control into TSC2-Regulated Oncogenic Autophagy in Esophageal Squamous Cell Carcinoma. Theranostics 2020, 10, 4983–4996. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Huangfu, S.; Li, M.; Tang, C.; Qian, J.; Guo, M.; Zhou, Z.; Yang, Y.; Gu, C. DAZAP1 Facilitates the Alternative Splicing of KITLG to Promote Multiple Myeloma Cell Proliferation via ERK Signaling Pathway. Aging 2022, 14, 7972–7985. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, M.; Xiao, X.; Wang, Z. Intronic Splicing Enhancers, Cognate Splicing Factors and Context Dependent Regulation Rules. Nat. Struct. Mol. Biol. 2012, 19, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hou, L. Alternate Roles of Sox Transcription Factors beyond Transcription Initiation. Int. J. Mol. Sci. 2021, 22, 5949. [Google Scholar] [CrossRef]
- Girardot, M.; Bayet, E.; Maurin, J.; Fort, P.; Roux, P.; Raynaud, P. SOX9 Has Distinct Regulatory Roles in Alternative Splicing and Transcription. Nucleic Acids Res. 2018, 46, 9106–9118. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Fahmi, N.A.; Park, M.; Sun, J.; Thao, K.; Yeh, H.S.; Zhang, W.; Yong, J. MTOR Contributes to the Proteome Diversity through Transcriptome-Wide Alternative Splicing. Int. J. Mol. Sci. 2022, 23, 2416. [Google Scholar] [CrossRef]
- Alharbi, A.B.; Schmitz, U.; Bailey, C.G.; Rasko, J.E.J. CTCF as a Regulator of Alternative Splicing: New Tricks for an Old Player. Nucleic Acids Res. 2021, 49, 7825–7838. [Google Scholar] [CrossRef]
- Grinev, V.V.; Barneh, F.; Ilyushonak, I.M.; Nakjang, S.; Smink, J.; Van Oort, A.; Clough, R.; Seyani, M.; Mcneill, H.; Reza, M.; et al. RUNX1/RUNX1T1 Mediates Alternative Splicing and Reorganises the Transcriptional Landscape in Leukemia. Nat. Commun. 2021, 12, 520. [Google Scholar] [CrossRef] [PubMed]
- Elman, J.S.; Ni, T.K.; Mengwasser, K.E.; Jin, D.; Wronski, A.; Elledge, S.J.; Elman, J.S.; Ni, T.K.; Mengwasser, K.E.; Jin, D.; et al. Identification of FUBP1 as a Long Tail Cancer Driver and Widespread Regulator of Tumor Suppressor and Oncogene Alternative Splicing Article Identification of FUBP1 as a Long Tail Cancer Driver and Widespread Regulator of Tumor Suppressor and Oncogene Alte. Cell Rep. 2019, 28, 3435–3449. [Google Scholar] [CrossRef]
- Saitoh, N.; Sakamoto, C.; Hagiwara, M.; Agredano-moreno, L.T.; Wolin, S. The Distribution of Phosphorylated SR Proteins and Alternative Splicing Are Regulated by RANBP2. Mol. Biol. Cell 2012, 23, 1115–1128. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Nam, J.W.; Shin, C. DROSHA Targets Its Own Transcript to Modulate Alternative Splicing. RNA 2017, 23, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.C.H.; Rasko, J.E.J. Splice and Dice: Intronic MicroRNAs, Splicing and Cancer. Biomedicines 2021, 9, 1268. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.; Petasny, M.; Taqatqa, N.; Bentata, M.; Kay, G.; Engal, E.; Nevo, Y.; Siam, A.; Dahan, S.; Salton, M. KDM3A Regulates Alternative Splicing of Cell-Cycle Genes Following DNA Damage. RNA 2021, 27, 1353–1362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Y.; Shi, L.; Fang, L.; Xu, L.; Cao, Y. Neural Stemness Unifies Cell Tumorigenicity and Pluripotent Differentiation Potential. J. Biol. Chem. 2022, 298, 102106. [Google Scholar] [CrossRef] [PubMed]
- Osada, A.H.; Endo, K.; Kimura, Y.; Sakamoto, K.; Nakamura, R.; Sakamoto, K.; Ueki, K.; Yoshizawa, K.; Miyazawa, K.; Saitoh, M. Addiction of Mesenchymal Phenotypes on the FGF/FGFR Axis in Oral Squamous Cell Carcinoma Cells. PLoS ONE 2019, 14, e0217451. [Google Scholar] [CrossRef]
- Pradeepa, M.M.; Sutherland, H.G.; Ule, J.; Grimes, G.R.; Bickmore, W.A. Psip1/Ledgf P52 Binds Methylated Histone H3K36 and Splicing Factors and Contributes to the Regulation of Alternative Splicing. PLoS Genet. 2012, 8, e1002717. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, W.; Olson, S.D.; Prabhakara, K.S.; Zhou, X. Alternative Splicing Links Histone Modifications to Stem Cell Fate Decision. Genome Biol. 2018, 19, 133. [Google Scholar] [CrossRef]
- Bonham, K.; Ritchie, S.A.; Dehm, S.M.; Snyder, K.; Boyd, F.M. Alternative, Human SRC Promoter and Its Regulation by Hepatic Nuclear Factor-1α. J. Biol. Chem. 2000, 275, 37604–37611. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, M.; Wang, S.; Sun, Y.; Zhao, W.; Xue, Z.; Liang, X.; Huang, B.; Li, G.; Chen, A.; et al. Targeting the Splicing Factor NONO Inhibits GBM Progression through GPX1 Intron Retention. Theranostics 2022, 12, 5451–5469. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Chen, X.; Cheng, L.; Huang, M.; Zhou, Q.; Zhang, J.; Chen, Y.; Peng, S.; Chen, Z.; Dong, W.; et al. NONO Inhibits Lymphatic Metastasis of Bladder Cancer via Alternative Splicing of SETMAR. Mol. Ther. 2021, 29, 291–307. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.D.; El Maï, M.; Ladomery, M.; Belali, T.; Leccia, N.; Michiels, J.F.; Wagner, N. Altered VEGF Splicing Isoform Balance in Tumor Endothelium Involves Activation of Splicing Factors Srpk1 and Srsf1 by the Wilms’ Tumor Suppressor Wt1. Cells 2019, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Belali, T.; Wodi, C.; Clark, B.; Cheung, M.K.; Craig, T.J.; Wheway, G.; Wagner, N.; Wagner, K.D.; Roberts, S.; Porazinski, S.; et al. WT1 Activates Transcription of the Splice Factor Kinase SRPK1 Gene in PC3 and K562 Cancer Cells in the Absence of Corepressor BASP1. Biochim. Et Biophys. Acta-Gene Regul. Mech. 2020, 1863, 194642. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.M.; Balsat, M.; Thenoz, M.; Koering, C.; Payen-Gay, L.; Cheok, M.; Mortada, H.; Auboeuf, D.; Pinatel, C.; El-Hamri, M.; et al. Oncogene- and Drug Resistance-Associated Alternative Exon Usage in Acute Myeloid Leukemia (AML). Oncotarget 2016, 7, 2889–2909. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, I.; Munita, R.; Agirre, E.; Dittmer, T.A.; Gysling, K.; Misteli, T.; Luco, R.F. A LncRNA Regulates Alternative Splicing via Establishment of a Splicing-Specific Chromatin Signature. Nat. Str. Mol. Biol. 2015, 22, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Chen, Q.; Nguyen, C.; Meerzaman, D.; Singer, D.S. Cohesin Regulates Alternative Splicing. Sci. Adv. 2023, 9, eade3876. [Google Scholar] [CrossRef]
- Zong, F.Y.; Fu, X.; Wei, W.J.; Luo, Y.G.; Heiner, M.; Cao, L.J.; Fang, Z.; Fang, R.; Lu, D.; Ji, H.; et al. The RNA-Binding Protein QKI Suppresses Cancer-Associated Aberrant Splicing. PLoS Genet. 2014, 10, e1004289. [Google Scholar] [CrossRef]
- Ruiz-Velasco, M.; Kumar, M.; Lai, M.C.; Bhat, P.; Solis-Pinson, A.B.; Reyes, A.; Kleinsorg, S.; Noh, K.M.; Gibson, T.J.; Zaugg, J.B. CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals. Cell Sys. 2017, 5, 628–637. [Google Scholar] [CrossRef]
- Nanavaty, V.; Abrash, E.W.; Hong, C.; Park, S.; Fink, E.E.; Li, Z.; Sweet, T.J.; Bhasin, J.M.; Singuri, S.; Lee, B.H.; et al. DNA Methylation Regulates Alternative Polyadenylation via CTCF and the Cohesin Complex. Mol. Cell 2020, 78, 752–764. [Google Scholar] [CrossRef] [PubMed]
- Luco, R.F.; Misteli, T. More than a Splicing Code: Integrating the Role of RNA, Chromatin and Non-Coding RNA in Alternative Splicing Regulation. Curr. Opin. Genet. Dev. 2011, 21, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Bae, D.H.; Lane, D.J.R.; Jansson, P.J.; Richardson, D.R. The Old and New Biochemistry of Polyamines. Biochim. Et Biophys. Acta -General Subj. 2018, 1862, 2053–2068. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Khokhar, W.; Jabre, I.; Reddy, A.S.N.; Ariel, F.D. Alternative Splicing and Protein Diversity: Plants Versus Animals. Front. Plant Sci. 2019, 10, 708. [Google Scholar] [CrossRef]
- Fischer, M. Census and Evaluation of P53 Target Genes. Oncogene 2017, 36, 3943–3956. [Google Scholar] [CrossRef]
- Flaman, J.M.; Waridel, F.; Estreicher, A.; Vannier, A.; Limacher, J.M.; Gilbert, D.; Iggo, R.; Frebourg, T. The Human Tumour Suppressor Gene P53 Is Alternatively Spliced in Normal Cells. Oncogene 1996, 12, 813–818. [Google Scholar]
- Nikoshkov, A.; Hurd, Y.L. P53 Splice Variants Generated by Atypical mRNA Processing Confer Complexity of P53 Transcripts in the Human Brain. Biochem. Biophys. Res. Commun. 2006, 351, 383–386. [Google Scholar] [CrossRef]
- Khoury, M.P.; Bourdon, J.C. The Isoforms of the P53 Protein. Cold Spring Harb. Perspect. Biol. 2010, 2, a000927. [Google Scholar] [CrossRef]
- Surget, S.; Khoury, M.P.; Bourdon, J.C. Uncovering the Role of P53 Splice Variants in Human Malignancy: A Clinical Perspective. OncoTargets Ther. 2013, 7, 57–67. [Google Scholar] [CrossRef]
- Joruiz, S.M.; Bourdon, J.C. P53 Isoforms: Key Regulators of the Cell Fate Decision. Cold Spring Harb. Perspect. Med. 2016, 6, a026039. [Google Scholar] [CrossRef]
- von Muhlinen, N.; Horikawa, I.; Alam, F.; Isogaya, K.; Lissa, D.; Vojtesek, B.; Lane, D.P.; Harris, C.C. P53 Isoforms Regulate Premature Aging in Human Cells. Oncogene 2018, 37, 2379–2393. [Google Scholar] [CrossRef] [PubMed]
- Marcel, V.; Fernandes, K.; Terrier, O.; Lane, D.P.; Bourdon, J.C. Modulation of P53β and P53γ Expression by Regulating the Alternative Splicing of TP53 Gene Modifies Cellular Response. Cell Death Differ. 2014, 21, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Bouaoun, L.; Sonkin, D.; Ardin, M.; Hollstein, M.; Byrnes, G.; Zavadil, J.; Olivier, M. TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data. Human Mutat. 2016, 37, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Smeby, J.; Sveen, A.; Eilertsen, I.A.; Danielsen, S.A.; Hoff, A.M.; Eide, P.W.; Johannessen, B.; Hektoen, M.; Skotheim, R.I.; Guren, M.G.; et al. Transcriptional and Functional Consequences of TP53 Splice Mutations in Colorectal Cancer. Oncogenesis 2019, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Eng, C. Differential Expression of Novel Naturally Occurring Splice Variants of PTEN and Their Functional Consequences in Cowden Syndrome and Sporadic Breast Cancer. Human Mol. Genet. 2006, 15, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, B.D.; Fine, B.; Steinbach, N.; Dendy, M.; Rapp, Z.; Shaw, J.; Pappas, K.; Yu, J.S.; Hodakoski, C.; Mense, S.; et al. A Secreted PTEN Phosphatase That Enters Cells to Alter Signalingand Survival. Science 2013, 341, 399–402. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Chen, X.; Yin, Q.; Ruan, D.; Zhao, X.; Zhang, C.; McNutt, M.A.; Yin, Y. PTENβ Is an Alternatively Translated Isoform of PTEN That Regulates RDNA Transcription. Nat. Commun. 2017, 8, 14771. [Google Scholar] [CrossRef] [PubMed]
- Travis, G.; McGowan, E.M.; Simpson, A.M.; Marsh, D.J.; Nassif, N.T. PTEN, PTEN1, MicroRNAs, and CeRNA Networks: Precision Targeting in Cancer Therapeutics. Cancers 2023, 15, 4954. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, S.; Zhang, J.; Zhang, Z.; Ma, Q.; Fu, W. A Novel PTEN Mutant Caused by Polymorphism in Cis-Regulatory Elements Is Involved in Chemosensitivity in Breast Cancer. Chemosensitivity Breast Cancer 2023, 13, 86–104. [Google Scholar]
- Wang, Q.; Wang, J.; Xiang, H.; Ding, P.; Wu, T.; Ji, G. The Biochemical and Clinical Implications of Phosphatase and Tensin Homolog Deleted on Chromosome Ten in Different Cancers. Am. J. Cancer Res. 2021, 11, 5833–5855. [Google Scholar]
- Sidransky, D. Cancer Genetics: Two Tracks but One Race? Curr. Biol. 1996, 6, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Chen, S.; Hou, Y.; Wen, X.; Teng, X.; Zhang, H.; Lai, C.; Lai, M. Mutant CDKN2A Regulates P16/P14 Expression by Alternative Splicing in Renal Cell Carcinoma Metastasis. Pathol. Res. Pract. 2021, 223, 153453. [Google Scholar] [CrossRef] [PubMed]
- Pokorná, Z.; Vysloužil, J.; Hrabal, V.; Vojtěšek, B.; Coates, P.J. The Foggy World(s) of P63 Isoform Regulation in Normal Cells and Cancer. J. Pathol. 2021, 254, 454–473. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.; Deschamps, S.; Reboutier, D.; Paillard, L.; Méreau, A.; Audic, Y. The Splicing Factor PTBP1 Represses TP63 γ Isoform Production in Squamous Cell Carcinoma. Cancer Res. Commun. 2022, 2, 1669–1683. [Google Scholar] [CrossRef]
- Flouriot, G. Identification of a New Isoform of the Human Estrogen Receptor-Alpha (HER-α) That Is Encoded by Distinct Transcripts and That Is Able to Repress HER-α Activation Function 1. EMBO J. 2000, 19, 4688–4700. [Google Scholar] [CrossRef] [PubMed]
- Ohe, K.; Miyajima, S.; Abe, I.; Tanaka, T.; Hamaguchi, Y.; Harada, Y.; Horita, Y.; Beppu, Y.; Ito, F.; Yamasaki, T.; et al. HMGA1a Induces Alternative Splicing of Estrogen Receptor Alpha in MCF-7 Human Breast Cancer Cells. J. Steroid Biochem. Mol. Biol. 2018, 182, 21–26. [Google Scholar] [CrossRef]
- Selvanathan, S.P.; Graham, G.T.; Erkizan, H.V.; Dirksen, U.; Natarajan, T.G.; Dakic, A.; Yu, S.; Liu, X.; Paulsen, M.T.; Ljungman, M.E.; et al. Oncogenic Fusion Protein EWS-FLI1 Is a Network Hub That Regulates Alternative Splicing. Proc. Natl. Acad. Sci. USA 2015, 112, E1307–E1316. [Google Scholar] [CrossRef]
- Selvanathan, S.P.; Graham, G.T.; Grego, A.R.; Baker, T.M.; Hogg, J.R.; Simpson, M.; Batish, M.; Crompton, B.; Stegmaier, K.; Tomazou, E.M.; et al. EWS-FLI1 Modulated Alternative Splicing of ARID1A Reveals Novel Oncogenic Function through the BAF Complex. Nucleic Acids Res. 2019, 47, 9619–9636. [Google Scholar] [CrossRef]
- Kim, E.; Ilagan, J.O.; Liang, Y.; Daubner, G.M.; Lee, S.C.W.; Ramakrishnan, A.; Li, Y.; Chung, Y.R.; Micol, J.B.; Murphy, M.E.; et al. SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Cancer Cell 2015, 27, 617–630. [Google Scholar] [CrossRef]
- Shiozawa, Y.; Malcovati, L.; Gallì, A.; Sato-Otsubo, A.; Kataoka, K.; Sato, Y.; Watatani, Y.; Suzuki, H.; Yoshizato, T.; Yoshida, K.; et al. Aberrant Splicing and Defective mRNA Production Induced by Somatic Spliceosome Mutations in Myelodysplasia. Nat. Commun. 2018, 9, 3649. [Google Scholar] [CrossRef]
- Rivera, O.D.; Mallory, M.J.; Quesnel-Vallières, M.; Chatrikhi, R.; Schultz, D.C.; Carroll, M.; Barash, Y.; Cherry, S.; Lynch, K.W. Alternative Splicing Redefines Landscape of Commonly Mutated Genes in Acute Myeloid Leukemia. Proc. Natl. Acad. Sci. USA 2021, 118, e2014967118. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Kumar, S.A.; Shuai, S.; Diaz-Navarro, A.; Gutierrez-Fernandez, A.; De Antonellis, P.; Cavalli, F.M.G.; Juraschka, K.; Farooq, H.; Shibahara, I.; et al. Recurrent Noncoding U1 SnRNA Mutations Drive Cryptic Splicing in SHH Medulloblastoma. Nature 2019, 574, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Das, M.; Sauceda, C.; Ellies, L.G.; Kuo, K.; Parwal, P.; Kaur, M.; Jih, L.; Bandyopadhyay, G.K.; Burton, D.; et al. Degradation of Splicing Factor SRSF3 Contributes to Progressive Liver Disease. J. Clin. Investig. 2019, 129, 4477–4491. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Min, S.; Yoon, G.; Lim, S. Bin SRSF7 Downregulation Induces Cellular Senescence through Generation of MDM2 Variants. Aging 2023, 15, 14591–14606. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, H.; Li, L.; Chen, S.; Zuo, F.; Chen, L. A Novel VHLα Isoform Inhibits Warburg Effect via Modulation of PKM Splicing. Tumor Biol. 2016, 37, 13649–13657. [Google Scholar] [CrossRef] [PubMed]
- David, C.J.; Chen, M.; Assanah, M.; Canoll, P.; Manley, J.L. HnRNP Proteins Controlled by C-Myc Deregulate Pyruvate Kinase mRNA Splicing in Cancer. Nature 2010, 463, 364–368. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Li, X.; Zhang, C.; Huang, H. Identification of Anti-Tumoral Feedback Loop between VHLα and HnRNPA2B1 in Renal Cancer. Cell Death Dis. 2020, 11, 688. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, P. Serine/Arginine-Rich Splicing Factor 3 (SRSF3) Regulates Homologous Recombination-Mediated DNA Repair. Mol. Cancer 2015, 14, 158. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bakke, J.; Finkelstein, D.; Zeng, H.; Wu, J.; Chen, T. hnRNPH1 Is Required for Rhabdomyosarcoma Cell Growth and Survival. Oncogenesis 2018, 7, 9. [Google Scholar] [CrossRef]
- Pesson, M.; Eymin, B.; De La Grange, P.; Simon, B.; Corcos, L. A Dedicated Microarray for In-Depth Analysis of Pre-mRNA Splicing Events: Application to the Study of Genes Involved in the Response to Targeted Anticancer Therapies. Mol. Cancer 2014, 13, 9. [Google Scholar] [CrossRef]
- Matos, M.L.; Lapyckyj, L.; Rosso, M.; Besso, M.J.; Mencucci, M.V.; Briggiler, C.I.M.; Giustina, S.; Furlong, L.I.; Vazquez-Levin, M.H. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J. Cell. Physiol. 2017, 232, 1368–1386. [Google Scholar] [CrossRef] [PubMed]
- Ajiro, M.; Jia, R.; Yang, Y.; Zhu, J.; Zheng, Z.M. A Genome Landscape of SRSF3-Regulated Splicing Events and Gene Expression in Human Osteosarcoma U2OS Cells. Nucleic Acids Res. 2015, 44, 1854–1870. [Google Scholar] [CrossRef] [PubMed]
- De Arras, L.; Alper, S. Limiting of the Innate Immune Response by SF3A-Dependent Control of MyD88 Alternative mRNA Splicing. PLoS Genet. 2013, 9, e1003855. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, B.P.; Danhorn, T.; De Arras, L.; Flatley, B.R.; Marcus, R.A.; Farias-Hesson, E.; Leach, S.M.; Alper, S. Regulation of Toll-like Receptor Signaling by the SF3a mRNA Splicing Complex. PLoS Genet. 2015, 11, e1004932. [Google Scholar] [CrossRef] [PubMed]
- Cardona Gloria, Y.; Bernhart, S.H.; Fillinger, S.; Wolz, O.O.; Dickhöfer, S.; Admard, J.; Ossowski, S.; Nahnsen, S.; Siebert, R.; Weber, A.N.R. Absence of Non-Canonical, Inhibitory MYD88 Splice Variants in B Cell Lymphomas Correlates with Sustained NF-ΚB Signaling. Front. Immunol. 2021, 12, 616451. [Google Scholar] [CrossRef] [PubMed]
- Tomimaru, Y.; Koga, H.; Yano, H.; de la Monte, S.; Wands, J.R.; Kim, M. Upregulation of T-Cell Factor-4 Isoform-Responsive Target Genes in Hepatocellular Carcinoma. Liver Int. 2013, 33, 1100–1112. [Google Scholar] [CrossRef] [PubMed]
- Karve, K.; Netherton, S.; Deng, L.; Bonni, A.; Bonni, S. Regulation of Epithelial-Mesenchymal Transition and Organoid Morphogenesis by a Novel TGFβ-TCF7L2 Isoform-Specific Signaling Pathway. Cell Death Dis. 2020, 11, 704. [Google Scholar] [CrossRef]
- Chen, K.; Xiao, H.; Zeng, J.; Yu, G.; Zhou, H.; Huang, C.; Yao, W.; Xiao, W.; Hu, J.; Guan, W.; et al. Alternative Splicing of EZH2 Pre-mRNA by SF3B3 Contributes to the Tumorigenic Potential of Renal Cancer. Clin. Cancer Res. 2017, 23, 3428–3441. [Google Scholar] [CrossRef] [PubMed]
- Babic, I.; Anderson, E.S.; Tanaka, K.; Guo, D.; Masui, K.; Li, B.; Zhu, S.; Gu, Y.; Villa, G.R.; Akhavan, D.; et al. EGFR Mutation-Induced Alternative Splicing of Max Contributes to Growth of Glycolytic Tumors in Brain Cancer. Cell Metab. 2013, 17, 1000–1008. [Google Scholar] [CrossRef]
- Wang, F.; Fu, X.; Chen, P.; Wu, P.; Fan, X.; Li, N.; Zhu, H.; Jia, T.T.; Ji, H.; Wang, Z.; et al. SPSB1-Mediated hnRNP A1 Ubiquitylation Regulates Alternative Splicing and Cell Migration in EGF Signaling. Cell Res. 2017, 27, 540–558. [Google Scholar] [CrossRef]
- Deka, B.; Chandra, P.; Yadav, P.; Rehman, A.; Kumari, S.; Kunnumakkara, A.B.; Singh, K.K. RNPS1 Functions as an Oncogenic Splicing Factor in Cervical Cancer Cells. IUBMB Life 2023, 75, 514–529. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, X.; Cheng, Y.; Wu, W.; Xie, Z.; Xi, Q.; Han, J.; Wu, G.; Fang, J.; Feng, Y. BCLAF1 and Its Splicing Regulator SRSF10 Regulate the Tumorigenic Potential of Colon Cancer Cells. Nat. Commun. 2014, 5, 4581. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Shen, Y.; Zhang, P.; Jayabal, P.; Che, R.; Zhang, J.; Yu, H.; Fei, P. Overlooked FANCD2 Variant Encodes a Promising, Portent Tumor Suppressor, and Alternative Polyadenylation Contributes to Its Expression. Oncotarget 2017, 8, 22490–22500. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.S.; Rupani, R.; Impreso, S.; Lui, A.; Patel, N.A. Role of Alternatively Spliced, pro-Survival Protein Kinase C Delta VIII (PKCδVIII) in Ovarian Cancer. FASEB BioAdvances 2022, 4, 235–253. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.; Yun, Y.C.; Idris, M.; Cheng, S.; Boot, A.; Huat Iain, T.B.; Rozen, S.G.; Tan, P.; Epstein, D.M. A Tumor-Associated Splice-Isoform of MAP2K7 Drives Dedifferentiation in MBNL1-Low Cancers via JNK Activation. Proc. Natl. Acad. Sci. USA 2020, 117, 16391–16400. [Google Scholar] [CrossRef] [PubMed]
- Bernard, A.; Hibos, C.; Richard, C.; Viltard, E.; Chevrier, S.; Lemoine, S.; Meliń, J.; Humblin, E.; Mary, R.; Accoglí, T.; et al. The Tumor Microenvironment Impairs Th1 IFNg Secretion through Alternative Splicing Modifications of Irf1 Pre-mRNA. Cancer Immunol. Res. 2021, 9, 324–336. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.N.; Liu, Y.; Choi, N.; Oh, J.; Ha, J.; Zheng, X.; Shen, H. Binding of SRSF4 to a Novel Enhancer Modulates Splicing of Exon 6 of Fas Pre-mRNA. Biochem. Biophys. Res. Commun. 2018, 506, 703–708. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, M.; Liu, X.; Huang, Y.; Liu, C.; Zhu, J.; Fu, G.; Lei, Z.; Chu, X. Alternative splicing of mRNA in colorectal cancer: New strategies for tumor diagnosis and treatment. Cell Death Dis. 2021 30, 752. [CrossRef]
- Oh, H.K.; Lee, E.; Jang, H.N.; Lee, J.; Moon, H.; Sheng, Z.; Jun, Y.; Loh, T.J.; Cho, S.; Zhou, J.; et al. hnRNP A1 Contacts Exon 5 to Promote Exon 6 Inclusion of Apoptotic Fas Gene. Apoptosis 2013, 18, 825–835. [Google Scholar] [CrossRef]
- Palombo, R.; Verdile, V.; Paronetto, M.P. Poison-Exon Inclusion in DHX9 Reduces Its Expression and Sensitizes Ewing Sarcoma Cells to Chemotherapeutic Treatment. Cells 2020, 9, 328. [Google Scholar] [CrossRef]
- Luan, N.; Wang, J.; Sheng, B.; Zhou, Q.; Ye, X.; Zhu, X.; Sun, J.; Tang, Z.; Wang, J. TRF-20-M0NK5Y93-Induced MALAT1 Promotes Colon Cancer Metastasis through Alternative Splicing of SMC1A. Am. J. Cancer Res. 2023, 13, 852–871. [Google Scholar]
- Shen, Q.; Eun, J.W.; Lee, K.; Kim, H.S.; Yang, H.D.; Kim, S.Y.; Lee, E.K.; Kim, T.; Kang, K.; Kim, S.; et al. Barrier to Autointegration Factor 1, Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 3, and Splicing Factor 3b Subunit 4 as Early-Stage Cancer Decision Markers and Drivers of Hepatocellular Carcinoma. Hepatology 2018, 67, 1360–1377. [Google Scholar] [CrossRef]
- Rauch, J.; Moran-Jones, K.; Albrecht, V.; Schwarzl, T.; Hunter, K.; Gires, O.; Kolch, W. C-Myc Regulates RNA Splicing of the A-Raf Kinase and Its Activation of the ERK Pathway. Cancer Res. 2011, 71, 4664–4674. [Google Scholar] [CrossRef]
- Meng, L.D.; Shi, G.D.; Ge, W.L.; Huang, X.M.; Chen, Q.; Yuan, H.; Wu, P.F.; Lu, Y.C.; Shen, P.; Zhang, Y.H.; et al. Linc01232 Promotes the Metastasis of Pancreatic Cancer by Suppressing the Ubiquitin-Mediated Degradation of hnRNPA2B1 and Activating the A-Raf-Induced MAPK/ERK Signaling Pathway. Cancer Lett. 2020, 494, 107–120. [Google Scholar] [CrossRef]
- Bowler, E.; Porazinski, S.; Uzor, S.; Thibault, P.; Durand, M.; Lapointe, E.; Rouschop, K.M.A.; Hancock, J.; Wilson, I.; Ladomery, M. Hypoxia Leads to Significant Changes in Alternative Splicing and Elevated Expression of CLK Splice Factor Kinases in PC3 Prostate Cancer Cells. BMC Cancer 2018, 18, 355. [Google Scholar] [CrossRef]
- Neckles, C.; Boer, R.E.; Aboreden, N.; Cross, A.M.; Walker, R.L.; Kim, B.H.; Kim, S.; Schneekloth, J.S.; Caplen, N.J. hnRNPH1-Dependent Splicing of a Fusion Oncogene Reveals a Targetable RNA G-Quadruplex Interaction. RNA 2019, 25, 1731–1750. [Google Scholar] [CrossRef]
- Bellizzi, A.; Mangia, A.; Chiriatti, A.; Petroni, S.; Quaranta, M.; Schittulli, F.; Malfettone, A.; Cardone, R.A.; Paradiso, A.; Reshkin, S.J. RhoA Protein Expression in Primary Breast Cancers and Matched Lymphocytes Is Associated with Progression of the Disease. Int. J. Mol. Med. 2008, 22, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Berg, T.J.; Gastonguay, A.J.; Lorimer, E.L.; Kuhnmuench, J.R.; Li, R.; Fields, A.P.; Williams, C.L. Splice Variants of SmgGDS Control Small Gtpase Prenylation and Membrane Localization. J. Biol. Chem. 2010, 285, 35255–35266. [Google Scholar] [CrossRef] [PubMed]
- Hauser, A.D.; Bergom, C.; Schuld, N.J.; Chen, X.; Lorimer, E.L.; Huang, J.; Mackinnon, A.C.; Williams, C.L. The SmgGDS Splice Variant SmgGDS-558 Is a Key Promoter of Tumor Growth and RhoA Signaling in Breast Cancer. Mol. Cancer Res. 2014, 12, 130–142. [Google Scholar] [CrossRef]
- Brandt, A.C.; McNally, L.; Lorimer, E.L.; Unger, B.; Koehn, O.J.; Suazo, K.F.; Rein, L.; Szabo, A.; Tsaih, S.W.; Distefano, M.D.; et al. Splice Switching an Oncogenic Ratio of SmgGDS Isoforms as a Strategy to Diminish Malignancy. Proc. Natl. Acad. Sci. USA 2020, 117, 3627–3636. [Google Scholar] [CrossRef]
- Yadav, P.; Pandey, A.; Kakani, P.; Mutnuru, S.A.; Samaiya, A.; Mishra, J.; Shukla, S. Hypoxia-Induced Loss of SRSF2-Dependent DNA Methylation Promotes CTCF-Mediated Alternative Splicing of VEGFA in Breast Cancer. iScience 2023, 26, 106804. [Google Scholar] [CrossRef]
- De Oliveira Freitas Machado, C.; Schafranek, M.; Brüggemann, M.; Hernández Cañás, M.C.; Keller, M.; Di Liddo, A.; Brezski, A.; Blümel, N.; Arnold, B.; Bremm, A.; et al. Poison Cassette Exon Splicing of SRSF6 Regulates Nuclear Speckle Dispersal and the Response to Hypoxia. Nucleic Acids Res. 2023, 51, 870–890. [Google Scholar] [CrossRef]
- Roda, D.; Castillo, J.; Telechea-Fernández, M.; Gil, A.; López-Rodas, G.; Franco, L.; González-Rodríguez, P.; Roselló, S.; Pérez-Fidalgo, J.A.; García-Trevijano, E.R.; et al. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS ONE 2015, 10, e0130543. [Google Scholar] [CrossRef] [PubMed]
- Riffo-Campos, Á.; Castillo, J.; Vallet-Sánchez, A.; Ayala, G.; Cervantes, A.; López-Rodas, G.; Franco, L. In Silico RNA-Seq and Experimental Analyses Reveal the Differential Expression and Splicing of EPDR1 and ZNF518B Genes in Relation to KRAS Mutations in Colorectal Cancer Cells. Oncol. Rep. 2016, 36, 3627–3634. [Google Scholar] [CrossRef] [PubMed]
- Gimeno-Valiente, F.; Riffo-Campos, Á.L.; Vallet-Sánchez, A.; Siscar-Lewin, S.; Gambardella, V.; Tarazona, N.; Cervantes, A.; Franco, L.; Castillo, J.; López-Rodas, G. ZNF518B Gene Up-Regulation Promotes Dissemination of Tumour Cells and Is Governed by Epigenetic Mechanisms in Colorectal Cancer. Sci. Rep. 2019, 9, 9339. [Google Scholar] [CrossRef]
- Gimeno-Valiente, F.; Riffo-Campos, Á.L.; Torres, L.; Tarazona, N.; Gambardella, V.; Cervantes, A.; López-Rodas, G.; Franco, L.; Castillo, J. Epigenetic Mechanisms Are Involved in the Oncogenic Properties of ZNF518B in Colorectal Cancer. Cancers 2021, 13, 1433. [Google Scholar] [CrossRef]
- Gimeno-Valiente, F.; Riffo-Campos, L.; Ayala, G.; Tarazona, N.; Gambardella, V.; Rodríguez, F.M.; Huerta, M.; Martínez-Ciarpaglini, C.; Montón-Bueno, J.; Roselló, S.; et al. EPDR1 Up-Regulation in Human Colorectal Cancer Is Related to Staging and Favours Cell Proliferation and Invasiveness. Sci. Rep. 2020, 10, 3723. [Google Scholar] [CrossRef]
- Fraga, M.F.; Ballestar, E.; Villar-Garea, A.; Boix-Chornet, M.; Espada, J.; Schotta, G.; Bonaldi, T.; Haydon, C.; Ropero, S.; Petrie, K.; et al. Loss of Acetylation at Lys16 and Trimethylation at Lys20 of Histone H4 Is a Common Hallmark of Human Cancer. Nat. Genet. 2005, 37, 391–400. [Google Scholar] [CrossRef]
- Esteller, M.; Toyota, M.; Sanchez-Cespedes, M.; Capella, G.; Peinado, M.A.; Watkins, D.N.; Issa, J.P.; Sidransky, D.; Baylin, S.B.; Herman, J.G. Inactivation of the DNA Repair Gene O6-Methylguanine-DNA Methyltransferase by Promoter Hypermethylation Is Associated with G to A Mutations in K-Ras in Colorectal Tumorigenesis. Cancer Res. 2000, 60, 2368–2371. [Google Scholar]
- de Vogel, S.; Weijenberg, M.P.; Herman, J.G.; Wouters, K.A.D.; de Goeij, A.F.P.M.; van den Brandt, P.A.; de Bruïne, A.P.; van Engeland, M. MGMT and MLH1 Promoter Methylation versus APC, KRAS and BRAF Gene Mutations in Colorectal Cancer: Indications for Distinct Pathways and Sequence of Events. Ann. Oncol. 2009, 20, 1216–1222. [Google Scholar] [CrossRef]
- Hu, X.; Estecio, M.R.; Chen, R.; Reuben, A.; Wang, L.; Fujimoto, J.; Carrot-Zhang, J.; McGranahan, N.; Ying, L.; Fukuoka, J.; et al. Evolution of DNA Methylome from Precancerous Lesions to Invasive Lung Adenocarcinomas. Nat. Commun. 2021, 12, 687. [Google Scholar] [CrossRef]
- Watanabe, K.; Seki, N. Biology and Development of DNA-Targeted Drugs, Focusing on Synthetic Lethality, DNA Repair, and Epigenetic Modifications for Cancer: A Review. Int. J. Mol. Sci. 2024, 25, 752. [Google Scholar] [CrossRef] [PubMed]
- Herman, J.G. Hypermethylation of Tumor Suppressor Genes in Cancer. Semin. Cancer Biol. 1999, 9, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Boi, M.; Zucca, E.; Inghirami, G.; Bertoni, F. PRDM1/BLIMP1: A Tumor Suppressor Gene in B and T Cell Lymphomas. Leuk. Lymphoma 2015, 56, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.W.; Zhang, J.; Li, J.; Zhu, J.F.; Yang, Y.L.; Zhou, L.L.; Hu, Z.L.; Zhang, F. Methylation Contributes to Imbalance of PRDM1α/PRDM1β Expression in Diffuse Large B-Cell Lymphoma. Leuk. Lymphoma 2015, 56, 2429–2438. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Sakai, A.; Afsari, B.; Considine, M.; Danilova, L.; Favorov, A.V.; Yegnasubramanian, S.; Kelley, D.Z.; Flam, E.; Ha, P.K.; et al. A Novel Functional Splice Variant of AKT3 Defined by Analysis of Alternative Splice Expression in HPV-Positive Oropharyngeal Cancers. Cancer Res. 2017, 77, 5248–5258. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.J.; Ashe, S.L.; Leich, E.; Burek, C.; Barrans, S.; Fenton, J.A.; Jack, A.S.; Pulford, K.; Rosenwald, A.; Banham, A.H. Potentially Oncogenic B-Cell Activation Induced Smaller Isoforms of FOXP1 Are Highly Expressed in the Activated B Cell like Subtype of DLBCL. Blood 2008, 111, 2816–2824. [Google Scholar] [CrossRef]
- Brown, P.J.; Gascoyne, D.M.; Lyne, L.; Spearman, H.; Felce, S.L.; McFadden, N.; Chakravarty, P.; Barrans, S.; Lynham, S.; Calado, D.P.; et al. N-Terminally Truncated FOXP1 Protein Expression and Alternate Internal Foxp1 Promoter Usage in Normal and Malignant B Cells. Haematologica 2016, 101, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Casamassimi, A.; Rienzo, M.; Di Zazzo, E.; Sorrentino, A.; Fiore, D.; Proto, M.C.; Moncharmont, B.; Gazzerro, P.; Bifulco, M.; Abbondanza, C. Multifaceted Role of PRDM Proteins in Human Cancer. Int. J. Mol. Sci. 2020, 21, 2648. [Google Scholar] [CrossRef]
- Sorrentino, A.; Rienzo, M.; Ciccodicola, A.; Casamassimi, A.; Abbondanza, C. Human PRDM2: Structure, Function and Pathophysiology. Biochim. Et Biophys. Acta-Gene Regul. Mech. 2018, 1861, 657–671. [Google Scholar] [CrossRef]
- Rienzo, M.; Sorrentino, A.; Di Zazzo, E.; Di Donato, M.; Carafa, V.; Marino, M.M.; De Rosa, C.; Gazzerro, P.; Castoria, G.; Altucci, L.; et al. Searching for a Putative Mechanism of RIZ2 Tumor-Promoting Function in Cancer Models. Front. Oncol. 2021, 10, 583533. [Google Scholar] [CrossRef]
- López, C.; Kleinheinz, K.; Aukema, S.M.; Rohde, M.; Bernhart, S.H.; Hübschmann, D.; Wagener, R.; Toprak, U.H.; Raimondi, F.; Kreuz, M.; et al. Genomic and Transcriptomic Changes Complement Each Other in the Pathogenesis of Sporadic Burkitt Lymphoma. Nat. Commun. 2019, 10, 1459. [Google Scholar] [CrossRef] [PubMed]
- Good, C.R.; Madzo, J.; Patel, B.; Maegawa, S.; Engel, N.; Jelinek, J.; Issa, J.J. A Novel Isoform of TET1 That Lacks a CXXC Domain Is Overexpressed in Cancer. Nucleic Acids Res. 2017, 45, 8269–8281. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, T.; Lee, W.; Obenauf, A.C.; Ran, L.; Murali, R.; Zhang, Q.F.; Wong, E.W.; Hu, W.; Scott, S.N.; Shah, R.H.; et al. Alternative Transcription Initiation Leads to Expression of a Novel ALK Isoform in Cancer. Nature 2015, 526, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.C.; Lu, C.; Antonarakis, E.S.; Luo, J.; Armstrong, A.J. Androgen Receptor Variant-Driven Prostate Cancer II: Advances in Clinical Investigation. Prostate Cancer Prostatic Dis. 2020, 23, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; Xie, N.; Sun, S.; Plymate, S.; Mostaghel, E.; Dong, X. Mechanisms of the Androgen Receptor Splicing in Prostate Cancer Cells. Oncogene 2014, 33, 3140–3150. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Chen, Z.; Lu, J.; Liang, Y.; Wang, M.; Roggero, C.M.; Zhang, Q.J.; Gao, J.; Fang, Y.; Cao, J.; et al. Histone Lysine Demethylase KDM4B Regulates the Alternative Splicing of the Androgen Receptor in Response to Androgen Deprivation. Nucleic Acids Res. 2019, 47, 11623–11636. [Google Scholar] [CrossRef] [PubMed]
- Sanidas, I.; Polytarchou, C.; Hatziapostolou, M.; Ezell, S.A.; Kottakis, F.; Hu, L.; Guo, A.; Xie, J.; Comb, M.J.; Iliopoulos, D.; et al. Phosphoproteomics Screen Reveals Akt Isoform-Specific Signals Linking RNA Processing to Lung Cancer. Mol. Cell 2014, 53, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Nuevo-Tapioles, C.; Philips, M.R. The Role of KRAS Splice Variants in Cancer Biology. Front. Cell Dev. Biol. 2022, 10, 1033348. [Google Scholar] [CrossRef]
- Riffo-Campos, Á.L.; Gimeno-Valiente, F.; Rodríguez, F.M.; Cervantes, A.; López-Rodas, G.; Franco, L.; Castillo, J. Role of Epigenetic Factors in the Selection of the Alternative Splicing Isoforms of Human KRAS in Colorectal Cancer Cell Lines. Oncotarget 2018, 9, 20578–20589. [Google Scholar] [CrossRef]
- Murphy, A.J.; Li, A.H.; Li, P.; Sun, H. Therapeutic Targeting of Alternative Splicing: A New Frontier in Cancer Treatment. Front. Oncol. 2022, 12, 8668664. [Google Scholar] [CrossRef] [PubMed]
- Yamano, T.; Kubo, S.; Yano, A.; Kominato, T.; Tanaka, S.; Ikeda, M.; Tomita, N. Splicing Modulator FR901464 Is a Potential Agent for Colorectal Cancer in Combination Therapy. Oncotarget 2019, 10, 352–367. [Google Scholar] [CrossRef] [PubMed]
- Kaida, D.; Motoyoshi, H.; Tashiro, E.; Nojima, T.; Hagiwara, M.; Ishigami, K.; Watanabe, H.; Kitahara, T.; Yoshida, T.; Nakajima, H.; et al. Spliceostatin A Targets SF3b and Inhibits Both Splicing and Nuclear Retention of Pre-mRNA. Nat. Chem. Biol. 2007, 3, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gong, Z.; Li, K.; Zhang, Q.; Xu, Z.; Xu, Y. SRPK1/2 and PP1α Exert Opposite Functions by Modulating SRSF1-Guided MKNK2 Alternative Splicing in Colon Adenocarcinoma. J. Exp. Clin. Cancer Res. 2021, 40, 75. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Liu, Z. Targeting Alternative Splicing in Cancer Immunotherapy. Front. Cell Dev. Biol. 2023, 11, 1232146. [Google Scholar] [CrossRef] [PubMed]
- Alors-Pérez, E.; Pedraza-Arevalo, S.; Blázquez-Encinas, R.; Moreno-Montilla, M.T.; García-Vioque, V.; Berbel, I.; Luque, R.M.; Sainz, B.; Ibáñez-Costa, A.; Castaño, J.P. Splicing Alterations in Pancreatic Ductal Adenocarcinoma: A New Molecular Landscape with Translational Potential. J. Exp. Clin. Cancer Res. 2023, 42, 282. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.J. Role of Epithelial Splicing Regulatory Protein 1 in Cancer Progression. Cancer Cell Int. 2023, 23, 331. [Google Scholar] [CrossRef]
- Malakar, P.; Shukla, S.; Mondal, M.; Kar, R.K.; Siddiqui, J.A. The Nexus of Long Noncoding RNAs, Splicing Factors, Alternative Splicing and Their Modulations. RNA Biol. 2024, 21, 1035–1047. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gimeno-Valiente, F.; López-Rodas, G.; Castillo, J.; Franco, L. The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers 2024, 16, 2123. https://doi.org/10.3390/cancers16112123
Gimeno-Valiente F, López-Rodas G, Castillo J, Franco L. The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers. 2024; 16(11):2123. https://doi.org/10.3390/cancers16112123
Chicago/Turabian StyleGimeno-Valiente, Francisco, Gerardo López-Rodas, Josefa Castillo, and Luis Franco. 2024. "The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes" Cancers 16, no. 11: 2123. https://doi.org/10.3390/cancers16112123
APA StyleGimeno-Valiente, F., López-Rodas, G., Castillo, J., & Franco, L. (2024). The Many Roads from Alternative Splicing to Cancer: Molecular Mechanisms Involving Driver Genes. Cancers, 16(11), 2123. https://doi.org/10.3390/cancers16112123