“Oh, Dear We Are in Tribble”: An Overview of the Oncogenic Functions of Tribbles 1
Abstract
:Simple Summary
Abstract
1. Introduction
2. Structure and Function of TRIB1
2.1. Evolution and Structure of TRIB1
2.2. Functions of TRIB1
Interacting Partner | Interaction Site | Function/Effect | References |
---|---|---|---|
C/EBPα/β | Pseudokinase domain (AA168–293) | Degradation of C/EBPα/β | [22,23] |
COP1 | C-terminal domain (AA 355–360) | Proteasome-mediated degradation of substrates such as C/EBPα/β | [22,24] |
MEK1/2 | C-terminal domain (AA 332–339) | MAPK pathway activation | [12,37] |
RAR/RXRα | Pseudokinase domain | Downregulation of RAR signaling | [32] |
Akt | Pseudokinase domain (AA 90–160) | Cell survival through the activation of PI3K-Akt pathway | [34,36] |
MKK4 | Pseudokinase domain | JNK pathway activation, vascular smooth muscle cell proliferation and chemotaxis | [38] |
MLXIPL (ChREBP) | Pseudokinase domain | Degradation of MLXIPL (ChREBP) leading to transcriptional inhibition of lipogenesis genes | [40] |
HNF4A | Pseudokinase domain, multiple epitopes but AA 1–240 exhibit strongest binding | Gene expression of lipid metabolism and lipoprotein regulators and genes in liver and intestine | [41] |
SAP18/Sin3A | COP1 binding site | Modulation of MTTP expression involved in lipid metabolism | [42] |
Nrf2 | C-terminal domain | Nrf2 sequestration in cytoplasm suppressing liver regeneration | [43] |
NF-кB | N-terminal and Pseudokinase domain | Direct promoter recruitment to NF-кB DNA recognition site and upregulation of cytokine gene expression | [44] |
FoxP3 | N-terminal and Pseudokinase domain | Tregs regulation | [45] |
FERMT2 | Pseudokinase domain | Degradation of FERMT2 and transcriptional regulation through β-catenin | [46] |
ZBT7A | Unknown | Modulation of ER-associated transcription | [46] |
CUL4A/B | C-terminal domain | Degradation of substrates | [46] |
HDAC1 | Unknown | P53 deacetylation | [47] |
CD72 | Pseudokinase domain | Degradation of CD72 leading to development of autoimmunity | [48] |
MALT1 | N-terminal domain (AA 83–89) | T cell receptor signaling regulation | [49] |
2.2.1. TRIB1 and Lipid Metabolism
2.2.2. TRIB1 and Innate Immunity
3. Role of TRIB1 in Disease
3.1. TRIB1 and Cancer
3.1.1. Acute Myeloid Leukemia (AML)
3.1.2. Prostate Cancer
3.1.3. Breast Cancer
3.1.4. Colorectal Cancer (CRC)
3.1.5. Other Cancers
3.2. TRIB1 and Other Diseases
4. Role of TRIB1 in Cancer Therapy Resistance
5. Potential Strategies to Target TRIB1
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Abbreviations
AA | Amino Acid |
AML | Acute Myeloid Leukemia |
C/EBPα | CAAT Enhancer Binding Protein α |
CAMK | Ca2+/Calmodulin-Dependent Protein Kinase |
ChREBP | Carbohydrate Responsive Element Binding Protein |
COP1 | Constitutive Photomorphogenic 1 |
EMT | Epithelial to Mesenchymal Transition |
ER | Estrogen Receptor |
EGFR | Epidermal Growth Factor Receptor |
Foxp3 | Forkhead box p3 |
HNF4A | Hepatocyte Nuclear Factor 4-Alpha |
IRAK3 | Interleukin-1 receptor-associated kinase 3 |
JNK | c-Jun N-terminal Kinase |
MLKL | Mixed Lineage Kinase-Like |
MLX | Max like protein x |
NF-кB | Nuclear factor kappa B |
Nrf2 | Nuclear Factor Erythroid 2-Related Factor 2 |
MALT1 | Mucosa-Associated Lymphoid Tissue protein 1 |
PML/RARA | Promyelocytic Leukemia/Retinoic Acid Receptor Alpha |
TLR | Toll-like Receptor |
HER3 | Human Epidermal Growth Factor Receptor 3 |
TRAIL | TNF-related apoptosis-inducing ligand |
VRK3 | Vaccinia Related Kinase |
References
- Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science 2002, 298, 1912–1934. [Google Scholar] [CrossRef]
- Shi, F.; Telesco, S.E.; Liu, Y.; Radhakrishnan, R.; Lemmon, M.A. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc. Natl. Acad. Sci. USA 2010, 107, 7692–7697. [Google Scholar] [CrossRef]
- Kang, T.H.; Kim, K.T. Negative regulation of ERK activity by VRK3-mediated activation of VHR phosphatase. Nat. Cell Biol. 2006, 8, 863–869. [Google Scholar] [CrossRef]
- Eyers, P.A.; Keeshan, K.; Kannan, N. Tribbles in the 21st Century: The Evolving Roles of Tribbles Pseudokinases in Biology and Disease. Trends Cell Biol. 2017, 27, 284–298. [Google Scholar] [CrossRef]
- Sun, L.; Wang, H.; Wang, Z.; He, S.; Chen, S.; Liao, D.; Wang, L.; Yan, J.; Liu, W.; Lei, X.; et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 2012, 148, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Kung, J.E.; Jura, N. Prospects for pharmacological targeting of pseudokinases. Nat. Rev. Drug Discov. 2019, 18, 501–526. [Google Scholar] [CrossRef]
- Wilkin, F.; Savonet, V.; Radulescu, A.; Petermans, J.; Dumont, J.E.; Maenhaut, C. Identification and characterization of novel genes modulated in the thyroid of dogs treated with methimazole and propylthiouracil. J. Biol. Chem. 1996, 271, 28451–28457. [Google Scholar] [CrossRef]
- Sharova, L.V.; Sharov, A.A.; Nedorezov, T.; Piao, Y.; Shaik, N.; Ko, M.S. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 2009, 16, 45–58. [Google Scholar] [CrossRef]
- Soubeyrand, S.; Martinuk, A.; Lau, P.; McPherson, R. TRIB1 Is Regulated Post-Transcriptionally by Proteasomal and Non-Proteasomal Pathways. PLoS ONE 2016, 11, e0152346. [Google Scholar] [CrossRef]
- Ruiz-Cantos, M.; Hutchison, C.E.; Shoulders, C.C. Musings from the Tribbles Research and Innovation Network. Cancers 2021, 13, 4517. [Google Scholar] [CrossRef] [PubMed]
- Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, T.; Kanno, Y.; Yamazaki, Y.; Takahara, T.; Miyata, S.; Nakamura, T. Trib1 links the MEK1/ERK pathway in myeloid leukemogenesis. Blood 2010, 116, 2768–2775. [Google Scholar] [CrossRef] [PubMed]
- Kung, J.E.; Jura, N. The pseudokinase TRIB1 toggles an intramolecular switch to regulate COP1 nuclear export. EMBO J. 2019, 38, e99708. [Google Scholar] [CrossRef] [PubMed]
- Niespolo, C.; Johnston, J.M.; Deshmukh, S.R.; Satam, S.; Shologu, Z.; Villacanas, O.; Sudbery, I.M.; Wilson, H.L.; Kiss-Toth, E. Tribbles-1 Expression and Its Function to Control Inflammatory Cytokines, Including Interleukin-8 Levels are Regulated by miRNAs in Macrophages and Prostate Cancer Cells. Front. Immunol. 2020, 11, 574046. [Google Scholar] [CrossRef] [PubMed]
- Soubeyrand, S.; Lau, P.; McPherson, R. Regulation of TRIB1 abundance in hepatocyte models in response to proteasome inhibition. Sci. Rep. 2023, 13, 9320. [Google Scholar] [CrossRef] [PubMed]
- Mata, J.; Curado, S.; Ephrussi, A.; Rørth, P. Tribbles coordinates mitosis and morphogenesis in Drosophila by regulating string/CDC25 proteolysis. Cell 2000, 101, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Grosshans, J.; Wieschaus, E. A genetic link between morphogenesis and cell division during formation of the ventral furrow in Drosophila. Cell 2000, 101, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Seher, T.C.; Leptin, M. Tribbles, a cell-cycle brake that coordinates proliferation and morphogenesis during Drosophila gastrulation. Curr. Biol. 2000, 10, 623–629. [Google Scholar] [CrossRef]
- Kiss-Toth, E.; Wyllie, D.H.; Holland, K.; Marsden, L.; Jozsa, V.; Oxley, K.M.; Polgar, T.; Qwarnstrom, E.E.; Dower, S.K. Functional mapping and identification of novel regulators for the Toll/Interleukin-1 signalling network by transcription expression cloning. Cell Signal 2006, 18, 202–214. [Google Scholar] [CrossRef]
- Johnston, J.; Kiss-Toth, E. TRIB1 (tribbles pseudokinase 1). Atlas Genet. Cytogenet. Oncol. Haematol. 2016, 20, 106–114. [Google Scholar] [CrossRef]
- Foulkes, D.M.; Byrne, D.P.; Bailey, F.P.; Eyers, P.A. Tribbles pseudokinases: Novel targets for chemical biology and drug discovery? Biochem. Soc. Trans. 2015, 43, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.M.; Nakatani, Y.; Jamieson, S.A.; Dai, W.; Lucet, I.S.; Mace, P.D. Molecular Mechanism of CCAAT-Enhancer Binding Protein Recruitment by the TRIB1 Pseudokinase. Structure 2015, 23, 2111–2121. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, S.A.; Ruan, Z.; Burgess, A.E.; Curry, J.R.; McMillan, H.D.; Brewster, J.L.; Dunbier, A.K.; Axtman, A.D.; Kannan, N.; Mace, P.D. Substrate binding allosterically relieves autoinhibition of the pseudokinase TRIB1. Sci. Signal. 2018, 11, eaau0597. [Google Scholar] [CrossRef] [PubMed]
- Uljon, S.; Xu, X.; Durzynska, I.; Stein, S.; Adelmant, G.; Marto, J.A.; Pear, W.S.; Blacklow, S.C. Structural Basis for Substrate Selectivity of the E3 Ligase COP1. Structure 2016, 24, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.; Nairn, A.C.; Kuriyan, J. Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell 1996, 84, 875–887. [Google Scholar] [CrossRef] [PubMed]
- Eyers, P.A. TRIBBLES: A Twist in the Pseudokinase Tail. Structure 2015, 23, 1974–1976. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Kato, J.Y.; Nakamae, I.; Yoneda-Kato, N. COP1 targets C/EBPα for degradation and induces acute myeloid leukemia via Trib1. Blood 2013, 122, 1750–1760. [Google Scholar] [CrossRef] [PubMed]
- Richmond, L.; Keeshan, K. Pseudokinases: A tribble-edged sword. FEBS J. 2020, 287, 4170–4182. [Google Scholar] [CrossRef]
- Rørth, P.; Szabo, K.; Texido, G. The level of C/EBP protein is critical for cell migration during Drosophila oogenesis and is tightly controlled by regulated degradation. Mol. Cell 2000, 6, 23–30. [Google Scholar] [CrossRef]
- Radomska, H.S.; Huettner, C.S.; Zhang, P.; Cheng, T.; Scadden, D.T.; Tenen, D.G. CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol. Cell Biol. 1998, 18, 4301–4314. [Google Scholar] [CrossRef]
- Satoh, T.; Kidoya, H.; Naito, H.; Yamamoto, M.; Takemura, N.; Nakagawa, K.; Yoshioka, Y.; Morii, E.; Takakura, N.; Takeuchi, O.; et al. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature 2013, 495, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Imajo, M.; Nishida, E. Human Tribbles homolog 1 functions as a negative regulator of retinoic acid receptor. Genes Cells 2010, 15, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Sebo, Z.; Pence, L.; Dobens, L.L. Drosophila tribbles antagonizes insulin signaling-mediated growth and metabolism via interactions with Akt kinase. PLoS ONE 2014, 9, e109530. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Han, C.; Fleming, J.L.; Becker, A.P.; McElroy, J.; Cui, T.; Johnson, B.; Kumar, A.; Sebastian, E.; Showalter, C.A.; et al. TRIB1 confers therapeutic resistance in GBM cells by activating the ERK and Akt pathways. Sci. Rep. 2023, 13, 12424. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.M.; Sun, W.; Wang, Z.H.; Liang, X.; Hua, F.; Li, K.; Lv, X.X.; Zhang, X.W.; Liu, Y.Y.; Yu, J.J.; et al. TRIB3 supports breast cancer stemness by suppressing FOXO1 degradation and enhancing SOX2 transcription. Nat. Commun. 2019, 10, 5720. [Google Scholar] [CrossRef] [PubMed]
- Gendelman, R.; Xing, H.; Mirzoeva, O.K.; Sarde, P.; Curtis, C.; Feiler, H.S.; McDonagh, P.; Gray, J.W.; Khalil, I.; Korn, W.M. Bayesian Network Inference Modeling Identifies TRIB1 as a Novel Regulator of Cell-Cycle Progression and Survival in Cancer Cells. Cancer Res. 2017, 77, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Kiss-Toth, E.; Bagstaff, S.M.; Sung, H.Y.; Jozsa, V.; Dempsey, C.; Caunt, J.C.; Oxley, K.M.; Wyllie, D.H.; Polgar, T.; Harte, M.; et al. Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. J. Biol. Chem. 2004, 279, 42703–42708. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.Y.; Guan, H.; Czibula, A.; King, A.R.; Eder, K.; Heath, E.; Suvarna, S.K.; Dower, S.K.; Wilson, A.G.; Francis, S.E.; et al. Human tribbles-1 controls proliferation and chemotaxis of smooth muscle cells via MAPK signaling pathways. J. Biol. Chem. 2007, 282, 18379–18387. [Google Scholar] [CrossRef]
- Arndt, L.; Dokas, J.; Gericke, M.; Kutzner, C.E.; Müller, S.; Jeromin, F.; Thiery, J.; Burkhardt, R. Tribbles homolog 1 deficiency modulates function and polarization of murine bone marrow-derived macrophages. J. Biol. Chem. 2018, 293, 11527–11536. [Google Scholar] [CrossRef]
- Ishizuka, Y.; Nakayama, K.; Ogawa, A.; Makishima, S.; Boonvisut, S.; Hirao, A.; Iwasaki, Y.; Yada, T.; Yanagisawa, Y.; Miyashita, H.; et al. TRIB1 downregulates hepatic lipogenesis and glycogenesis via multiple molecular interactions. J. Mol. Endocrinol. 2014, 52, 145–158. [Google Scholar] [CrossRef]
- Soubeyrand, S.; Martinuk, A.; McPherson, R. TRIB1 is a positive regulator of hepatocyte nuclear factor 4-alpha. Sci. Rep. 2017, 7, 5574. [Google Scholar] [CrossRef] [PubMed]
- Makishima, S.; Boonvisut, S.; Ishizuka, Y.; Watanabe, K.; Nakayama, K.; Iwamoto, S. Sin3A-associated protein, 18 kDa, a novel binding partner of TRIB1, regulates MTTP expression. J. Lipid Res. 2015, 56, 1145–1152. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, S.; Miao, X.; Zeng, S.; Guo, Y.; Zhou, A.; Chen, Y.; Lv, F.; Fan, Z.; Wang, Y.; et al. TRIB1 regulates liver regeneration by antagonizing the NRF2-mediated antioxidant response. Cell Death Dis. 2023, 14, 372. [Google Scholar] [CrossRef]
- Ostertag, A.; Jones, A.; Rose, A.J.; Liebert, M.; Kleinsorg, S.; Reimann, A.; Vegiopoulos, A.; Berriel Diaz, M.; Strzoda, D.; Yamamoto, M.; et al. Control of adipose tissue inflammation through TRB1. Diabetes 2010, 59, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Dugast, E.; Kiss-Toth, E.; Docherty, L.; Danger, R.; Chesneau, M.; Pichard, V.; Judor, J.P.; Pettré, S.; Conchon, S.; Soulillou, J.P.; et al. Identification of tribbles-1 as a novel binding partner of Foxp3 in regulatory T cells. J. Biol. Chem. 2013, 288, 10051–10060. [Google Scholar] [CrossRef]
- McMillan, H.D.; Papachristou, E.K.; Hazlett, J.; Omarjee, S.; Carroll, J.S.; Black, M.A.; Mace, P.D.; Dunbier, A.K. TRIB1 modulates transcriptional programming in breast cancer cells to regulate cell proliferation. bioRxiv 2023. [Google Scholar] [CrossRef]
- Miyajima, C.; Inoue, Y.; Hayashi, H. Pseudokinase tribbles 1 (TRB1) negatively regulates tumor-suppressor activity of p53 through p53 deacetylation. Biol. Pharm. Bull. 2015, 38, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Simoni, L.; Delgado, V.; Ruer-Laventie, J.; Bouis, D.; Soley, A.; Heyer, V.; Robert, I.; Gies, V.; Martin, T.; Korganow, A.S.; et al. Trib1 Is Overexpressed in Systemic Lupus Erythematosus, While It Regulates Immunoglobulin Production in Murine B Cells. Front. Immunol. 2018, 9, 373. [Google Scholar] [CrossRef] [PubMed]
- Rome, K.S.; Stein, S.J.; Kurachi, M.; Petrovic, J.; Schwartz, G.W.; Mack, E.A.; Uljon, S.; Wu, W.W.; DeHart, A.G.; McClory, S.E.; et al. Trib1 regulates T cell differentiation during chronic infection by restraining the effector program. J. Exp. Med. 2020, 217, e20190888. [Google Scholar] [CrossRef]
- Kathiresan, S.; Melander, O.; Guiducci, C.; Surti, A.; Burtt, N.P.; Rieder, M.J.; Cooper, G.M.; Roos, C.; Voight, B.F.; Havulinna, A.S.; et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat. Genet. 2008, 40, 189–197. [Google Scholar] [CrossRef]
- Burkhardt, R.; Toh, S.A.; Lagor, W.R.; Birkeland, A.; Levin, M.; Li, X.; Robblee, M.; Fedorov, V.D.; Yamamoto, M.; Satoh, T.; et al. Trib1 is a lipid- and myocardial infarction-associated gene that regulates hepatic lipogenesis and VLDL production in mice. J. Clin. Investig. 2010, 120, 4410–4414. [Google Scholar] [CrossRef] [PubMed]
- Bauer, R.C.; Sasaki, M.; Cohen, D.M.; Cui, J.; Smith, M.A.; Yenilmez, B.O.; Steger, D.J.; Rader, D.J. Tribbles-1 regulates hepatic lipogenesis through posttranscriptional regulation of C/EBPα. J. Clin. Investig. 2015, 125, 3809–3818. [Google Scholar] [CrossRef] [PubMed]
- Quiroz-Figueroa, K.; Vitali, C.; Conlon, D.M.; Millar, J.S.; Tobias, J.W.; Bauer, R.C.; Hand, N.J.; Rader, D.J. TRIB1 regulates LDL metabolism through CEBPα-mediated effects on the LDL receptor in hepatocytes. J. Clin. Investig. 2021, 131, e146775. [Google Scholar] [CrossRef] [PubMed]
- Ha, E.E.; Quartuccia, G.I.; Ling, R.; Xue, C.; Karikari, R.A.; Hernandez-Ono, A.; Hu, K.Y.; Matias, C.V.; Imam, R.; Cui, J.; et al. Adipocyte-specific tribbles pseudokinase 1 regulates plasma adiponectin and plasma lipids in mice. Mol. Metab. 2022, 56, 101412. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.C.; Zhang, W.; Sehmi, J.; Li, X.; Wass, M.N.; Van der Harst, P.; Holm, H.; Sanna, S.; Kavousi, M.; Baumeister, S.E.; et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet. 2011, 43, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Bhairavabhotla, R.; Kim, Y.C.; Glass, D.D.; Escobar, T.M.; Patel, M.C.; Zahr, R.; Nguyen, C.K.; Kilaru, G.K.; Muljo, S.A.; Shevach, E.M. Transcriptome profiling of human FoxP3+ regulatory T cells. Hum. Immunol. 2016, 77, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Miyajima, C.; Itoh, Y.; Inoue, Y.; Hayashi, H. Positive Regulation of Interleukin-2 Expression by a Pseudokinase, Tribbles 1, in Activated T Cells. Biol. Pharm. Bull. 2015, 38, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Uematsu, S.; Okamoto, T.; Matsuura, Y.; Sato, S.; Kumar, H.; Satoh, T.; Saitoh, T.; Takeda, K.; Ishii, K.J.; et al. Enhanced TLR-mediated NF-IL6 dependent gene expression by Trib1 deficiency. J. Exp. Med. 2007, 204, 2233–2239. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Tan, K.A.; Morrison, I.W.; Lamb, J.R.; Argyle, D.J. Macrophage migration is controlled by Tribbles 1 through the interaction between C/EBPβ and TNF-α. Vet. Immunol. Immunopathol. 2013, 155, 67–75. [Google Scholar] [CrossRef]
- Ashton-Chess, J.; Giral, M.; Mengel, M.; Renaudin, K.; Foucher, Y.; Gwinner, W.; Braud, C.; Dugast, E.; Quillard, T.; Thebault, P.; et al. Tribbles-1 as a novel biomarker of chronic antibody-mediated rejection. J. Am. Soc. Nephrol. 2008, 19, 1116–1127. [Google Scholar] [CrossRef]
- Röthlisberger, B.; Heizmann, M.; Bargetzi, M.J.; Huber, A.R. TRIB1 overexpression in acute myeloid leukemia. Cancer Genet. Cytogenet. 2007, 176, 58–60. [Google Scholar] [CrossRef]
- Döhner, H. Implication of the molecular characterization of acute myeloid leukemia. Hematol. Am. Soc. Hematol. Educ. Program. 2007, 2007, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, S.; Yokoyama, T.; Sunami, Y.; Takahara, T.; Nakamura, A.; Yamazaki, Y.; Tsutsumi, S.; Aburatani, H.; Nakamura, T. Trib1 promotes acute myeloid leukemia progression by modulating the transcriptional programs of Hoxa9. Blood 2021, 137, 75–88. [Google Scholar] [CrossRef]
- Pineault, N.; Helgason, C.D.; Lawrence, H.J.; Humphries, R.K. Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp. Hematol. 2002, 30, 49–57. [Google Scholar] [CrossRef]
- Jin, G.; Yamazaki, Y.; Takuwa, M.; Takahara, T.; Kaneko, K.; Kuwata, T.; Miyata, S.; Nakamura, T. Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood 2007, 109, 3998–4005. [Google Scholar] [CrossRef] [PubMed]
- Kroon, E.; Krosl, J.; Thorsteinsdottir, U.; Baban, S.; Buchberg, A.M.; Sauvageau, G. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 1998, 17, 3714–3725. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, H.J.; Rozenfeld, S.; Cruz, C.; Matsukuma, K.; Kwong, A.; Kömüves, L.; Buchberg, A.M.; Largman, C. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 1999, 13, 1993–1999. [Google Scholar] [CrossRef]
- Mohr, S.; Doebele, C.; Comoglio, F.; Berg, T.; Beck, J.; Bohnenberger, H.; Alexe, G.; Corso, J.; Ströbel, P.; Wachter, A.; et al. Hoxa9 and Meis1 Cooperatively Induce Addiction to Syk Signaling by Suppressing miR-146a in Acute Myeloid Leukemia. Cancer Cell 2017, 31, 549–562.e11. [Google Scholar] [CrossRef]
- Shahrouzi, P.; Astobiza, I.; Cortazar, A.R.; Torrano, V.; Macchia, A.; Flores, J.M.; Niespolo, C.; Mendizabal, I.; Caloto, R.; Ercilla, A.; et al. Genomic and Functional Regulation of TRIB1 Contributes to Prostate Cancer Pathogenesis. Cancers 2020, 12, 2593. [Google Scholar] [CrossRef]
- Mashima, T.; Soma-Nagae, T.; Migita, T.; Kinoshita, R.; Iwamoto, A.; Yuasa, T.; Yonese, J.; Ishikawa, Y.; Seimiya, H. TRIB1 supports prostate tumorigenesis and tumor-propagating cell survival by regulation of endoplasmic reticulum chaperone expression. Cancer Res. 2014, 74, 4888–4897. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Han, Z.D.; Liang, Y.K.; Chen, J.X.; Wan, S.; Zhuo, Y.J.; Cai, Z.D.; Deng, Y.L.; Lin, Z.Y.; Mo, R.J.; et al. TRIB1 induces macrophages to M2 phenotype by inhibiting IKB-zeta in prostate cancer. Cell Signal 2019, 59, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Papachristou, E.K.; Kishore, K.; Holding, A.N.; Harvey, K.; Roumeliotis, T.I.; Chilamakuri, C.S.R.; Omarjee, S.; Chia, K.M.; Swarbrick, A.; Lim, E.; et al. A quantitative mass spectrometry-based approach to monitor the dynamics of endogenous chromatin-associated protein complexes. Nat. Commun. 2018, 9, 2311. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Johnston, J.; Castillo-Lluva, S.; Cimas, F.J.; Hamby, S.; Gonzalez-Moreno, S.; Villarejo-Campos, P.; Goodall, A.H.; Velasco, G.; Ocana, A.; et al. TRIB1 regulates tumor growth via controlling tumor-associated macrophage phenotypes and is associated with breast cancer survival and treatment response. Theranostics 2022, 12, 3584–3600. [Google Scholar] [CrossRef] [PubMed]
- Camps, J.; Nguyen, Q.T.; Padilla-Nash, H.M.; Knutsen, T.; McNeil, N.E.; Wangsa, D.; Hummon, A.B.; Grade, M.; Ried, T.; Difilippantonio, M.J. Integrative genomics reveals mechanisms of copy number alterations responsible for transcriptional deregulation in colorectal cancer. Genes. Chromosomes Cancer 2009, 48, 1002–1017. [Google Scholar] [CrossRef] [PubMed]
- Briffa, R.; Um, I.; Faratian, D.; Zhou, Y.; Turnbull, A.K.; Langdon, S.P.; Harrison, D.J. Multi-Scale Genomic, Transcriptomic and Proteomic Analysis of Colorectal Cancer Cell Lines to Identify Novel Biomarkers. PLoS ONE 2015, 10, e0144708. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, N.; Pang, B.; Tong, D.; Sun, D.; Sun, H.; Zhang, C.; Sun, W.; Meng, X.; Bai, J.; et al. TRIB1 promotes colorectal cancer cell migration and invasion through activation MMP-2 via FAK/Src and ERK pathways. Oncotarget 2017, 8, 47931–47942. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.X.; Hu, J.J.; Fang, Y.; Wang, Z.T.; Xie, J.J.; Zhan, Q.; Deng, X.X.; Chen, H.; Jin, J.B.; Peng, C.H.; et al. A case-control study indicates that the TRIB1 gene is associated with pancreatic cancer. Genet. Mol. Res. 2014, 13, 6142–6147. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, M.; Sanchez, E.; Soof, C.M.; Bujarski, S.; Ng, N.; Cao, J.; Hekmati, T.; Zahab, B.; Nosrati, J.D.; et al. JAK1/2 pathway inhibition suppresses M2 polarization and overcomes resistance of myeloma to lenalidomide by reducing TRIB1, MUC1, CD44, CXCL12, and CXCR4 expression. Br. J. Haematol. 2020, 188, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Wang, G.; Zhuang, J.; He, S.; Song, Y.; Ni, J.; Xia, W.; Wang, J. The Oncogenic Role of Tribbles 1 in Hepatocellular Carcinoma Is Mediated by a Feedback Loop Involving microRNA-23a and p53. Front. Physiol. 2017, 8, 789. [Google Scholar] [CrossRef]
- Tang, B.; Wu, W.; Zhang, Q.; Sun, Y.; Cui, Y.; Wu, F.; Wei, X.; Qi, G.; Liang, X.; Tang, F.; et al. Inhibition of tribbles protein-1 attenuates radioresistance in human glioma cells. Sci. Rep. 2015, 5, 15961. [Google Scholar] [CrossRef]
- Bauer, R.C.; Yenilmez, B.O.; Rader, D.J. Tribbles-1: A novel regulator of hepatic lipid metabolism in humans. Biochem. Soc. Trans. 2015, 43, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Arndt, L.; Hernandez-Resendiz, I.; Moos, D.; Dokas, J.; Müller, S.; Jeromin, F.; Wagner, R.; Ceglarek, U.; Heid, I.M.; Höring, M.; et al. Deficiency Promotes Hyperlipidemia, Inflammation, and Atherosclerosis in LDL Receptor Knockout Mice. Arterioscler. Thromb. Vasc. Biol. 2023, 43, 979–994. [Google Scholar] [CrossRef]
- Johnston, J.M.; Angyal, A.; Bauer, R.C.; Hamby, S.; Suvarna, S.K.; Baidžajevas, K.; Hegedus, Z.; Dear, T.N.; Turner, M.; Wilson, H.L.; et al. Myeloid Tribbles 1 induces early atherosclerosis via enhanced foam cell expansion. Sci. Adv. 2019, 5, eaax9183. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chen, X.; Li, C.; Du, X.; Zhou, H. Polymorphisms of TRIB1 genes for coronary artery disease and stroke risk: A systematic review and meta-analysis. Gene 2023, 880, 147613. [Google Scholar] [CrossRef] [PubMed]
- Kitamoto, A.; Kitamoto, T.; Nakamura, T.; Ogawa, Y.; Yoneda, M.; Hyogo, H.; Ochi, H.; Mizusawa, S.; Ueno, T.; Nakao, K.; et al. Association of polymorphisms in GCKR and TRIB1 with nonalcoholic fatty liver disease and metabolic syndrome traits. Endocr. J. 2014, 61, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Xue, F.; Meng, J.; Liu, S.S.; Chen, L.Z.; Gao, H.; Geng, N.; Jin, W.W.; Xin, Y.N.; Xuan, S.Y. TRIB1 rs17321515 and rs2954029 gene polymorphisms increase the risk of non-alcoholic fatty liver disease in Chinese Han population. Lipids Health Dis. 2019, 18, 61. [Google Scholar] [CrossRef] [PubMed]
- Soubeyrand, S.; Martinuk, A.; Naing, T.; Lau, P.; McPherson, R. Role of Tribbles Pseudokinase 1 (TRIB1) in human hepatocyte metabolism. Biochim. Biophys. Acta 2016, 1862, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Nagiec, M.M.; Skepner, A.P.; Negri, J.; Eichhorn, M.; Kuperwasser, N.; Comer, E.; Muncipinto, G.; Subramanian, A.; Clish, C.; Musunuru, K.; et al. Modulators of hepatic lipoprotein metabolism identified in a search for small-molecule inducers of tribbles pseudokinase 1 expression. PLoS ONE 2015, 10, e0120295. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Wu, M.; Li, H.; Liu, J. Janus kinase activation by cytokine oncostatin M decreases PCSK9 expression in liver cells. J. Lipid Res. 2011, 52, 518–530. [Google Scholar] [CrossRef]
- Nagiec, M.M.; Duvall, J.R.; Skepner, A.P.; Howe, E.A.; Bastien, J.; Comer, E.; Marie, J.C.; Johnston, S.E.; Negri, J.; Eichhorn, M.; et al. Novel tricyclic glycal-based. MedChemComm 2018, 9, 1831–1842. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Zhang, C.; Sun, G.; Sun, X. Trib1 deficiency causes brown adipose respiratory chain depletion and mitochondrial disorder. Cell Death Dis. 2021, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- De Marco, C.; Laudanna, C.; Rinaldo, N.; Oliveira, D.M.; Ravo, M.; Weisz, A.; Ceccarelli, M.; Caira, E.; Rizzuto, A.; Zoppoli, P.; et al. Specific gene expression signatures induced by the multiple oncogenic alterations that occur within the PTEN/PI3K/AKT pathway in lung cancer. PLoS ONE 2017, 12, e0178865. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Ren, Y.; Zhang, J.; Chen, J.; Zhou, W.; Guo, W.; Wang, X.; Chen, H.; Li, M.; et al. Cisplatin-enriching cancer stem cells confer multidrug resistance in non-small cell lung cancer via enhancing TRIB1/HDAC activity. Cell Death Dis. 2017, 8, e2746. [Google Scholar] [CrossRef]
- Jurj, A.; Pop, L.A.; Zanoaga, O.; Ciocan-Cârtiţă, C.A.; Cojocneanu, R.; Moldovan, C.; Raduly, L.; Pop-Bica, C.; Trif, M.; Irimie, A.; et al. New Insights in Gene Expression Alteration as Effect of Paclitaxel Drug Resistance in Triple Negative Breast Cancer Cells. Cell Physiol. Biochem. 2020, 54, 648–664. [Google Scholar] [CrossRef] [PubMed]
- Keeshan, K.; Vieugué, P.; Chaudhury, S.; Rishi, L.; Gaillard, C.; Liang, L.; Garcia, E.; Nakamura, T.; Omidvar, N.; Kogan, S.C. Co-operative leukemogenesis in acute myeloid leukemia and acute promyelocytic leukemia reveals C/EBPα as a common target of TRIB1 and PML/RARA. Haematologica 2016, 101, 1228–1236. [Google Scholar] [CrossRef]
- McClory, S.E.; Bardhan, O.; Rome, K.S.; Giles, J.R.; Baxter, A.E.; Xu, L.; Gimotty, P.A.; Faryabi, R.B.; Wherry, E.J.; Pear, W.S.; et al. The pseudokinase Trib1 regulates the transition of exhausted T cells to a KLR. Cell Rep. 2023, 42, 112905. [Google Scholar] [CrossRef] [PubMed]
- Shang, S.; Yang, Y.W.; Chen, F.; Yu, L.; Shen, S.H.; Li, K.; Cui, B.; Lv, X.X.; Zhang, C.; Yang, C.; et al. TRIB3 reduces CD8. Sci. Transl. Med. 2022, 14, eabf0992. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Huang, Y.Q.; Zhang, Y.Q.; Han, Z.D.; He, H.C.; Ling, X.H.; Fu, X.; Dai, Q.S.; Cai, C.; Chen, J.H.; et al. MicroRNA-224 inhibits progression of human prostate cancer by downregulating TRIB1. Int. J. Cancer 2014, 135, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Song, X.; Fan, B.; Li, M.; Zhang, A.; Pei, L. Exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) enhances the docetaxel resistance of prostate cancer via the microRNA-136-5p/tribbles homolog 1 pathway. Anticancer Drugs 2022, 33, 871–882. [Google Scholar] [CrossRef]
- Györffy, B.; Surowiak, P.; Kiesslich, O.; Denkert, C.; Schäfer, R.; Dietel, M.; Lage, H. Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int. J. Cancer 2006, 118, 1699–1712. [Google Scholar] [CrossRef]
- Xie, X.; Lee, J.; Fuson, J.A.; Liu, H.; Iwase, T.; Yun, K.; Margain, C.; Tripathy, D.; Ueno, N.T. Identification of Kinase Targets for Enhancing the Antitumor Activity of Eribulin in Triple-Negative Breast Cell Lines. Biomedicines 2023, 11, 735. [Google Scholar] [CrossRef]
- Allen, W.L.; Coyle, V.M.; Jithesh, P.V.; Proutski, I.; Stevenson, L.; Fenning, C.; Longley, D.B.; Wilson, R.H.; Gordon, M.; Lenz, H.J.; et al. Clinical determinants of response to irinotecan-based therapy derived from cell line models. Clin. Cancer Res. 2008, 14, 6647–6655. [Google Scholar] [CrossRef]
- Shawky, A.M.; Almalki, F.A.; Abdalla, A.N.; Abdelazeem, A.H.; Gouda, A.M. A Comprehensive Overview of Globally Approved JAK Inhibitors. Pharmaceutics 2022, 14, 1001. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Hoffman, R. Ruxolitinib: The first FDA approved therapy for the treatment of myelofibrosis. Clin. Cancer Res. 2012, 18, 3008–3014. [Google Scholar] [CrossRef] [PubMed]
- Foulkes, D.M.; Byrne, D.P.; Yeung, W.; Shrestha, S.; Bailey, F.P.; Ferries, S.; Eyers, C.E.; Keeshan, K.; Wells, C.; Drewry, D.H.; et al. Covalent inhibitors of EGFR family protein kinases induce degradation of human Tribbles 2 (TRIB2) pseudokinase in cancer cells. Sci. Signal. 2018, 11, eaat7951. [Google Scholar] [CrossRef]
- Lim, S.M.; Westover, K.D.; Ficarro, S.B.; Harrison, R.A.; Choi, H.G.; Pacold, M.E.; Carrasco, M.; Hunter, J.; Kim, N.D.; Xie, T.; et al. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew. Chem. Int. Ed. Engl. 2014, 53, 199–204. [Google Scholar] [CrossRef]
- Lai, A.C.; Crews, C.M. Induced protein degradation: An emerging drug discovery paradigm. Nat. Rev. Drug Discov. 2017, 16, 101–114. [Google Scholar] [CrossRef]
- Neklesa, T.K.; Crews, C.M. Chemical biology: Greasy tags for protein removal. Nature 2012, 487, 308–309. [Google Scholar] [CrossRef]
- Alabi, S.B. Targeting Oncogenic Kinases and Pseudokinases with Proteolysis Targeting Chimeras; Yale University: New Haven, CT, USA, 2021. [Google Scholar]
- Xie, T.; Lim, S.M.; Westover, K.D.; Dodge, M.E.; Ercan, D.; Ficarro, S.B.; Udayakumar, D.; Gurbani, D.; Tae, H.S.; Riddle, S.M.; et al. Pharmacological targeting of the pseudokinase Her3. Nat. Chem. Biol. 2014, 10, 1006–1012. [Google Scholar] [CrossRef]
- Degorce, S.L.; Tavana, O.; Banks, E.; Crafter, C.; Gingipalli, L.; Kouvchinov, D.; Mao, Y.; Pachl, F.; Solanki, A.; Valge-Archer, V.; et al. Discovery of Proteolysis-Targeting Chimera Molecules that Selectively Degrade the IRAK3 Pseudokinase. J. Med. Chem. 2020, 63, 10460–10473. [Google Scholar] [CrossRef]
- Rathje, O.H.; Perryman, L.; Payne, R.J.; Hamprecht, D.W. PROTACs Targeting MLKL Protect Cells from Necroptosis. J. Med. Chem. 2023, 66, 11216–11236. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Vega, F.; Mina, M.; Armenia, J.; Chatila, W.K.; Luna, A.; La, K.C.; Dimitriadoy, S.; Liu, D.L.; Kantheti, H.S.; Saghafinia, S.; et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 2018, 173, 321–337.e10. [Google Scholar] [CrossRef] [PubMed]
Cancer | Biological Significance of TRIB1 | References | Cancer Treatment | Role of TRIB1 in Treatment Resistance | References |
---|---|---|---|---|---|
Acute myeloid leukemia | TRIB1 overexpression drives Hoxa9-induced leukemogenesis by decreasing C/EBPα to induce the enhancer programs at Erg and Spns2 loci. TRIB1 interacts with MEK1 to activate the MAPK pathway and enhances self-renewal of malignant bone marrow cells. | [12,63] | All-trans retinoic acid | TRIB1 overexpression causes resistance to ATRA treatment in acute promyelocytic leukemia through downregulation of C/EBPα. | [95] |
Cytarabine Daunorubicin Idarubicin | None reported | ||||
Prostate cancer | TRIB1 and cMYC are co-amplified in prostate cancer. TRIB1 promotes secretion of CXCL and IL-8 by inhibiting IкB-ζ expression and induces tumor growth. TRIB1 upregulates GRP78 to promote the occurrence and survival of prostate tumor cells. MiR-224, which targets TRIB1, is downregulated in prostate cancer. | [70,71,98] | Docetaxel | Increased expression of TRIB1 promotes resistance to docetaxel. | [99] |
Mitoxantrone | Increased TRIB1 gene expression is associated with resistance to mitoxantrone. | [100] | |||
Estramustine Carboplatin | None reported | ||||
Breast cancer | TRIB1 and cMYC are co-amplified in breast cancer patients. TRIB1 regulates both G1/S and G2/M transition in breast cancer cells. TRIB1 interacts with β-catenin and its co-factor FERMT2 and may regulate β-catenin activity. TRIB1 also interacts with ER co-factor ZBTB7A and could influence ER-associated transcription. TRIB1 reduces DR5 and TRAIL-induced apoptosis by elevating NF-кB signaling. TRIB1 negatively regulates the anti-tumor cytokine IL-15 in tumor associated macrophages to decrease T-cell infiltration and anti-tumor responses. | [36,46,73] | Paclitaxel | Long-term paclitaxel treatment in breast cancer cell lines leads to induction of TRIB1 gene and paclitaxel resistance. | [94] |
Eribulin | Inhibition of TRIB1 enhanced the anti-proliferation effect of eribulin in triple-negative breast cancer cells. | [101] | |||
Doxorubicin Epirubicin 5-fluorouracil (5-FU) Capecitabine Cyclophosphamide Carboplatin Ixabepilone Vinorelbine Gemcitabine | None reported | ||||
Colorectal cancer | TRIB1 and cMYC are co-amplified in cells and in patients. TRIB1 promotes migration and invasion of CRC cells through the activation of FAK/Src and the ERK pathway to upregulate MMP-2 expression. | [74,76] | Irinotecan | Treatment with the active metabolite of irinotecan, SN38, acutely induces TRIB1 gene expression in colon cancer cells. Increased TRIB1 gene expression is associated with resistance to irinotecan. | [102] |
5-FU Capecitabine Oxaliplatin Trifluridine and tipiracil | None reported | ||||
Pancreatic cancer | A single nucleotide polymorphism in the TRIB1 gene (rs2980879) is associated with pancreatic cancer in the Chinese Han population. | [77] | Gemcitabine 5-FU Oxaliplatin Albumin-bound paclitaxel (Abrxane) Capecitabine Cisplatin Irinotecan | None reported | |
Multiple myeloma | TRIB1 gene expression is higher in bone marrow mononuclear cells of multiple myeloma patients with progressive disease compared to those in remission. Patients with progressive disease have increased percentage of M2 macrophages and suggests a role of TRIB1 in M2 macrophage polarization in multiple myeloma potentially via the JAK/STAT pathway. | [78] | Cyclophosphamide Etoposide Doxorubicin Melphalan Bendamustine | None reported | |
Hepatocellular carcinoma | TRIB1 is upregulated in hepatocellular carcinoma cells and tissues. TRIB1 promotes hepatocellular carcinoma tumorigenesis and invasiveness through a feedback loop involving miR-23a and p53. | [79] | Sorafenib Gemcitabine Oxaliplatin Cisplatin Doxorubicin 5-FU Capecitabine Mitoxantrone | None reported | |
Glioma | TRIB1 causes upregulation of ERK and Akt pathways. TRIB1 inhibits activity of p53 in glioma through COP1 and HDAC1, leading to treatment resistance. | [34,80] | Radiation | TRIB1 mRNA and protein levels increase after radiation treatment in glioma cells causing a decrease in treatment-induced cell death. | [34,80] |
Temozolomide | TRIB1 mRNA and protein levels increase after temozolomide treatment in glioma cells causing a decrease in treatment-induced cell death. | [34,80] | |||
Non-small cell lung cancer | TRIB1 interacts with HDAC1 to deacetylate and inactivate p53. TRIB1 participates in the abnormal activation of the PI3K/Akt pathway through regulation by mutant PIK3CA. | [92,93] | Cisplatin | Cisplatin treatment resulted in C/EBP-β-dependent increasing of TRIB1, which forms a complex with HDAC1 to downregulate p53 and induce resistance to cisplatin. | [93] |
Vinorelbine | Cisplatin pre-treatment of lung cancer cells resulted in increased resistance to vinorelbine. | [93] | |||
Carboplatin Paclitaxel Albumin-bound paclitaxel (Abraxane) Docetaxel Gemcitabine Etoposide Pemetrexed | None reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, K.; Showalter, C.A.; Manring, H.R.; Haque, S.J.; Chakravarti, A. “Oh, Dear We Are in Tribble”: An Overview of the Oncogenic Functions of Tribbles 1. Cancers 2024, 16, 1889. https://doi.org/10.3390/cancers16101889
Singh K, Showalter CA, Manring HR, Haque SJ, Chakravarti A. “Oh, Dear We Are in Tribble”: An Overview of the Oncogenic Functions of Tribbles 1. Cancers. 2024; 16(10):1889. https://doi.org/10.3390/cancers16101889
Chicago/Turabian StyleSingh, Karnika, Christian A. Showalter, Heather R. Manring, Saikh Jaharul Haque, and Arnab Chakravarti. 2024. "“Oh, Dear We Are in Tribble”: An Overview of the Oncogenic Functions of Tribbles 1" Cancers 16, no. 10: 1889. https://doi.org/10.3390/cancers16101889
APA StyleSingh, K., Showalter, C. A., Manring, H. R., Haque, S. J., & Chakravarti, A. (2024). “Oh, Dear We Are in Tribble”: An Overview of the Oncogenic Functions of Tribbles 1. Cancers, 16(10), 1889. https://doi.org/10.3390/cancers16101889