Studying Outcomes after Steroid-Sparing Immunosuppressive Agent vs. Steroid-Only Treatment for Immune-Related Adverse Events in Non-Small-Cell Lung Cancer (NSCLC) and Melanoma: A Retrospective Case-Control Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Clinical Data Collection
2.3. Clinical Outcome Assessment
2.4. Statistical Analysis
3. Results
3.1. Cohort Descriptive Comparisons
3.2. Baseline Characteristics
3.3. Tumor Outcomes: PFS and OS with and without Time-Varying Covariates
3.4. Tumor Outcomes: The Best Overall Response
3.5. IrAE Baseline Information and IrAE Treatment Comparisons
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICIs | immune checkpoint inhibitors |
irAEs | immune-related adverse events |
SSIAs | steroid-sparing immunosuppressive agents |
NSCLC | non-small-cell lung cancer |
CS | corticosteroid monotherapy |
CS-SSIA | corticosteroid + SSIA |
References
- Dijkstra, K.K.; Voabil, P.; Schumacher, T.N.; Voest, E.E. Genomics- and transcriptomics-based patient selection for cancer treatment with immune checkpoint inhibitors: A review. JAMA Oncol. 2016, 2, 1490–1495. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Allison, J. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell 2015, 161, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, S.; Yuan, R.; Engleman, E.G. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 2021, 16, 223–249. [Google Scholar] [CrossRef] [PubMed]
- Leach, D.; Krummel, M.; Allison, J. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996, 271, 1734–1736. [Google Scholar] [CrossRef] [PubMed]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.; Callahan, M.; Wolchok, J. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 2015, 33, 1974–1982. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Y.-P.; Du, X.-J.; Liu, J.-Q.; Huang, C.-L.; Chen, L.; Zhou, G.-Q.; Li, W.-F.; Mao, Y.-P.; Hsu, C.; et al. Comparative safety of immune checkpoint inhibitors in cancer: Systematic review and network meta-analysis. BMJ 2018, 363, k4226. [Google Scholar] [CrossRef] [PubMed]
- Common Terminology Criteria for Adverse Events (CTCAE). Cancer Therapy Evaluation Program (CTEP). Available online: https://ctep.cancer.gov/protocolDevelopment/electronic_applications.htm (accessed on 30 June 2023).
- Brahmer, J.R.; Abu-Sbeih, H.; Ascierto, P.A.; Brufsky, J.; Cappelli, L.C.; Cortazar, F.B.; E Gerber, D.; Hamad, L.; Hansen, E.; Johnson, D.B.; et al. Society for immunotherapy of cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events. J. Immunother. Cancer 2021, 9, e002435. [Google Scholar] [CrossRef]
- Schneider, B.J.; Naidoo, J.; Santomasso, B.D.; Lacchetti, C.; Adkins, S.; Anadkat, M.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; et al. Management of immune related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J. Clin. Oncol. 2021, 39, 4073–4126. [Google Scholar] [CrossRef]
- Thompson, J.A.; Schneider, B.J.; Brahmer, J.; Andrews, S.; Armand, P.; Bhatia, S.; Budde, L.E.; Costa, L.; Davies, M.; Dunnington, D.; et al. NCCN guidelines insights: Management of immunotherapy-related toxicities, version 1.2020. J. Natl. Compr. Cancer Netw. 2020, 18, 230–241. [Google Scholar] [CrossRef]
- Haanen, J.; Obeid, M.; Spain, L.; Carbonnel, F.; Wang, Y.; Robert, C.; Lyon, A.; Wick, W.; Kostine, M.; Peters, S.; et al. Management of toxicities from immunotherapy: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 1217–1238. [Google Scholar] [CrossRef] [PubMed]
- Simonaggio, A.; Michot, J.M.; Voisin, A.L.; Le Pavec, J.; Collins, M.; Lallart, A.; Cengizalp, G.; Vozy, A.; Laparra, A.; Varga, A.; et al. Evaluation of readministration of immune checkpoint inhibitors after immune-related adverse events in patients with cancer. JAMA Oncol. 2019, 5, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Kyi, C.; Hellmann, M.D.; Wolchok, J.D.; Chapman, P.B.; Postow, M.A. Opportunistic infections in patients treated with immunotherapy for cancer. J. Immunother. Cancer 2014, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Sarnes, E.; Crofford, L.; Watson, M.; Dennis, G.; Kan, H.; Bass, D. Incidence and US costs of corticosteroid-associated adverse events: A systematic literature review. Clin. Ther. 2011, 33, 1413–1432. [Google Scholar] [CrossRef]
- Rice, J.B.; White, A.G.; Scarpati, L.M.; Wan, G.; Nelson, W.W. Long-term systemic corticosteroid exposure: A systematic literature review. Clin. Ther. 2017, 39, 2216–2229. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo, M.; Romero, F.A.; Argüello, E.; Kyi, C.; Postow, M.A.; Redelman-Sidi, G. The spectrum of serious infections among patients receiving immune checkpoint blockade for the treatment of melanoma. Clin. Infect. Dis. 2016, 63, 1490–1493. [Google Scholar] [CrossRef] [PubMed]
- Abu-Sbeih, H.; Ali, F.S.; Luo, W.; Qiao, W.; Raju, G.S.; Wang, Y. Importance of endoscopic and histological evaluation in the management of immune checkpoint inhibitor-induced colitis. J. Immunother Cancer 2018, 6, 95. [Google Scholar] [CrossRef]
- Aldea, M.; Orillard, E.; Mansi, L.; Marabelle, A.; Scotte, F.; Lambotte, O.; Michot, J.M. How to manage patients with corticosteroids in oncology in the era of immunotherapy? Eur. J. Cancer 2020, 141, 239–251. [Google Scholar] [CrossRef]
- Obradović, M.M.S.; Hamelin, B.; Manevski, N.; Couto, J.P.; Sethi, A.; Coissieux, M.-M.; Münst, S.; Okamoto, R.; Kohler, H.; Schmidt, A.; et al. Glucocorticoids promote breast cancer metastasis. Nature 2019, 567, 540–544. [Google Scholar] [CrossRef]
- Arbour, K.C.; Mezquita, L.; Long, N.; Rizvi, H.; Auclin, E.; Ni, A.; Martínez-Bernal, G.; Ferrara, R.; Lai, W.V.; Hendriks, L.E.L.; et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J. Clin. Oncol. 2018, 36, 2872–2878. [Google Scholar] [CrossRef]
- Kapoor, A.; Noronha, V.; Patil, V.M.; Joshi, A.; Menon, N.; Abraham, G.; Talreja, V.; D′Souza, H.; Prabhash, K. Concomitant use of corticosteroids and immune checkpoint inhibitors in patients with solid neoplasms: A real-world experience from a tertiary cancer center. Cancer Res. Stat. Treat. 2019, 2, 204. [Google Scholar]
- Faje, A.T.; Lawrence, D.; Flaherty, K.; Freedman, C.; Fadden, R.; Rubin, K.; Cohen, J.; Sullivan, R.J. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients with melanoma. Cancer 2018, 124, 3706–3714. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Signorelli, D.; Ghidini, M.; Ghidini, A.; Pizzutilo, E.G.; Ruggieri, L.; Cabiddu, M.; Borgonovo, K.; Dognini, G.; Brighenti, M.; et al. Association of steroids use with survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Cancers 2020, 12, 546. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Faleck, D.; Thomas, A.; Harris, J.; Satish, D.; Wang, X.; Charabaty, A.; Ernstoff, M.S.; Oliva, I.C.G.; Hanauer, S.; et al. Efficacy and safety of vedolizumab and infliximab treatment for immune-mediated diarrhea and colitis in patients with cancer: A two-center observational study. J. Immunother. Cancer 2011, 9, e003277. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Casals, M.; Brahmer, J.R.; Callahan, M.K.; Flores-Chávez, A.; Keegan, N.; Khamashta, M.A.; Lambotte, O.; Mariette, X.; Prat, A.; Suárez-Almazor, M.E. Immune-related adverse events of checkpoint inhibitors. Nat. Rev. Dis. Primers 2020, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Beattie, J.A.; Fuentes, P.; Rizvi, H.; Egger, J.V.; Kern, J.A.; Leung, D.Y.; Lacouture, M.E.; Kris, M.G.; Gambarin, M.; et al. Beyond steroids: Immunosuppressants in steroid-refractory or resistant immune-related adverse events. J. Thorac. Oncol. 2021, 16, 1759–1764. [Google Scholar] [CrossRef] [PubMed]
- Moi, L.; Bouchaab, H.; Mederos, N.; Nguyen-Ngoc, T.; Perreau, M.; Fenwick, C.; Vaucher, J.; Sempoux, C.; Peters, S.; Obeid, M. Personalized cytokine-directed therapy with tocilizumab for refractory immune checkpoint inhibitor-related cholangiohepatitis. J. Thorac. Oncol. 2021, 16, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Balaji, A.; Hsu, M.; Lin, C.T.; Feliciano, J.; Marrone, K.; Brahmer, J.R.; Forde, P.M.; Hann, C.; Zheng, L.; Lee, V.; et al. Steroid-refractory PD-(L)1 pneumonitis: Incidence, clinical features, treatment, and outcomes. J. Immunother. Cancer 2021, 9, e001731. [Google Scholar] [CrossRef] [PubMed]
- Johnston, R.L.; Lutzky, J.; Chodhry, A.; Barkin, J.S. Cytotoxic t-lymphocyte-associated antigen 4 antibody-induced colitis and its management with infliximab. Dig. Dis. Sci. 2009, 54, 2538–2540. [Google Scholar] [CrossRef]
- Abu-Sbeih, H.; Ali, F.S.; Wang, X.; Mallepally, N.; Chen, E.; Altan, M.; Bresalier, R.S.; Charabaty, A.; Dadu, R.; Jazaeri, A.; et al. Early introduction of selective immunosuppressive therapy associated with favorable clinical outcomes in patients with immune checkpoint inhibitor–induced colitis. J. Immunother. Cancer 2019, 7, 93. [Google Scholar] [CrossRef]
- Abu-Sbeih, H.; Tang, T.; Ali, F.; Johnson, D.H.; Qiao, W.; Diab, A.; Wang, Y. The impact of immune checkpoint inhibitor-related adverse events and their immunosuppressive treatment on patients’ outcomes. JCO Precis. Oncol. 2018, 1, 7–18. [Google Scholar] [CrossRef]
- Johnson, D.H.; Zobniw, C.M.; A Trinh, V.; Ma, J.; Bassett, R.L.; Abdel-Wahab, N.; Anderson, J.; E Davis, J.; Joseph, J.; Uemura, M.; et al. Infliximab associated with faster symptom resolution compared with corticosteroids alone for the management of immune-related enterocolitis. J. Immunother. Cancer 2018, 6, 103. [Google Scholar] [CrossRef]
- Ho, D.; Imai, K.; King, G.; Stuart, E.A. MatchIt: Nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 2011, 42, 1–28. [Google Scholar] [CrossRef]
- Austin, P.; Stuart, E. Optimal full matching for survival outcomes: A method that merits more widespread use. Stat. Med. 2015, 34, 3949–3967. [Google Scholar] [CrossRef]
- R: A Language and Environment for Statistical Computing. R. Foundation for Statistical Computing, 2022. Available online: https://www.R-project.org/ (accessed on 30 June 2023).
- Therneau, T. A Package for Survival Analysis in R: R Package Version 3.4-0. 2022. Available online: https://CRAN.R-project.org/package=survival (accessed on 30 June 2023).
- van Not, O.J.; Verheijden, R.J.; Eertwegh, A.J.M.v.D.; Haanen, J.B.A.G.; Aarts, M.J.B.; Berkmortel, F.W.P.J.v.D.; Blank, C.U.; Boers-Sonderen, M.J.; de Groot, J.-W.B.; Hospers, G.A.P.; et al. Association of immune-related adverse event management with survival in patients with advanced melanoma. JAMA Oncol. 2022, 8, 1794–1801. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.Y.; Wolchok, J.D.; Bass, A.R. TNF in the era of immune checkpoint inhibitors: Friend or foe? Nat. Rev. Rheumatol. 2021, 17, 213–223. [Google Scholar] [CrossRef]
- Perez-Ruiz, E.; Minute, L.; Otano, I. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature 2019, 569, 428–432. [Google Scholar] [CrossRef]
- Hailemichael, Y.; Johnson, D.H.; Abdel-Wahab, N.; Foo, W.C.; Bentebibel, S.E.; Daher, M.; Haymaker, C.; Wani, K.; Saberian, C.; Ogata, D.; et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell. 2022, 40, 509–523.e6. [Google Scholar] [CrossRef]
- Kfoury, M.; Najean, M.; Lappara, A.; Voisin, A.-L.; Champiat, S.; Michot, J.-M.; Laghouati, S.; Robert, C.; Besse, B.; Soria, J.-C.; et al. Analysis of the association between prospectively collected immune-related adverse events and survival in patients with solid tumor treated with immune-checkpoint blockers, taking into account immortal-time bias. Cancer Treat. Rev. 2022, 110, 102452. [Google Scholar] [CrossRef]
- Reid, P.; Sparks, J.; Bass, A. Steroid dose and duration, immortal time bias, and survival after high-grade immune-related adverse events. JAMA Oncol. 2023, 9, 723–724. [Google Scholar] [CrossRef] [PubMed]
- Garassino, M.C.; Gadgeel, S.; Speranza, G.; Felip, E.; Esteban, E.; Dómine, M.; Hochmair, M.J.; Powell, S.F.; Bischoff, H.G.; Peled, N.; et al. Pembrolizumab plus pemetrexed and platinum in nonsquamous non-small-cell lung cancer: 5-year outcomes from the phase 3 KEYNOTE-189. Study. J. Clin. Oncol. 2023, 41, 1992–1998. [Google Scholar] [CrossRef] [PubMed]
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Long-term outcomes with nivolumab plus ipilimumab or nivolumab alone versus ipilimumab in patients with advanced melanoma. J. Clin. Oncol. 2022, 40, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, N.; Chan, K.K.; Jivanelli, B.; Bass, A.R. Autoantibodies in patients with immune-related adverse events from checkpoint inhibitors: A systematic literature review. J. Clin. Rheumatol. 2022, 28, e498–e505. [Google Scholar] [CrossRef] [PubMed]
- Westin, J.R.; Chu, F.; Zhang, M.; E Fayad, L.; Kwak, L.W.; Fowler, N.; Romaguera, J.; Hagemeister, F.; Fanale, M.; Samaniego, F.; et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: A single group, open-label, phase 2 trial. Lancet Oncol. 2014, 15, 69–77. [Google Scholar] [CrossRef] [PubMed]
CS | CS-SSIA | SMD | |
---|---|---|---|
n | 132 | 35 | |
Median Age at ICI Start | 66 [57, 76] | 62 [52, 70] | 0.28 |
Age ≥ 65 | 61 (46.4) | 18 (51.4) | 0.05 |
Race | |||
Asian | 1 (0.8) | 1 (2.9) | 0.02 |
Black | 14 (10.8) | 5 (14.3) | 0.04 |
White | 117 (88.4) | 29 (82.9) | 0.06 |
Sex | |||
Female | 77 (58.4) | 21 (60.0) | 0.02 |
Male | 55 (41.6) | 14 (40.0) | |
Tumor Stage | |||
II or III | 26 (20.0) | 7 (20.0) | 0.00 |
IV | 106 (80.0) | 28 (80.0) | |
Tumor Type | |||
Melanoma | 87 (65.7) | 23 (65.7) | 0.00 |
NSCLC | 45 (34.3) | 12 (34.3) | |
Has Prior History of Autoimmune Disease | 5 (4.1) | 1 (2.8) | |
ECOG Performance Status | |||
0–1 | 122 (92.7) | 34 (97.1) | 0.04 |
2+ | 10 (7.3) | 1 (2.9) | |
Number of Prior Lines of Therapy | |||
0 | 91 (68.6) | 24 (68.6) | 0.00 |
1+ | 42 (31.4) | 11 (31.4) | |
Single-Agent vs. Dual-Agent ICI | |||
Single | 82 (61.9) | 19 (54.3) | 0.08 |
Dual | 50 (38.1) | 16 (45.7) |
Progression-Free Survival | Overall Survival | |
---|---|---|
HR (95% CI) | HR (95% CI) | |
No Time-Varying Treatment | 0.75 (0.46, 1.23) | 0.82 (0.46, 1.47) |
With Time-Varying Treatments: Melanoma and NSCLC, All the SSIAs | 0.54 (0.26, 1.10) | 1.11 (0.55, 2.24) |
Melanoma and NSCLC: Infliximab Only vs. Steroids | 0.46 (0.22, 0.97) | 0.78 (0.28, 2.16) |
Melanoma Only: All the SSIAs vs. Steroids | 0.47 (0.21, 1.02) | 0.89 (0.43, 1.82) |
Melanoma: Infliximab Only vs. Steroids | 0.32 (0.24, 0.43) | 0.37 (0.14, 1.28) |
NSCLC: All the SSIAs vs. Steroids | 0.77 (0.32, 1.85) | 1.84 (0.77, 4.43) |
CS | CS-SSIA | SMD | |
---|---|---|---|
n | 132 | 35 | |
irAEs Requiring Treatment, n (%) | |||
Colitis or Gastritis | 44 (33.6) | 11 (31.4) | 0.02 |
Hepatitis | 28 (20.9) | 13 (37.1) | 0.16 |
Pneumonitis | 24 (18.2) | 4 (11.4) | 0.07 |
Myocarditis | 7 (5.6) | 2 (5.7) | 0.00 |
Myositis | 0 (0.2) | 2 (5.7) | 0.06 |
Dermatitis | 24 (18.2) | 3 (8.6) | 0.10 |
Heme Toxicity | 4 (3.0) | 3 (8.6) | 0.06 |
Nephritis | 6 (4.8) | 0 (0.0) | 0.05 |
Neuro irAE | 6 (4.2) | 1 (2.9) | 0.14 |
Arthritis | 18 (13.3) | 3 (8.6) | 0.05 |
Others | 7 (5.6) | 2 (5.7) | 0.00 |
All irAEs Experienced, n (%) | |||
Colitis or Gastritis | 47 (35.7) | 13 (37.1) | 0.01 |
Hepatitis | 33 (24.7) | 15 (42.9) | 0.18 |
Pneumonitis | 25 (18.6) | 4 (11.4) | 0.07 |
Myocarditis | 7 (5.6) | 3 (8.6) | 0.03 |
Myositis | 1 (0.4) | 2 (5.7) | 0.05 |
Dermatitis | 39 (29.7) | 10 (28.6) | 0.01 |
Heme Toxicity | 4 (3.0) | 3 (8.6) | 0.06 |
Nephritis | 6 (4.8) | 0 (0.0) | 0.05 |
Neuro irAE | 6 (4.8) | 1 (2.9) | 0.02 |
Arthritis | 20 (14.9) | 4 (11.4) | 0.04 |
Others | 20 (15.2) | 4 (11.4) | 0.04 |
Number of irAEs Per Patient, n (%) | |||
1 | 76 (57.3) | 18 (51.4) | 0.06 |
2 | 39 (29.8) | 9 (25.7) | 0.04 |
3+ | 17 (12.9) | 8 (22.9) | 0.10 |
Maximum CTCAE Grade of irAE Per Patient, n (%) | |||
1–2 | 46 (40.1) | 6 (18.2) | 0.22 |
3–5 | 68 (59.9) | 27 (81.8) | |
SSIA Used, n (%) | |||
Mycophenolate Mofetil | - | 15 (42.9) | - |
Infliximab | - | 12 (34.3) | - |
Rituximab | - | 3 (8.6) | - |
Tocilizumab | - | 2 (5.7) | - |
Methotrexate | - | 2 (5.7) | - |
Tacrolimus | - | 2 (5.7) | - |
Number of ICI Doses Before irAE, Median [IQR] | 3 [2, 8] | 3 [2, 9] | 0.10 |
Patients Where ICI Was Restarted, n (%) | 35 (26.8) | 5 (14.3) | 0.11 |
Months from ICI Start to irAE, Median [IQR] | 2.15 [1.15, 6.61] | 2.33 [1.20, 6.70] | 0.12 |
Months from ICI start to Steroid Start, Median [IQR] | 2.99 [1.56, 7.84] | 2.77 [1.23, 8.13] | 0.06 |
Months from ICI Start to SSIA, Median [IQR] | 3.54 [1.98, 10.30] | ||
Total Duration of Steroid Treatment (Months), Median [IQR] | 2.17 [1.50, 4.00] | 3.00 [2.00, 5.08] | 0.18 |
CS | CS-SSIA | p | |
---|---|---|---|
n | 132 | 35 | |
irAE Outcomes | |||
Did irAE recur? | 17 (12.6) | 1 (2.9) | 0.11 |
Infection while on immunosuppression? | |||
No | 117 (88.7) | 28 (80.0) | 0.22 |
Yes—on steroid or SSIA | 15 (11.3) | 7 (20.0) | |
Yes—on steroid only | 15 (11.3) | 5 (14.3) | - |
Yes—on SSIA +/− steroid | - | 2 (5.7) | - |
Time to irAE resolution, months (median [IQR]) | 1.57 [0.69, 3.06] | 1.86 [1.01, 3.92] | 0.27 |
Time to irAE resolution, data unavailable | 14 (10.7) | 8 (22.9) | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Syed, S.; Hines, J.; Baccile, R.; Rouhani, S.; Reid, P. Studying Outcomes after Steroid-Sparing Immunosuppressive Agent vs. Steroid-Only Treatment for Immune-Related Adverse Events in Non-Small-Cell Lung Cancer (NSCLC) and Melanoma: A Retrospective Case-Control Study. Cancers 2024, 16, 1892. https://doi.org/10.3390/cancers16101892
Syed S, Hines J, Baccile R, Rouhani S, Reid P. Studying Outcomes after Steroid-Sparing Immunosuppressive Agent vs. Steroid-Only Treatment for Immune-Related Adverse Events in Non-Small-Cell Lung Cancer (NSCLC) and Melanoma: A Retrospective Case-Control Study. Cancers. 2024; 16(10):1892. https://doi.org/10.3390/cancers16101892
Chicago/Turabian StyleSyed, Sharjeel, Jacobi Hines, Rachel Baccile, Sherin Rouhani, and Pankti Reid. 2024. "Studying Outcomes after Steroid-Sparing Immunosuppressive Agent vs. Steroid-Only Treatment for Immune-Related Adverse Events in Non-Small-Cell Lung Cancer (NSCLC) and Melanoma: A Retrospective Case-Control Study" Cancers 16, no. 10: 1892. https://doi.org/10.3390/cancers16101892
APA StyleSyed, S., Hines, J., Baccile, R., Rouhani, S., & Reid, P. (2024). Studying Outcomes after Steroid-Sparing Immunosuppressive Agent vs. Steroid-Only Treatment for Immune-Related Adverse Events in Non-Small-Cell Lung Cancer (NSCLC) and Melanoma: A Retrospective Case-Control Study. Cancers, 16(10), 1892. https://doi.org/10.3390/cancers16101892