Immune Checkpoint Inhibitors in Hepatocellular Carcinoma and Their Hepatic-Related Side Effects: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immune Checkpoint Inhibitors and Their Role in Treating HCC
3. Examples of Immune Checkpoint Inhibitors in HCC Treatment
4. Hepatotoxicity
5. Potential for Hepatitis B and C Reactivation
6. Autoimmune Hepatitis Caused by ICIs
- Activation of Autoreactive T Cells: ICIs can lead to the activation of autoreactive T cells, which recognize self-antigens present on hepatocytes as being foreign. This activation may occur be due to the breakdown of immune tolerance, where the immune system fails to recognize self-antigens as “self” and mounts an immune response against them.
- Dysregulation of Regulatory T Cells: Regulatory T cells are a subset of T cells that play a crucial role in maintaining immune tolerance and preventing autoimmune diseases. ICIs may disrupt the balance between effector T cells and Tregs, leading to an imbalance in the immune response and allowing for the development of AIH.
- Release of Pro-inflammatory Cytokines: ICIs can induce the release of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), which contribute to the inflammation and damage observed in AIH. These cytokines can further perpetuate the autoimmune response and promote hepatocyte destruction.
- Genetic Predisposition: Genetic factors may also play a role in the development of AIH in response to ICIs. Certain genetic variations involved in immune regulation and inflammation have been associated with an increased risk of autoimmune diseases, including AIH. These genetic predispositions may contribute to the susceptibility of developing AIH following ICI therapy [71,105].
7. Risk of Gastrointestinal Bleeding with ICI Use
8. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Petrick, J.L.; Florio, A.A.; Znaor, A.; Ruggieri, D.; Laversanne, M.; Alvarez, C.S.; Ferlay, J.; Valery, P.C.; Bray, F.; McGlynn, K.A. International Trends in Hepatocellular Carcinoma Incidence, 1978–2012. Int. J. Cancer 2019, 147, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Valery, P.C.; Laversanne, M.; Clark, P.J.; Petrick, J.L.; McGlynn, K.A.; Bray, F. Projections of Primary Liver Cancer to 2030 in 30 Countries Worldwide. Hepatology 2017, 67, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Golabi, P.; Fazel, S.; Otgonsuren, M.; Sayiner, M.; Locklear, C.T.; Younossi, Z.M. Mortality Assessment of Patients with Hepatocellular Carcinoma according to Underlying Disease and Treatment Modalities. Medicine 2017, 96, e5904. [Google Scholar] [CrossRef] [PubMed]
- Raza, A. Hepatocellular Carcinoma Review: Current Treatment, and Evidence-Based Medicine. World J. Gastroenterol. 2014, 20, 4115. [Google Scholar] [CrossRef] [PubMed]
- Fitzmorris, P.; Shoreibah, M.; Anand, B.S.; Singal, A.K. Management of Hepatocellular Carcinoma. J. Cancer Res. Clin. Oncol. 2014, 141, 861–876. [Google Scholar] [CrossRef]
- Sangro, B.; Sarobe, P.; Hervás-Stubbs, S.; Melero, I. Advances in Immunotherapy for Hepatocellular Carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 525–543. [Google Scholar] [CrossRef] [PubMed]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef]
- Swoboda, A.; Nanda, R. Immune Checkpoint Blockade for Breast Cancer. In Optimizing Breast Cancer Management; Springer: Cham, Switzerland, 2018; pp. 155–165. [Google Scholar]
- van Doorn, D.J.; Takkenberg, R.B.; Klümpen, H.-J. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: An Overview. Pharmaceuticals 2020, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse Effects of Immune-Checkpoint Inhibitors: Epidemiology, Management and Surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef]
- Asafo-Agyei, K.O.; Samant, H. Hepatocellular Carcinoma; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559177/ (accessed on 1 November 2023).
- Mandlik, D.S.; Mandlik, S.K.; Choudhary, H.B. Immunotherapy for Hepatocellular Carcinoma: Current Status and Future Perspectives. World J. Gastroenterol. 2023, 29, 1054–1075. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, H.; Yuan, X.; Fan, X.; Zhang, C. Advances in Immune Checkpoint Inhibitors for Advanced Hepatocellular Carcinoma. Front. Immunol. 2022, 13, 896752. [Google Scholar] [CrossRef] [PubMed]
- Zongyi, Y.; Xiaowu, L. Immunotherapy for Hepatocellular Carcinoma. Cancer Lett. 2020, 470, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xuan, S.; Yu, X.; Xiang, Z.; Gao, C.; Li, M.; Huang, L.; Wu, J. Immunotherapy of Hepatocellular Carcinoma: Recent Progress and New Strategy. Front. Immunol. 2023, 14, 1192506. [Google Scholar] [CrossRef] [PubMed]
- Rabinovich, G.A.; Gabrilovich, D.; Sotomayor, E.M. Immunosuppressive Strategies That Are Mediated by Tumor Cells. Annu. Rev. Immunol. 2007, 25, 267–296. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The Three Es of Cancer Immunoediting. Annu. Rev. Immunol. 2004, 22, 329–360. [Google Scholar] [CrossRef]
- Ebrahimkhani, M.R.; Mohar, I.; Crispe, I.N. Cross-Presentation of Antigen by Diverse Subsets of Murine Liver Cells. Hepatology 2011, 54, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Krenkel, O.; Tacke, F. Liver Macrophages in Tissue Homeostasis and Disease. Nat. Rev. Immunol. 2017, 17, 306–321. [Google Scholar] [CrossRef]
- Dunham, R.M.; Thapa, M.; Velazquez, V.M.; Elrod, E.J.; Denning, T.L.; Pulendran, B.; Grakoui, A. Hepatic Stellate Cells Preferentially Induce Foxp3+ Regulatory T Cells by Production of Retinoic Acid. J. Immunol. 2013, 190, 2009–2016. [Google Scholar] [CrossRef]
- Shetty, S.; Lalor, P.F.; Adams, D.H. Liver Sinusoidal Endothelial Cells—Gatekeepers of Hepatic Immunity. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 555–567. [Google Scholar] [CrossRef]
- Velcheti, V.; Schalper, K. Basic Overview of Current Immunotherapy Approaches in Cancer. Am. Soc. Clin. Oncol. Educ. Book 2016, 36, 298–308. [Google Scholar] [CrossRef]
- He, X.; Xu, C. Immune Checkpoint Signaling and Cancer Immunotherapy. Cell Res. 2020, 30, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Van Coillie, S.; Wiernicki, B.; Xu, J. Molecular and Cellular Functions of CTLA-4. In Regulation of Cancer Immune Checkpoints; Advances in Experimental Medicine and Biology; Springer: Singapore, 2020; pp. 7–32. [Google Scholar]
- Agdashian, D.; ElGindi, M.; Xie, C.; Sandhu, M.; Pratt, D.; Kleiner, D.E.; Figg, W.D.; Rytlewski, J.; Sanders, C.; Yusko, E.; et al. The Effect of Anti-CTLA4 Treatment on Peripheral and Intra-Tumoral T Cells in Patients with Hepatocellular Carcinoma. Cancer Immunol. Immunother. 2019, 68, 599–608. [Google Scholar] [CrossRef]
- Zeng, Z.; Yang, B.; Liao, Z. Current Progress and Prospect of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma (Review). Oncol. Lett. 2020, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 Pathway: Current Researches in Cancer. Am. J. Cancer Res. 2020, 10, 727–742. [Google Scholar] [PubMed]
- Ahmadzadeh, M.; Johnson, L.A.; Heemskerk, B.; Wunderlich, J.R.; Dudley, M.E.; White, D.E.; Rosenberg, S.A. Tumor Antigen–Specific CD8 T Cells Infiltrating the Tumor Express High Levels of PD-1 and Are Functionally Impaired. Blood 2009, 114, 1537–1544. [Google Scholar] [CrossRef] [PubMed]
- Abiko, K.; Matsumura, N.; Hamanishi, J.; Horikawa, N.; Murakami, R.; Yamaguchi, K.; Yoshioka, Y.; Baba, T.; Konishi, I.; Mandai, M. IFN-γ from Lymphocytes Induces PD-L1 Expression and Promotes Progression of Ovarian Cancer. Br. J. Cancer 2015, 112, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Calderaro, J.; Rousseau, B.; Amaddeo, G.; Mercey, M.; Charpy, C.; Costentin, C.; Luciani, A.; Zafrani, E.-S.; Laurent, A.; Azoulay, D.; et al. Programmed Death Ligand 1 Expression in Hepatocellular Carcinoma: Relationship with Clinical and Pathological Features. Hepatology 2016, 64, 2038–2046. [Google Scholar] [CrossRef]
- Yu, J.; Wang, X.; Teng, F.; Kong, L. PD-L1 Expression in Human Cancers and Its Association with Clinical Outcomes. OncoTargets Ther. 2016, 9, 5023–5039. [Google Scholar] [CrossRef] [PubMed]
- Sangro, B.; Gomez-Martin, C.; de la Mata, M.; Iñarrairaegui, M.; Garralda, E.; Barrera, P.; Riezu-Boj, J.I.; Larrea, E.; Alfaro, C.; Sarobe, P.; et al. A Clinical Trial of CTLA-4 Blockade with Tremelimumab in Patients with Hepatocellular Carcinoma and Chronic Hepatitis C. J. Hepatol. 2013, 59, 81–88. [Google Scholar] [CrossRef]
- Kelley, R.K.; Abou-Alfa, G.K.; Bendell, J.C.; Kim, T.-Y.; Borad, M.J.; Yong, W.-P.; Morse, M.; Kang, Y.-K.; Rebelatto, M.; Makowsky, M.; et al. Phase I/II Study of Durvalumab and Tremelimumab in Patients with Unresectable Hepatocellular Carcinoma (HCC): Phase I Safety and Efficacy Analyses. J. Clin. Oncol. 2017, 35 (Suppl. S15), 4073. [Google Scholar] [CrossRef]
- Kelley, R.K.; Sangro, B.; Harris, W.; Ikeda, M.; Okusaka, T.; Kang, Y.-K.; Qin, S.; Tai, D.W.-M.; Lim, H.Y.; Yau, T.; et al. Safety, Efficacy, and Pharmacodynamics of Tremelimumab plus Durvalumab for Patients with Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/II Study. J. Clin. Oncol. 2021, 39, 2991. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1, EVIDoa2100070. [Google Scholar] [CrossRef] [PubMed]
- Marisi, G.; Cucchetti, A.; Ulivi, P.; Canale, M.; Cabibbo, G.; Solaini, L.; Foschi, F.G.; Matteis, S.D.; Ercolani, G.; Valgiusti, M.; et al. Ten Years of Sorafenib in Hepatocellular Carcinoma: Are There Any Predictive and/or Prognostic Markers? World J. Gastroenterol. 2018, 24, 4152–4163. [Google Scholar] [CrossRef]
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A.; et al. Efficacy and Safety of Nivolumab plus Ipilimumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef] [PubMed]
- CTG Labs-NCBI. Available online: https://clinicaltrials.gov/study/NCT04039607 (accessed on 1 December 2023).
- Ouyang, T.; Kan, X.; Zheng, C. Immune Checkpoint Inhibitors for Advanced Hepatocellular Carcinoma: Monotherapies and Combined Therapies. Front. Oncol. 2022, 12, 898964. [Google Scholar] [CrossRef] [PubMed]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H.; et al. Nivolumab in Patients with Advanced Hepatocellular Carcinoma (CheckMate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose Escalation and Expansion Trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Yau, T.; Park, J.W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Han, K.-H.; Harding, J.J.; Merle, P.; et al. CheckMate 459: A Randomized, Multi-Center Phase III Study of Nivolumab (NIVO) vs Sorafenib (SOR) as First-Line (1L) Treatment in Patients (Pts) with Advanced Hepatocellular Carcinoma (AHCC). Ann. Oncol. 2019, 30, v874–v875. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib (KEYNOTE-224): A Non-Randomised, Open-Label Phase 2 Trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab as Second-Line Therapy in Patients with Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Qin, S.; Chen, Z.; Fang, W.; Ren, Z.; Xu, R.; Ryoo, B.-Y.; Meng, Z.; Bai, Y.; Chen, X.; Liu, X.; et al. Pembrolizumab versus Placebo as Second-Line Therapy in Patients from Asia with Advanced Hepatocellular Carcinoma: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2022, 41, 1434–1443. [Google Scholar] [CrossRef]
- Lee, M.S.; Ryoo, B.-Y.; Hsu, C.-H.; Numata, K.; Stein, S.; Verret, W.; Hack, S.P.; Spahn, J.; Liu, B.; Abdullah, H.; et al. Atezolizumab with or without Bevacizumab in Unresectable Hepatocellular Carcinoma (GO30140): An Open-Label, Multicentre, Phase 1b Study. Lancet Oncol. 2020, 21, 808–820. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Segal, N.H.; Jaeger, D.; Lee, K.-H.; Marshall, J.L.; Antonia, S.; Butler, M.O.; Sanborn, R.E.; Nemunaitis, J.; Carlson, C.A.; et al. Safety and Clinical Activity of Durvalumab Monotherapy in Patients with Hepatocellular Carcinoma (HCC). J. Clin. Oncol. 2017, 35 (Suppl. S15), 4071. [Google Scholar] [CrossRef]
- AstraZeneca. A Phase III, Randomized, Double-Blind, Placebo-Controlled, Multi Center Study of Durvalumab Monotherapy or in Combination with Bevacizumab as Adjuvant Therapy in Patients with Hepatocellular Carcinoma Who Are at High Risk of Recurrence after Curative Hepatic Resection or Ablation. Available online: https://clinicaltrials.gov/study/NCT03847428 (accessed on 1 December 2023).
- Bruno, S.; Kudo, M.; Qin, S.; Ren, Z.; Chan, S.; Joseph, E.; Arai, Y.; Mann, H.; Morgan, S.; Cohen, G.; et al. P-347 A phase 3, randomized, double-blind, placebo-controlled study of transarterial chemoembolization combined with durvalumab or durvalumab plus bevacizumab therapy in patients with locoregional hepatocellular carcinoma: EMERALD-1. Ann. Oncol. 2020, 31, S202–S203. [Google Scholar]
- Sangro, B.; Chan, S.L.; Meyer, T.; Reig, M.; El-Khoueiry, A.; Galle, P.R. Diagnosis and Management of Toxicities of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. J. Hepatol. 2020, 72, 320–341. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, S.; Seki, E. Inflammation and Liver Cancer: Molecular Mechanisms and Therapeutic Targets. Semin. Liver Dis. 2019, 39, 26–42. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, Y.; Xie, H.; Zou, Z. Immune-Mediated Hepatitis Induced by Immune Checkpoint Inhibitors: Current Updates and Future Perspectives. Front. Pharmacol. 2023, 13, 1077468. [Google Scholar] [CrossRef] [PubMed]
- Remash, D.; Prince, D.S.; McKenzie, C.; Strasser, S.I.; Kao, S.; Liu, K. Immune Checkpoint Inhibitor-Related Hepatotoxicity: A Review. World J. Gastroenterol. 2021, 27, 5376–5391. [Google Scholar] [CrossRef] [PubMed]
- Pinter, M.; Trauner, M.; Peck-Radosavljevic, M.; Sieghart, W. Cancer and Liver Cirrhosis: Implications on Prognosis and Management. ESMO Open 2016, 1, e000042. [Google Scholar] [CrossRef]
- Wang, W.; Lie, P.; Guo, M.; He, J. Risk of Hepatotoxicity in Cancer Patients Treated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis of Published Data. Int. J. Cancer 2017, 141, 1018–1028. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Del Vecchio, M.; Robert, C.; Mackiewicz, A.; Chiarion-Sileni, V.; Arance, A.; Lebbé, C.; Bastholt, L.; Hamid, O.; Rutkowski, P.; et al. Ipilimumab 10 Mg/Kg versus Ipilimumab 3 Mg/Kg in Patients with Unresectable or Metastatic Melanoma: A Randomised, Double-Blind, Multicentre, Phase 3 Trial. Lancet Oncol. 2017, 18, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yao, Z.; Zhou, X.; Zhang, W.; Zhang, X.; Zhang, F. Immune-Related Adverse Events of Checkpoint Inhibitors: Insights into Immunological Dysregulation. Clin. Immunol. 2020, 213, 108377. [Google Scholar] [CrossRef]
- Khan, S.; Gerber, D.E. Autoimmunity, Checkpoint Inhibitor Therapy and Immune-Related Adverse Events: A Review. Semin. Cancer Biol. 2020, 64, 93–101. [Google Scholar] [CrossRef]
- Kim, K.W.; Ramaiya, N.H.; Krajewski, K.M.; Jagannathan, J.P.; Tirumani, S.H.; Srivastava, A.; Ibrahim, N. Ipilimumab Associated Hepatitis: Imaging and Clinicopathologic Findings. Investig. New Drugs 2013, 31, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Gauci, M.-L.; Baroudjian, B.; Zeboulon, C.; Pages, C.; Poté, N.; Roux, O.; Bouattour, M.; Lebbé, C. Immune-Related Hepatitis with Immunotherapy: Are Corticosteroids Always Needed? J. Hepatol. 2018, 69, 548–550. [Google Scholar] [CrossRef] [PubMed]
- Parlati, L.; Anaïs, Vallet-Pichard; Batista, R.; Alain, Hernvann; Philippe, Sogni; Pol, S.; Mallet, V. Incidence of Grade 3-4 Liver Injury under Immune Checkpoints Inhibitors: A Retrospective Study. J. Hepatol. 2018, 69, 1396–1397. [Google Scholar] [CrossRef]
- Jennings, J.J.; Mandaliya, R.; Nakshabandi, A.; Lewis, J.H. Hepatotoxicity Induced by Immune Checkpoint Inhibitors: A Comprehensive Review Including Current and Alternative Management Strategies. Expert Opin. Drug Metab. Toxicol. 2019, 15, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Bhave, P.; Buckle, A.; Sandhu, S.; Sood, S. Mortality due to Immunotherapy Related Hepatitis. J. Hepatol. 2018, 69, 976–978. [Google Scholar] [CrossRef]
- LiverTox. Roussel Uclaf Causality Assessment Method (RUCAM) in Drug Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. Available online: https://pubmed.ncbi.nlm.nih.gov/31689029 (accessed on 1 December 2023).
- LiverTox. Clinical Course and Diagnosis of Drug Induced Liver Disease; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK548733/ (accessed on 1 December 2023).
- Özdemir, B.C.; Espinosa, C.; Dimitri, Arangalage; Monney, P.; Guler, S.A.; Huynh-Do, U.; Stirnimann, G.; Possamai, L.; Trepp, R.; Hoepner, R.; et al. Multidisciplinary Recommendations for Essential Baseline Functional and Laboratory Tests to Facilitate Early Diagnosis and Management of Immune-Related Adverse Events among Cancer Patients. Cancer Immunol. Immunother. 2023, 72, 1991–2001. [Google Scholar] [CrossRef]
- Teschke, R.; Danan, G. Idiosyncratic Drug-Induced Liver Injury (DILI) and Herb-Induced Liver Injury (HILI): Diagnostic Algorithm Based on the Quantitative Roussel Uclaf Causality Assessment Method (RUCAM). Diagnostics 2021, 11, 458. [Google Scholar] [CrossRef]
- Navarro, V.J.; Khan, I.; Björnsson, E.; Seeff, L.B.; Serrano, J.; Hoofnagle, J.H. Liver Injury from Herbal and Dietary Supplements. Hepatology 2016, 65, 363–373. [Google Scholar] [CrossRef]
- Bessone, F.; Bjornsson, E.S. Checkpoint Inhibitor-Induced Hepatotoxicity: Role of Liver Biopsy and Management Approach. World J. Hepatol. 2022, 14, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sack, J.; Rahma, O.E.; Hodi, F.S.; Zucker, S.D.; Grover, S. Outcomes after Resumption of Immune Checkpoint Inhibitor Therapy after High-Grade Immune-Mediated Hepatitis. Cancer 2020, 126, 5088–5097. [Google Scholar] [CrossRef]
- Da Cunha, T.; Wu, G.Y.; Vaziri, H. Immunotherapy-Induced Hepatotoxicity: A Review. J. Clin. Transl. Hepatol. 2022, 10, 1194–1204. [Google Scholar] [CrossRef] [PubMed]
- De Martin, E.; Michot, J.-M.; Papouin, B.; Champiat, S.; Mateus, C.; Lambotte, O.; Roche, B.; Antonini, T.M.; Coilly, A.; Laghouati, S.; et al. Characterization of Liver Injury Induced by Cancer Immunotherapy Using Immune Checkpoint Inhibitors. J. Hepatol. 2018, 68, 1181–1190. [Google Scholar] [CrossRef]
- Mar, Riveiro-Barciela; Barreira-Díaz, A.; Judit, Vidal-González; Muñoz-Couselo, E.; Martínez-Valle, F.; Viladomiu, L.; Minguez, B.; Ortiz-Velez, C.; Castells, L.; Esteban, R.; et al. Immune-Related Hepatitis Related to Checkpoint Inhibitors: Clinical and Prognostic Factors. Liver Int. 2020, 40, 1906–1916. [Google Scholar]
- Thoetchai, P.; Wang, J.; Odenwald, M.A.; Hu, S.; Hart, J.; Charlton, M.R. Hepatotoxicity from Immune Checkpoint Inhibitors: A Systematic Review and Management Recommendation. Hepatology 2020, 72, 315–329. [Google Scholar]
- Cheung, V.; Gupta, T.; Payne, M.; Middleton, M.R.; Collier, J.D.; Simmons, A.; Klenerman, P.; Brain, O.; Cobbold, J.F. Immunotherapy-Related Hepatitis: Real-World Experience from a Tertiary Centre. Frontline Gastroenterol. 2019, 10, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.J.; Aithal, G.P.; Björnsson, E.S.; Kaplowitz, N.; Kullak-Ublick, G.A.; Larrey, D.; Karlsen, T.H. EASL Clinical Practice Guidelines: Drug-Induced Liver Injury. J. Hepatol. 2019, 70, 1222–1261. [Google Scholar] [CrossRef]
- Haanen, J.; Obeid, M.; Spain, L.; Carbonnel, F.; Wang, Y.; Robert, C.; Lyon, A.R.; Wick, W.; Kostine, M.; Peters, S.; et al. Management of Toxicities from Immunotherapy: ESMO Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2022, 33, 1217–1238. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; et al. Management of Immune-Related Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2018, 36, 1714–1768. [Google Scholar] [CrossRef] [PubMed]
- Puzanov, I.; Diab, A.; Abdallah, K.; Bingham, C.O.; Brogdon, C.; Dadu, R.; Hamad, L.; Kim, S.; Lacouture, M.E.; LeBoeuf, N.R.; et al. Managing Toxicities Associated with Immune Checkpoint Inhibitors: Consensus Recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J. Immunother. Cancer 2017, 5, 95. [Google Scholar] [CrossRef] [PubMed]
- Riveiro-Barciela, M.; Barreira-Díaz, A.; Callejo-Pérez, A.; Muñoz-Couselo, E.; Díaz-Mejía, N.; Díaz-González, Á.; Londoño, M.-C.; Salcedo, M.-T.; Buti, M. Retreatment with Immune Checkpoint Inhibitors after a Severe Immune-Related Hepatitis: Results from a Prospective Multicenter Study. Clin. Gastroenterol. Hepatol. 2022, 21, 732–740. [Google Scholar] [CrossRef]
- Perz, J.F.; Armstrong, G.L.; Farrington, L.A.; Hutin, Y.J.F.; Bell, B.P. The Contributions of Hepatitis B Virus and Hepatitis c Virus Infections to Cirrhosis and Primary Liver Cancer Worldwide. J. Hepatol. 2006, 45, 529–538. [Google Scholar] [CrossRef]
- D’souza, S.; Lau, K.C.; Coffin, C.S.; Patel, T.R. Molecular Mechanisms of Viral Hepatitis Induced Hepatocellular Carcinoma. World J. Gastroenterol. 2020, 26, 5759–5783. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Markowitz, G.J.; Wang, X. The Hepatitis B Virus-Associated Tumor Microenvironment in Hepatocellular Carcinoma. Natl. Sci. Rev. 2014, 1, 396–412. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.; Budzinska, M.A.; Shackel, N.A.; Urban, S. HBV DNA Integration: Molecular Mechanisms and Clinical Implications. Viruses 2017, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Levrero, M.; Zucman-Rossi, J. Mechanisms of HBV-Induced Hepatocellular Carcinoma. J. Hepatol. 2016, 64, S84–S101. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.-L. Metabolic Alterations and Hepatitis C: From Bench to Bedside. World J. Gastroenterol. 2016, 22, 1461. [Google Scholar] [CrossRef]
- Khatun, M.; Ray, R.; Ray, R.B. Hepatitis c Virus Associated Hepatocellular Carcinoma. Adv. Cancer Res. 2021, 149, 103–142. [Google Scholar]
- Godbert, B.; Petitpain, N.; Lopez, A.; Nisse, Y.-E.; Gillet, P. Hepatitis B Reactivation and Immune Check Point Inhibitors. Dig. Liver Dis. 2021, 53, 452–455. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.W. Hepatitis B Virus Reactivation in Patients with Hepatocellular Carcinoma Undergoing Anti-Cancer Therapy. World J. Gastroenterol. 2014, 20, 7675. [Google Scholar] [CrossRef]
- Yeo, W.; Lam, K.C.; Zee, B.; Chan, P.S.K.; Mo, F.K.F.; Ho, W.M.; Wong, W.L.; Leung, T.W.T.; Chan, A.T.C.; Ma, B.; et al. Hepatitis B reactivation in patients with hepatocellular carcinoma undergoing systemic chemotherapy. Ann. Oncol. 2004, 15, 1661–1666. [Google Scholar] [CrossRef]
- Loomba, R.; Liang, T.J. Hepatitis B Reactivation Associated with Immune Suppressive and Biological Modifier Therapies: Current Concepts, Management Strategies, and Future Directions. Gastroenterology 2017, 152, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Lee, D.; Shim, J.H.; Kim, K.M.; Lim, Y.-S.; Lee, H.C.; Yoo, C.; Ryoo, B.-Y.; Choi, J. Risk of Hepatitis B Virus Reactivation in Patients Treated with Immunotherapy for Anti-Cancer Treatment. Clin. Gastroenterol. Hepatol. 2022, 20, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.; Zhang, J.; Chen, W.; Zhou, H.; Du, D.; Zhu, K.; Chen, H.; Meng, J.; Yang, J. Hepatitis B Reactivation in Cancer Patients Receiving Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Infect. Dis. Poverty 2023, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Wong, G.L.-H.; Wong, V.W.-S.; Hui, V.W.-K.; Yip, T.C.-F.; Tse, Y.-K.; Liang, L.Y.; Lui, R.N.-S.; Mok, T.S.-K.; Chan, H.L.-Y.; Chan, S.L. Hepatitis Flare during Immunotherapy in Patients with Current or Past Hepatitis B Virus Infection. Am. J. Gastroenterol. 2021, 116, 1274–1283. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, Y.; Chen, C.; Fang, W.; Cai, X.; Zhang, X.; Zhao, M.; Zhang, B.; Jiang, W.; Lin, Z.; et al. Hepatitis B Virus Reactivation in Cancer Patients with Positive Hepatitis B Surface Antigen Undergoing PD-1 Inhibition. J. Immunother. Cancer 2019, 7, 322. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-C.; Chao, Y.; Chen, M.-H.; Lan, K.-H.; Lee, I.-C.; Hou, M.-C.; Huang, Y.-H. Risk of HBV Reactivation in Patients with Immune Checkpoint Inhibitor-Treated Unresectable Hepatocellular Carcinoma. J. Immunother. Cancer 2020, 8, e001072. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Matsui, T.; Tanaka, Y. Novel Strategies for the Early Diagnosis of Hepatitis B Virus Reactivation. Hepatol. Res. 2021, 51, 1033–1043. [Google Scholar] [CrossRef]
- Ye, B.; Liu, X.; Li, X.; Kong, H.; Tian, L.; Chen, Y. T-Cell Exhaustion in Chronic Hepatitis B Infection: Current Knowledge and Clinical Significance. Cell Death Dis. 2015, 6, e1694. [Google Scholar] [CrossRef]
- Knolle, P.A.; Thimme, R. Hepatic Immune Regulation and Its Involvement in Viral Hepatitis Infection. Gastroenterology 2014, 146, 1193–1207. [Google Scholar] [CrossRef] [PubMed]
- Alkrekshi, A.; Tamaskar, I. Safety of Immune Checkpoint Inhibitors in Patients with Cancer and Hepatitis c Virus Infection. Oncologist 2021, 26, e827–e830. [Google Scholar] [CrossRef] [PubMed]
- De Keukeleire, S.J.; Vermassen, T.; Nezhad, Z.M.; Kerre, T.; Kruse, V.; Vlierberghe, H.V.; Vermaelen, K.; Rottey, S. Managing Viral Hepatitis in Cancer Patients under Immune Checkpoint Inhibitors: Should We Take the Risk? Immunotherapy 2021, 13, 409–418. [Google Scholar] [CrossRef]
- Tio, M.; Rai, R.; Ezeoke, O.M.; McQuade, J.L.; Zimmer, L.; Khoo, C.; Park, J.J.; Spain, L.; Turajlic, S.; Ardolino, L.; et al. Anti-PD-1/PD-L1 Immunotherapy in Patients with Solid Organ Transplant, HIV or Hepatitis B/c Infection. Eur. J. Cancer 2018, 104, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Mustafayev, K.; Torres, H. Hepatitis B Virus and Hepatitis c Virus Reactivation in Cancer Patients Receiving Novel Anticancer Therapies. Clin. Microbiol. Infect. 2022, 28, 1321–1327. [Google Scholar] [CrossRef]
- Yibirin, M.; Pundhir, P.; Yepez-Guevara, E.; Granwehr, B.; Kaseb, A.; Patel, S.; Torres, H.A. Safety of immune checkpoint inhibitors in cancer patients with chronic hepatitis C infection: A prospective observational study. Hepatology 2020, 72, 571A–572A. [Google Scholar]
- Hercun, J.; Vincent, C.; Bilodeau, M.; Lapierre, P. Immune-Mediated Hepatitis during Immune Checkpoint Inhibitor Cancer Immunotherapy: Lessons from Autoimmune Hepatitis and Liver Immunology. Front. Immunol. 2022, 13, 907591. [Google Scholar] [CrossRef] [PubMed]
- Zen, Y.; Yeh, M.M. Checkpoint Inhibitor-Induced Liver Injury: A Novel Form of Liver Disease Emerging in the Era of Cancer Immunotherapy. Semin. Diagn. Pathol. 2019, 36, 434–440. [Google Scholar] [CrossRef]
- Verheijden, R.J.; van Eijs, M.J.; May, A.M.; van Wijk, F.; Suijkerbuijk, K.P.M. Immunosuppression for Immune-Related Adverse Events during Checkpoint Inhibition: An Intricate Balance. NPJ Precis. Oncol. 2023, 7, 41. [Google Scholar] [CrossRef]
- Taherian, M.; Chatterjee, D.; Wang, H. Immune Checkpoint Inhibitor-Induced Hepatic Injury: A Clinicopathologic Review. J. Clin. Transl. Pathol. 2022, 2, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ziogas, D.C.; Gkoufa, A.; Cholongitas, E.; Diamantopoulos, P.; Anastasopoulou, A.; Ascierto, P.A.; Gogas, H. When Steroids Are Not Enough in Immune-Related Hepatitis: Current Clinical Challenges Discussed on the Basis of a Case Report. J. ImmunoTherapy Cancer 2020, 8, e001322. [Google Scholar] [CrossRef] [PubMed]
- Tapper, E.B.; Parikh, N.D. Diagnosis and Management of Cirrhosis and Its Complications: A Review. JAMA 2023, 329, 1589–1602. [Google Scholar] [CrossRef] [PubMed]
- Sarin, S.K.; Lahoti, D.; Saxena, S.P.; Murthy, N.S.; Makwana, U.K. Prevalence, Classification and Natural History of Gastric Varices: A Long-Term Follow-up Study in 568 Portal Hypertension Patients. Hepatology 1992, 16, 1343–1349. [Google Scholar] [CrossRef]
- North Italian Endoscopic Club for the Study and Treatment of Esophageal Varices. Prediction of the First Variceal Hemorrhage in Patients with Cirrhosis of the Liver and Esophageal Varices. N. Engl. J. Med. 1988, 319, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Giannini, E.G.; Risso, D.; Testa, R.; Trevisani, F.; Di Nolfo, M.A.; Del Poggio, P.; Benvegnù, L.; Ludovico Rapaccini, G.; Farinati, F.; Zoli, M.; et al. Prevalence and Prognostic Significance of the Presence of Esophageal Varices in Patients with Hepatocellular Carcinoma. Clin. Gastroenterol. Hepatol. 2006, 4, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Ren, Z.; Meng, Z.; Chen, Z.; Chai, X.; Xiong, J.; Bai, Y.; Yang, L.; Zhu, H.; Fang, W.; et al. Camrelizumab in Patients with Previously Treated Advanced Hepatocellular Carcinoma: A Multicentre, Open-Label, Parallel-Group, Randomised, Phase 2 Trial. Lancet Oncol. 2020, 21, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Finn, R.S.; Kudo, M.; Meyer, T.; Vogel, A.; Ducreux, M.; Macarulla, T.; Tomasello, G.; Frédéric Boisserie; Hou, J.; et al. RATIONALE 301 Study: Tislelizumab versus Sorafenib as First-Line Treatment for Unresectable Hepatocellular Carcinoma. Future Oncol. 2019, 15, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Lim, H.Y.; Cheng, A.-L.; Chao, Y.; Yau, T.; Ogasawara, S.; Kurosaki, M.; Morimoto, N.; Ohkawa, K.; Yamashita, T.; et al. Pembrolizumab as Second-Line Therapy for Advanced Hepatocellular Carcinoma: A Subgroup Analysis of Asian Patients in the Phase 3 KEYNOTE-240 Trial. Liver Cancer 2021, 10, 275–284. [Google Scholar] [CrossRef]
- Foy, V.; McNamara, M.G.; Valle, J.W.; Lamarca, A.; Edeline, J.; Hubner, R.A. Current Evidence for Immune Checkpoint Inhibition in Advanced Hepatocellular Carcinoma. Curr. Oncol. 2023, 30, 8665–8685. [Google Scholar] [CrossRef]
- Cappuyns, S.; Corbett, V.; Yarchoan, M.; Finn, R.S.; Llovet, J.M. Critical Appraisal of Guideline Recommendations on Systemic Therapies for Advanced Hepatocellular Carcinoma. JAMA Oncol. 2023, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated Efficacy and Safety Data from IMbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. J. Hepatol. 2021, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.G.; Llovet, J.M.; Yarchoan, M.; Mehta, N.; Heimbach, J.K.; Dawson, L.A.; Jou, J.H.; Kulik, L.M.; Agopian, V.G.; Marrero, J.A.; et al. AASLD Practice Guidance on Prevention, Diagnosis, and Treatment of Hepatocellular Carcinoma. Hepatology 2023, 78, 1922–1965. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1–Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef] [PubMed]
- Kamba, T.; McDonald, D.M. Mechanisms of Adverse Effects of Anti-VEGF Therapy for Cancer. Br. J. Cancer 2007, 96, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.V.; Tevethia, H.; Kumar, K.; Premkumar, M.; Muttaiah, M.D.; Hiraoka, A.; Hatanaka, T.; Tada, T.; Kumada, T.; Kakizaki, S.; et al. Effectiveness and Safety of Atezolizumab-Bevacizumab in Patients with Unresectable Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. EClinicalMedicine 2023, 63, 102179. [Google Scholar] [CrossRef]
- Ha, Y.; Kim, J.H.; Cheon, J.; Jeon, G.S.; Kim, C.; Chon, H.J. Risk of Variceal Bleeding in Patients with Advanced Hepatocellular Carcinoma Receiving Atezolizumab/Bevacizumab. Clin. Gastroenterol. Hepatol. 2022, 21, 2421–2423. [Google Scholar] [CrossRef]
- Larrey, E.; Campion, B.; Evain, M.; Sultanik, P.; Blaise, L.; Giudicelli, H.; Wagner, M.; Cluzel, P.; Rudler, M.; Ganne-Carrié, N.; et al. A History of Variceal Bleeding Is Associated with Further Bleeding under Atezolizumab-Bevacizumab in Patients with HCC. Liver Int. Off. J. Int. Assoc. Study Liver 2022, 42, 2843–2854. [Google Scholar] [CrossRef]
- Iavarone, M.; Alimenti, E.; Tada, T.; Shimose, S.; Suda, G.; Yoo, C.; Soldà, C.; Piscaglia, F.; Tosetti, G.; Marra, F.; et al. Incidence and Predictors of Esophagogastric Varices Bleeding in Patients with Hepatocellular Carcinoma in Lenvatinib. Liver Cancer 2024, 13, 215–226. [Google Scholar] [CrossRef]
- D’Alessio, A.; Fulgenzi, C.A.M.; Nishida, N.; Schönlein, M.; von Felden, J.; Schulze, K.; Wege, H.; Gaillard, V.E.; Saeed, A.; Wietharn, B.; et al. Preliminary Evidence of Safety and Tolerability of Atezolizumab plus Bevacizumab in Patients with Hepatocellular Carcinoma and Child-Pugh a and B Cirrhosis: A Real-World Study. Hepatology 2022, 76, 1000–1012. [Google Scholar] [CrossRef]
Grade | Drug-Induced Liver Injury (DILI) Network | Common Terminology Criteria for Adverse Events (CTCAE) |
---|---|---|
1 | AST and/or ALP levels are elevated, total serum bilirubin is <2.5 mg/dL, and there is no coagulopathy (INR < 1.5) | AST and/or ALT < 3 times the ULN and/or total bilirubin < 1.5 times the ULN |
2 | AST and/or ALP levels are elevated, total serum bilirubin is ≥2.5 mg/dL, or coagulopathy is present (INR ≥ 1.5) without elevated bilirubin levels | AST and/or ALT levels are 3 to 5 times the ULN and/or total bilirubin is 1.5 to 3 times the ULN |
3 | AST and/or ALP levels are elevated, total serum bilirubin is ≥2.5 mg/dL, and there is prolonged hospitalization due to drug-induced liver injury | AST and/or ALT levels are 5 to 20 times the ULN and/or total bilirubin is 3 to 10 times the ULN |
4 | AST and/or ALP levels are elevated, total serum bilirubin is ≥2.5 mg/dL, and the patient is demonstrating signs of hepatic decompensation (ascites, encephalopathy, INR ≥ 1.5) or other organ failure | Hepatic decompensation (ascites, encephalopathy, INR ≥ 1.5), AST and/or ALT levels > 20 times the ULN and/or total bilirubin > 10 times the ULN |
5 | Death or liver transplantation needed for survival | Death |
Inform patients to contact their health care provider if they experience any of the following symptoms: jaundice, nausea and/or vomiting, right-upper quadrant abdominal pain, decreased appetite, increased bruising or bleeding, darkening of the urine, increased drowsiness. Once diagnosed with ICH, discontinue all hepatotoxic agents and unnecessary medications. | |
Grade 1 |
|
Grade 2 |
|
Grade 3 |
|
Grade 4 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruli, T.M., Jr.; Pollack, E.D.; Lodh, A.; Evers, C.D., III; Price, C.A.; Shoreibah, M. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma and Their Hepatic-Related Side Effects: A Review. Cancers 2024, 16, 2042. https://doi.org/10.3390/cancers16112042
Ruli TM Jr., Pollack ED, Lodh A, Evers CD III, Price CA, Shoreibah M. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma and Their Hepatic-Related Side Effects: A Review. Cancers. 2024; 16(11):2042. https://doi.org/10.3390/cancers16112042
Chicago/Turabian StyleRuli, Thomas M., Jr., Ethan D. Pollack, Atul Lodh, Charles D. Evers, III, Christopher A. Price, and Mohamed Shoreibah. 2024. "Immune Checkpoint Inhibitors in Hepatocellular Carcinoma and Their Hepatic-Related Side Effects: A Review" Cancers 16, no. 11: 2042. https://doi.org/10.3390/cancers16112042
APA StyleRuli, T. M., Jr., Pollack, E. D., Lodh, A., Evers, C. D., III, Price, C. A., & Shoreibah, M. (2024). Immune Checkpoint Inhibitors in Hepatocellular Carcinoma and Their Hepatic-Related Side Effects: A Review. Cancers, 16(11), 2042. https://doi.org/10.3390/cancers16112042