Risk Prediction, Diagnosis and Management of a Breast Cancer Patient with Treatment-Related Cardiovascular Toxicity: An Essential Overview
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview of Cancer Therapy-Related Cardiovascular Toxicity
3. Breast Cancer Histology and Grading
4. Anti-Cancer Treatment
4.1. Systemic Anti-Cancer Treatment
4.1.1. Carboplatin
4.1.2. Cyclophosphamide
4.1.3. Fluoropyrimidines
4.1.4. Taxanes
4.1.5. Anthracyclines
4.1.6. Immune Checkpoint Inhibitors
4.1.7. Cyclin-Dependent Kinase 4/6 Inhibitors
4.1.8. HER2-Specific Tyrosine Kinase Inhibitor
4.1.9. Nucleoside Analogues
4.2. Radiotherapy
4.3. Endocrine Therapy
4.4. Targeted Therapy
5. Cardiac Biomarkers
6. Echocardiography
6.1. The Standard Examination
6.2. Cardiomyopathies
6.2.1. Left Ventricular Systolic Function
6.2.2. Left Ventricular Diastolic Function
6.2.3. Right Ventricular Function
6.3. Ischaemic Heart Disease
6.4. Valvular Heart Disease
6.5. Pericardial Disease
6.6. Cardiac Source of Embolism
6.7. Cardiac Masses
6.8. Transoesophageal Echocardiography
7. Cardiac CT
7.1. Coronary Artery Disease
7.2. Cardiac Masses
7.3. Pericardial Disease
7.4. Valvular Heart Disease
7.5. Left Atrium and Pulmonary Veins
7.6. Infective Endocarditis
7.7. Extra-Cardiac Findings
8. Cardiac MRI
8.1. Chronic Coronary Disease
8.2. Acute Coronary Disease
8.3. Cardiomyopathies
8.4. Myocarditis
8.5. Pericardial Disease
8.6. Valvular Heart Disease
8.7. Cardiac Masses
9. Nuclear Cardiology
9.1. Ischaemic Heart Disease
9.2. Non-Ischaemic Myocardial Disease
9.3. Inflammation and Infection Imaging
10. Risk Stratification
11. Prevention and Treatment of Cancer Therapy-Related Cardiovascular Toxicity
Treatment
12. Long-Term Follow-Up
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CTR-CVT | cancer therapy-related cardiovascular toxicity |
CTRCD | Cancer therapy-related cardiac dysfunction |
ESC | European Society of Cardiology |
VEGF | Vascular endothelial growth factor |
HER2 | human epidermal growth factor receptor 2 |
MEK | mitogen-activated protein kinase |
TKI | Tyrosine Kinase Inhibitor |
BCR ABL | Breakpoint Cluster Region-Abelson |
ALK | anaplastic lymphoma kinase |
LVEF | left ventricular ejection fraction |
RAF | rapidly accelerated fibrosarcoma |
ER | oestrogen receptor |
PR | progesterone receptor |
HR | hormone receptor |
SACT | systemic anti-cancer therapy |
DNA | Deoxyribonucleic acid |
RNA | Ribonucleic acid |
MAPK | mitogen-activated protein kinase |
AKT | Ak strain transforming |
dFdCTP | Gemcitabine Triphosphate |
AI | aromatase inhibitor |
CT | Chemotherapy |
gBRCA | germline BRCA 1/2 mutation |
CDK4/6i | Cyclin-Dependent Kinase 4/6 Inhibitors |
ICI | immune checkpoint inhibitor |
CI | contraindication |
ET | endocrine therapy |
BM | brain metastases |
SRT | stereotactic radiotherapy |
PIK3CA | phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
ESR1 | oestrogen receptor 1 |
PALB2 | partner and localiser of BRCA2 |
PD-L1 | programmed-death ligand 1 |
CTLA4 | Cytotoxic T-lymphocyte-associated protein 4 |
BMI | body mass index |
ntproBNP | N-terminal prohormone of brain natriuretic peptide |
NT | natriuretic peptides |
CRP | C reactive protein |
BNP | brain natriuretic peptide |
MRI | magnetic resonance imaging |
MPO | myeloperoxidase |
PIGF | placental growth factor |
GDF-15 | growth/differentiation factor-15 |
IGF1 | Insulin-like growth factor 1 |
cMLC-1 | Cardiac Myosin Lightchain 1 |
ST2/IL33-R | suppression of tumorigenicity 2 protein/interleukin-33R |
PON-1 | Paraoxonase-1 |
IL6 | Interleukin 6 |
cfDNA | Circulating cell-free DNA |
LVOT | left ventricular outflow tract |
LV | left ventricle |
RV | right ventricle |
TAPSE | tricuspid annular plane systolic excursion |
IVC | inferior vena cava |
VTI | velocity time integral |
EROA | effective regurgitant orifice area |
PISA | Proximal Isovelocity Surface Area |
CT | computed tomography |
RVOT | right ventricular outflow tract |
PET-CT | Positron emission tomography/Computed Tomography |
TOE | transoesophageal echocardiography |
MINOCA | myocardial infarction with non-obstructive coronary arteries |
FDG | fluorodeoxyglucose |
SPECT | single-photon computed emission tomography |
MIBG | iobenguane i-131 |
ATTR | transthyretin |
MUGA | multi-gated acquisition scanning |
CIED | cardiovascular implantable electronic devices |
CML | chronic myeloid leukaemia |
ECG | electrocardiogram |
cTN | cardiac troponin |
Gy | gray |
TTE | transthoracic echocardiography |
RCT | randomised control trial |
HSCT | haematopoietic stem cell transplant |
AC | anthracycline |
BC | breast cancer |
Tz | trastuzumab |
Cycph | cyclophosphamide |
MA | meta-analysis |
CI | confidence interval |
BB | beta blocker |
MRA | mineralocorticoid receptor antagonist |
ACEi | angiotensin-converting enzyme inhibitor |
ARB | angiotensin receptor blocker |
NH | neurohormonal |
SGLT2 | Sodium-glucose cotransporter-2 inhibitor |
MDT | multidisciplinary team |
ARB | angiotensin receptor blocker |
GLS | global longitudinal strain |
NOAC | novel oral anticoagulation |
References
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, J.; Lerman, A.; Sandhu, N.P.; Villarraga, H.R.; Mulvagh, S.L.; Kohli, M. Evaluation and management of patients with heart disease and cancer: Cardio-oncology. Mayo Clin. Proc. 2014, 89, 1287–1306. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, P.; Suter, T.M.; López-Fernández, T.; Galderisi, M.; Lyon, A.R.; Van der Meer, P.; Cohen Solal, A.; Zamorano, J.L.; Jerusalem, G.; Moonen, M.; et al. Cardio-Oncology Services: Rationale, organization, and implementation. Eur. Heart J. 2019, 40, 1756–1763. [Google Scholar] [CrossRef] [PubMed]
- Andres, M.; Murphy, T.; Poku, N.; Nazir, M.S.; Ramalingam, S.; Baksi, J.; Jarman, J.W.E.; Khattar, R.; Sharma, R.; Rosen, S.D.; et al. The United Kingdom’s First Cardio-Oncology Service: A Decade of Growth and Evolution. J. Am. Coll. Cardiol. CardioOncol. 2024. [Google Scholar] [CrossRef]
- Herrmann, J.; Lenihan, D.; Armenian, S.; Barac, A.; Blaes, A.; Cardinale, D.; Carver, J.; Dent, S.; Ky, B.; Lyon, A.R.; et al. Defining cardiovascular toxicities of cancer therapies: An International Cardio-Oncology Society (IC-OS) consensus statement. Eur. Heart J. 2022, 43, 280–299. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Herschkowitz, J.I.; Simin, K.; Weigman, V.J.; Mikaelian, I.; Usary, J.; Hu, Z.; Rasmussen, K.E.; Jones, L.P.; Assefnia, S.; Chandrasekharan, S.; et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 2007, 5, R76. [Google Scholar] [CrossRef] [PubMed]
- Howlader, N.; Altekruse, S.F.; Li, C.I.; Chen, V.W.; Clarke, C.A.; Ries, L.A.; Cronin, K.A. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J. Natl. Cancer Inst. 2014, 106, dju055. [Google Scholar] [CrossRef] [PubMed]
- Łukasiewicz, S.; Czeczelewski, M.; Forma, A.; Baj, J.; Sitarz, R.; Stanisławek, A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers 2021, 13, 4287. [Google Scholar] [CrossRef] [PubMed]
- Badve, S.; Dabbs, D.J.; Schnitt, S.J.; Baehner, F.L.; Decker, T.; Eusebi, V.; Fox, S.B.; Ichihara, S.; Jacquemier, J.; Lakhani, S.R.; et al. Basal-like and triple-negative breast cancers: A critical review with an emphasis on the implications for pathologists and oncologists. Mod. Pathol. 2011, 24, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, B.; Geyer, F.C.; Reis-Filho, J.S. Histological types of breast cancer: How special are they? Mol. Oncol. 2010, 4, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Elston, C.W.; Ellis, I.O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 1991, 19, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J.; Harbeck, N.; Nap, M.; Molina, R.; Nicolini, A.; Senkus, E.; Cardoso, F. Clinical use of biomarkers in breast cancer: Updated guidelines from the European Group on Tumor Markers (EGTM). Eur. J. Cancer 2017, 75, 284–298. [Google Scholar] [CrossRef] [PubMed]
- Patani, N.; Martin, L.A.; Dowsett, M. Biomarkers for the clinical management of breast cancer: International perspective. Int. J. Cancer 2013, 133, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kontani, K.; Kuroda, N.; Hashimoto, S.; Murazawa, C.; Norimura, S.; Tanaka, H.; Ohtani, M.; Fujiwara-Honjo, N.; Kushida, Y.; Date, M.; et al. Clinical usefulness of human epidermal growth factor receptor-2 extracellular domain as a biomarker for monitoring cancer status and predicting the therapeutic efficacy in breast cancer. Cancer Biol Ther. 2013, 14, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1194–1220. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.J.; Ho, A.Y. Radiation therapy in the management of breast cancer. Surg. Clin. N. Am. 2013, 93, 455–471. [Google Scholar] [CrossRef] [PubMed]
- Tremont, A.; Lu, J.; Cole, J.T. Endocrine Therapy for Early Breast Cancer: Updated Review. Ochsner J. 2017, 17, 405–411. [Google Scholar] [PubMed]
- Li, Y.; Yang, D.; Yin, X.; Zhang, X.; Huang, J.; Wu, Y.; Wang, M.; Yi, Z.; Li, H.; Li, H.; et al. Clinicopathological Characteristics and Breast Cancer-Specific Survival of Patients With Single Hormone Receptor-Positive Breast Cancer. JAMA Netw. Open 2020, 3, e1918160. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, F.; Dal Bo, M.; Macor, P.; Toffoli, G. A comprehensive overview on antibody-drug conjugates: From the conceptualization to cancer therapy. Front. Pharmacol. 2023, 14, 1274088. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. FDA Grants Accelerated Approval to Fam-Trastuzumab Deruxtecan-Nxki for Unresectable or Metastatic HER2-Positive Solid Tumours. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-fam-trastuzumab-deruxtecan-nxki-unresectable-or-metastatic-her2#:~:text=positive%20solid%20tumors-,FDA%20grants%20accelerated%20approval%20to%20fam%2Dtrastuzumab%20deruxtecan%2Dnxki%20for,metastatic%20HER2%2Dpositive%20solid%20tumors&text=On%20April%205%2C%202024%2C%20the,%2C%20Daiichi%20Sankyo%2C%20Inc (accessed on 8 April 2024).
- Gennari, A.; André, F.; Barrios, C.H.; Cortés, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; André, F.; Bachelot, T.; Barrios, C.H.; Bergh, J.; Burstein, H.J.; Cardoso, M.J.; Carey, L.A.; Dawood, S.; Del Mastro, L.; et al. Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2024, 35, 159–182. [Google Scholar] [CrossRef] [PubMed]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalton Trans. 2018, 47, 7848. [Google Scholar] [CrossRef] [PubMed]
- Nieto, Y.; Cagnoni, P.J.; Bearman, S.I.; Shpall, E.J.; Matthes, S.; Jones, R.B. Cardiac toxicity following high-dose cyclophosphamide, cisplatin, and BCNU (STAMP-I) for breast cancer. Biol. Blood Marrow Transplant. 2000, 6, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Kupari, M.; Volin, L.; Suokas, A.; Timonen, T.; Hekali, P.; Ruutu, T. Cardiac involvement in bone marrow transplantation: Electrocardiographic changes, arrhythmias, heart failure and autopsy findings. Bone Marrow Transplant. 1990, 5, 91–98. [Google Scholar] [PubMed]
- Polk, A.; Vistisen, K.; Vaage-Nilsen, M.; Nielsen, D.L. A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol. Toxicol. 2014, 15, 47. [Google Scholar] [CrossRef] [PubMed]
- Frickhofen, N.; Beck, F.J.; Jung, B.; Fuhr, H.G.; Andrasch, H.; Sigmund, M. Capecitabine can induce acute coronary syndrome similar to 5-fluorouracil. Ann. Oncol. 2002, 13, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, C.; Kallistratos, M.S.; Kopterides, P.; Syrios, J.; Skopelitis, H.; Mylonakis, N.; Karabelis, A.; Tsavaris, N. Cardiotoxicity of fluoropyrimidines in different schedules of administration: A prospective study. J. Cancer Res. Clin. Oncol. 2008, 134, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Gollerkeri, A.; Harrold, L.; Rose, M.; Jain, D.; Burtness, B.A. Use of paclitaxel in patients with pre-existing cardiomyopathy: A review of our experience. Int. J. Cancer 2001, 93, 139–141. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.; Elkady, M. A Prospective Study to Evaluate the Effect of Paclitaxel on Cardiac Ejection Fraction. Breast Care 2017, 12, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.M.; Whaley, F.S.; Ewer, M.S. Congestive heart failure in patients treated with doxorubicin: A retrospective analysis of three trials. Cancer 2003, 97, 2869–2879. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liu, X.; Bawa-Khalfe, T.; Lu, L.S.; Lyu, Y.L.; Liu, L.F.; Yeh, E.T. Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat. Med. 2012, 18, 1639–1642. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Colombo, A.; Bacchiani, G.; Tedeschi, I.; Meroni, C.A.; Veglia, F.; Civelli, M.; Lamantia, G.; Colombo, N.; Curigliano, G.; et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015, 131, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Sharma, U.C.; Tuttle, C.; Pokharel, S. Immune Checkpoint Inhibitors: Cardiotoxicity in Pre-clinical Models and Clinical Studies. Front. Cardiovasc. Med. 2021, 8, 619650. [Google Scholar] [CrossRef] [PubMed]
- Dolladille, C.; Akroun, J.; Morice, P.M.; Dompmartin, A.; Ezine, E.; Sassier, M.; Da-Silva, A.; Plane, A.F.; Legallois, D.; L’Orphelin, J.M.; et al. Cardiovascular immunotoxicities associated with immune checkpoint inhibitors: A safety meta-analysis. Eur. Heart J. 2021, 42, 4964–4977. [Google Scholar] [CrossRef] [PubMed]
- Salem, J.E.; Manouchehri, A.; Moey, M.; Lebrun-Vignes, B.; Bastarache, L.; Pariente, A.; Gobert, A.; Spano, J.P.; Balko, J.M.; Bonaca, M.P.; et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: An observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018, 19, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Santoni, M.; Occhipinti, G.; Romagnoli, E.; Miccini, F.; Scoccia, L.; Giulietti, M.; Principato, G.; Saladino, T.; Piva, F.; Battelli, N. Different Cardiotoxicity of Palbociclib and Ribociclib in Breast Cancer: Gene Expression and Pharmacological Data Analyses, Biological Basis, and Therapeutic Implications. BioDrugs 2019, 33, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Borges, V.F.; Ferrario, C.; Aucoin, N.; Falkson, C.; Khan, Q.; Krop, I.; Welch, S.; Conlin, A.; Chaves, J.; Bedard, P.L.; et al. Tucatinib Combined With Ado-Trastuzumab Emtansine in Advanced ERBB2/HER2-Positive Metastatic Breast Cancer: A Phase 1b Clinical Trial. JAMA Oncol. 2018, 4, 1214–1220. [Google Scholar] [CrossRef] [PubMed]
- Hilmi, M.; Ederhy, S.; Waintraub, X.; Funck-Brentano, C.; Cohen, A.; Vozy, A.; Lebrun-Vignes, B.; Moslehi, J.; Nguyen, L.S.; Salem, J.E. Cardiotoxicity Associated with Gemcitabine: Literature Review and a Pharmacovigilance Study. Pharmaceuticals 2020, 13, 325. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Cardinale, D.; Dent, S.; Criscitiello, C.; Aseyev, O.; Lenihan, D.; Cipolla, C.M. Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J. Clin. 2016, 66, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Menezes, K.M.; Wang, H.; Hada, M.; Saganti, P.B. Radiation Matters of the Heart: A Mini Review. Front. Cardiovasc. Med. 2018, 5, 83. [Google Scholar] [CrossRef] [PubMed]
- Gujral, D.M.; Lloyd, G.; Bhattacharyya, S. Radiation-induced valvular heart disease. Heart 2016, 102, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Correa, C.R.; Litt, H.I.; Hwang, W.T.; Ferrari, V.A.; Solin, L.J.; Harris, E.E. Coronary artery findings after left-sided compared with right-sided radiation treatment for early-stage breast cancer. J. Clin. Oncol. 2007, 25, 3031–3037. [Google Scholar] [CrossRef] [PubMed]
- Slama, M.S.; Le Guludec, D.; Sebag, C.; Leenhardt, A.R.; Davy, J.M.; Pellerin, D.E.; Drieu, L.H.; Victor, J.; Brechenmacher, C.; Motté, G. Complete atrioventricular block following mediastinal irradiation: A report of six cases. Pacing Clin. Electrophysiol. 1991, 14, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Marinko, T. Pericardial disease after breast cancer radiotherapy. Radiol. Oncol. 2018, 53, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet 2005, 365, 1687–1717. [Google Scholar] [CrossRef] [PubMed]
- Buzdar, A.; Howell, A.; Cuzick, J.; Wale, C.; Distler, W.; Hoctin-Boes, G.; Houghton, J.; Locker, G.Y.; Nabholtz, J.M. Comprehensive side-effect profile of anastrozole and tamoxifen as adjuvant treatment for early-stage breast cancer: Long-term safety analysis of the ATAC trial. Lancet Oncol. 2006, 7, 633–643. [Google Scholar] [CrossRef] [PubMed]
- Goss, P.E.; Ingle, J.N.; Martino, S.; Robert, N.J.; Muss, H.B.; Piccart, M.J.; Castiglione, M.; Tu, D.; Shepherd, L.E.; Pritchard, K.I.; et al. Randomized trial of letrozole following tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: Updated findings from NCIC CTG MA.17. J. Natl. Cancer Inst. 2005, 97, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Coombes, R.C.; Kilburn, L.S.; Snowdon, C.F.; Paridaens, R.; Coleman, R.E.; Jones, S.E.; Jassem, J.; Van de Velde, C.J.; Delozier, T.; Alvarez, I.; et al. Survival and safety of exemestane versus tamoxifen after 2-3 years’ tamoxifen treatment (Intergroup Exemestane Study): A randomised controlled trial. Lancet 2007, 369, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Ewer, M.S.; Glück, S. A woman’s heart: The impact of adjuvant endocrine therapy on cardiovascular health. Cancer 2009, 115, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Cote, G.M.; Sawyer, D.B.; Chabner, B.A. ERBB2 inhibition and heart failure. N. Engl. J. Med. 2012, 367, 2150–2153. [Google Scholar] [CrossRef] [PubMed]
- de Azambuja, E.; Ponde, N.; Procter, M.; Rastogi, P.; Cecchini, R.S.; Lambertini, M.; Ballman, K.; Aspitia, A.M.; Zardavas, D.; Roca, L.; et al. A pooled analysis of the cardiac events in the trastuzumab adjuvant trials. Breast Cancer Res. Treat. 2020, 179, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Pareek, N.; Cevallos, J.; Moliner, P.; Shah, M.; Tan, L.L.; Chambers, V.; Baksi, A.J.; Khattar, R.S.; Sharma, R.; Rosen, S.D.; et al. Activity and outcomes of a cardio-oncology service in the United Kingdom-a five-year experience. Eur. J. Heart Fail. 2018, 20, 1721–1731. [Google Scholar] [CrossRef] [PubMed]
- Michel, L.; Mincu, R.I.; Mahabadi, A.A.; Settelmeier, S.; Al-Rashid, F.; Rassaf, T.; Totzeck, M. Troponins and brain natriuretic peptides for the prediction of cardiotoxicity in cancer patients: A meta-analysis. Eur. J. Heart Fail. 2020, 22, 350–361. [Google Scholar] [CrossRef] [PubMed]
- El-Sherbeny, W.S.; Sabry, N.M.; Sharbay, R.M. Prediction of trastuzumab-induced cardiotoxicity in breast cancer patients receiving anthracycline-based chemotherapy. J. Echocardiogr. 2019, 17, 76–83. [Google Scholar] [CrossRef]
- Jones, L.W.; Haykowsky, M.; Peddle, C.J.; Joy, A.A.; Pituskin, E.N.; Tkachuk, L.M.; Courneya, K.S.; Slamon, D.J.; Mackey, J.R. Cardiovascular risk profile of patients with HER2/neu-positive breast cancer treated with anthracycline-taxane-containing adjuvant chemotherapy and/or trastuzumab. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Ürun, Y.; Utkan, G.; Yalcin, B.; Akbulut, H.; Onur, H.; Oztuna, D.G.; Şenler, F.C.; Demirkazık, A.; İçli, F. The role of cardiac biomarkers as predictors of trastuzumab cardiotoxicity in patients with breast cancer. Exp. Oncol. 2015, 37, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Blancas, I.; Martín-Pérez, F.J.; Garrido, J.M.; Rodríguez-Serrano, F. NT-proBNP as predictor factor of cardiotoxicity during trastuzumab treatment in breast cancer patients. Breast 2020, 54, 106–113. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cardinale, D.; Colombo, A.; Torrisi, R.; Maria, T.; Civelli, S.; Salvatici, M.; Lamantia, G.; Colombo, N.; Cortinovis, S.; Maria, A.; et al. Trastuzumab-Induced Cardiotoxicity: Clinical and Prognostic Implications of Troponin I Evaluation. J. Clin. Oncol. 2010, 28, 3910–3916. [Google Scholar] [CrossRef] [PubMed]
- Kitayama, H.; Kondo, T.; Sugiyama, J.; Kurimoto, K.; Nishino, Y.; Kawada, M.; Hirayama, M.; Tsuji, Y. High-sensitive troponin T assay can predict anthracycline- and trastuzumab-induced cardiotoxicity in breast cancer patients. Breast Cancer 2017, 24, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Sendur, M.A.N.; Aksoy, S.; Özdemir, N.; Yorgun, H.; Yilmaz, F.M.; Yazici, O.; Zungun, C.; Aytemir, K.; Altundag, K.; Zengin, N. Comparison of long-term cardiac effects of 9- and 52-week trastuzumab in HER2-positive early breast cancer. J. Clin. Oncol. 2014, 15, e11582. [Google Scholar] [CrossRef]
- Bell, D.; Tonry, C.; Donncha, E.M.; Scott, H.; Harbinson, M.; Watson, C.J. P6 Assessment of markers of cardiac toxicity following combined treatment of cardiomyocytes with epirubicin and trastuzumab. Heart 2020, 106, A7–A8. [Google Scholar]
- Onitilo, A.A.; Engel, J.M.; Stankowski, R.V.; Liang, H.; Berg, R.L.; Doi, S.A. High-sensitivity C-reactive protein (hs-CRP) as a biomarker for trastuzumab-induced cardiotoxicity in HER2-positive early-stage breast cancer: A pilot study. Breast Cancer Res. Treat. 2012, 134, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.; Manrique, C.; Pun, S.; Liu, J.E.; Mara, E.; Fleisher, M.; Patil, S.; Jones, L.W.; Steingart, R.M.; Hudis, C.A.; et al. Cardiac Safety of Paclitaxel Plus Trastuzumab and Pertuzumab in Patients with HER2-Positive Metastatic Breast Cancer. Oncologist 2016, 21, 418–424. [Google Scholar] [CrossRef]
- Grela-Wojewoda, A.; Püsküllüoğlu, M.; Sas-Korczyńska, B.; Zemełka, T.; Pacholczak-Madej, R.; Wysocki, W.M.; Wojewoda, T.; Adamczyk, A.; Lompart, J.; Korman, M.; et al. Biomarkers of Trastuzumab-Induced Cardiac Toxicity in HER2- Positive Breast Cancer Patient Population. Cancers 2022, 14, 3353. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopez, J.; De Las Penas, R.; De Avila, L.; De Julian, M.; Arnal, M.; Martinez De-Duenas, E.; Olmos, S.; Lopez-Rodriguez, A.; Munarriz, J.; Peset, A.; et al. Prospective evaluation of echocardiography and serum biomarkers as predictors of cardiotoxicity in patients with breast cancer treated with anthracyclines, taxanes, with/without trastuzumab. J. Clin. Oncol. 2014, 15, e20686. [Google Scholar] [CrossRef]
- Fallah-Rad, N.; Walker, J.R.; Wassef, A.; Lytwyn, M.; Bohonis, S.; Fang, T.; Tian, G.; Kirkpatrick, I.D.; Singal, P.K.; Krahn, M.; et al. The utility of cardiac biomarkers, tissue velocity and strain imaging, and cardiac magnetic resonance imaging in predicting early left ventricular dysfunction in patients with human epidermal growth factor receptor II-positive breast cancer treated with adjuvant trastuzumab therapy. J. Am. Coll. Cardiol. 2011, 57, 2263–2270. [Google Scholar] [CrossRef] [PubMed]
- Willems, F.F. Monitoring cardiotoxicity of trastuzumab in eariy breast cancer patients by echocardiography and plasma NT Pro-BNP. Eur. J. Heart Fail. Suppl. 2009, 8, ii233. [Google Scholar]
- Ponde, N.; Bradbury, I.; Lambertini, M.; Ewer, M.; Campbell, C.; Ameels, H.; Zardavas, D.; Di Cosimo, S.; Baselga, J.; Huober, J.; et al. Cardiac biomarkers for early detection and prediction of trastuzumab and/or lapatinib-induced cardiotoxicity in patients with HER2-positive early-stage breast cancer: A NeoALTTO sub-study (BIG 1-06). Breast Cancer Res. Treat. 2018, 168, 631–638. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zardavas, D.; Suter, T.M.; Van Veldhuisen, D.J.; Steinseifer, J.; Noe, J.; Lauer, S.; Al-Sakaff, N.; Piccart-Gebhart, M.J.; de Azambuja, E. Role of Troponins I and T and N-Terminal Prohormone of Brain Natriuretic Peptide in Monitoring Cardiac Safety of Patients With Early-Stage Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer Receiving Trastuzumab: A Herceptin Adjuvant Study Cardiac Marker Substudy. J. Clin. Oncol. 2017, 35, 878–884. [Google Scholar] [CrossRef] [PubMed]
- Posch, F.; Niedrist, T.; Glantschnig, T.; Firla, S.; Moik, F.; Kolesnik, E.; Wallner, M.; Verheyen, N.; Jost, P.J.; Zirlik, A.; et al. Left ventricular ejection fraction and cardiac biomarkers for dynamic prediction of cardiotoxicity in early breast cancer. Front. Cardiovasc. Med. 2022, 9, 933428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Canale, M.; Casolo, G.; Bisceglia, I.; Parrini, I.; Lestuzzi, C.; Donati, S.; Lilli, A.; Del Meglio, J.; Puccetti, C.; Amoroso, D.; et al. Pre-treatment high-sensitive troponin T level is associated with cardiac toxicity in HER2-positive early breast cancer patients receiving adjuvant or neo-adjuvant trastuzumab. Eur. Heart J. Suppl. 2021, 23, C49–C127. [Google Scholar] [CrossRef]
- Mahmood, S.S.; Fradley, M.G.; Cohen, J.V.; Nohria, A.; Reynolds, K.L.; Heinzerling, L.M.; Sullivan, R.J.; Damrongwatanasuk, R.; Chen, C.L.; Gupta, D.; et al. Myocarditis in Patients Treated with Immune Checkpoint Inhibitors. J. Am. Coll. Cardiol. 2018, 71, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- de Azambuja, E.; Ameye, L.; Diaz, M.; Vandenbossche, S.; Aftimos, P.; Bejarano Hernández, S.; Shih-Li, C.; Delhaye, F.; Focan, C.; Cornez, N.; et al. Cardiac assessment of early breast cancer patients 18 years after treatment with cyclophosphamide-, methotrexate-, fluorouracil- or epirubicin-based chemotherapy. Eur. J. Cancer 2015, 51, 2517–2524. [Google Scholar] [CrossRef] [PubMed]
- Putt, M.; Hahn, V.S.; Januzzi, J.L.; Sawaya, H.; Sebag, I.A.; Plana, J.C.; Picard, M.H.; Carver, J.R.; Halpern, E.F.; Kuter, I.; et al. Longitudinal Changes in Multiple Biomarkers Are Associated with Cardiotoxicity in Breast Cancer Patients Treated with Doxorubicin, Taxanes, and Trastuzumab. Clin. Chem. 2015, 61, 1164–1172. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Papa, M.; Lupi, M.; Piazzani, M.; Gheza, M.; Fioretti, M.; Simoncini, M.; Madureri, M.; Sigala, M.; Nodari, S. Biomarkers’ ability to predict cardiac toxicity in oncological patients undergoing to antineoplastic treatment: 5-year follow-up. Eur. Heart J. 2020, 41 (Suppl. S2), ehaa946.0884. [Google Scholar] [CrossRef]
- Triggiani, M.; Bonetti, G.; Capellini, S.; Papa, I.; Magri, M.; Manerba, A.; Amoroso, V.; Simoncini, E.L.; Nodari, S. Serial cardiac biomarker and echocardiographic evaluation for the early detection of anthracycline + trastuzumab cardiotoxicity. Abstr. Eur. J. Heart Fail. 2015, 17, 5–441. [Google Scholar] [CrossRef]
- Bonsignore, A.; Marwick, T.H.; Adams, S.C.; Thampinathan, B.; Somerset, E.; Amir, E.; Walker, M.; Abdel-Qadir, H.; Koch, C.A.; Ross, H.J.; et al. Clinical, Echocardiographic, and Biomarker Associations with Impaired Cardiorespiratory Fitness Early After HER2-Targeted Breast Cancer Therapy. JACC CardioOncol. 2021, 3, 678–691. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Altaha, M.A.; Nolan, M.; Marwick, T.H.; Somerset, E.; Houbois, C.; Amir, E.; Yip, P.; Connelly, K.A.; Michalowska, M.; Sussman, M.S.; et al. Can Quantitative CMR Tissue Characterization Adequately Identify Cardiotoxicity during Chemotherapy?: Impact of Temporal and Observer Variability. JACC Cardiovasc. Imaging 2020, 13, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Ky, B.; Putt, M.; Sawaya, H.; French, B.; Januzzi, J.L., Jr.; Sebag, I.A.; Plana, J.C.; Cohen, V.; Banchs, J.; Carver, J.R.; et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J. Am. Coll. Cardiol. 2014, 63, 809–816, Erratum in J. Am. Coll. Cardiol. 2016, 67, 1385. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Tan, T.C.; Cohen, V.; Banchs, J.; Carver, J.R.; Wiegers, S.E.; et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ. Cardiovasc. Imaging 2012, 5, 596–603. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jerusalem, G.; Lancellotti, P.; Kim, S.B. HER2+ breast cancer treatment and cardiotoxicity: Monitoring and management. Breast Cancer Res. Treat. 2019, 177, 237–250. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bouwer, N.I.; Jager, A.; Liesting, C.; Kofflard, M.J.M.; Brugts, J.J.; Kitzen, J.J.E.M.; Boersma, E.; Levin, M.D. Cardiac monitoring in HER2-positive patients on trastuzumab treatment: A review and implications for clinical practice. Breast 2020, 52, 33–44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tang, W.H.; Tong, W.; Troughton, R.W.; Martin, M.G.; Shrestha, K.; Borowski, A.; Jasper, S.; Hazen, S.L.; Klein, A.L. Prognostic value and echocardio-graphic determinants of plasma myeloperoxidase levels in chronic heart failure. J. Am. Coll. Cardiol. 2007, 49, 2364–2370. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.J.; Chen, Y.; Epstein, P.N. Suppression of Doxorubicin Cardiotoxicity by Overexpression of Catalase in the Heart of Transgenic Mice. J. Biol. Chem. 1996, 271, 12610–12616. [Google Scholar] [CrossRef]
- Kirkham, A.A.; Pituskin, E.; Thompson, R.B.; Mackey, J.R.; Koshman, S.L.; Jassal, D.; Pitz, M.; Haykowsky, M.J.; Pagano, J.J.; Chow, K.; et al. Cardiac and cardiometabolic phenotyping of trastuzumab-mediated cardiotoxicity: A secondary analysis of the MANTICORE trial. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 130–139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, L.; Allen, R.; Jia, L.; Sun, T.; Isakoff, S.J.; Scherrer-Crosbie, M.; Kehlmann, A.M.; Zheng, H.; Ly, A.; Walmsley, C.S.; et al. An Initial Evaluation of Human Plasma cMLC-1: A Potential Protein Biomarker for Trastuzumab-Induced Cardiotoxicity, Breast Cancer Screening and Progression. Front. Oncol. 2022, 12, 809715. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gherghe, M.; Lazar, A.M.; Mutuleanu, M.D.; Bordea, C.I.; Ionescu, S.; Mihaila, R.I.; Petroiu, C.; Stanciu, A.E. Evaluating Cardiotoxicity in Breast Cancer Patients Treated with HER2 Inhibitors: Could a Combination of Radionuclide Ventriculography and Cardiac Biomarkers Predict the Cardiac Impact? Cancers 2022, 15, 207. [Google Scholar] [CrossRef] [PubMed]
- Thompson, E.W.; Demissei, B.G.; Smith, A.M.; Brahmbhatt, P.; Wang, J.; Clark, A.; DeMichele, A.; Narayan, V.; Shah, P.; Sun, L.; et al. Paraoxonase-1 Activity in Breast Cancer Patients treated With Doxorubicin With or Without Trastuzumab. JACC Basic Transl. Sci. 2021, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, A.; Knezevic, A.; Moskowitz, C.; Dang, C.; Ramanathan, L.; Oeffinger, K.; Liu, J.; Steingart, R. Prospective evaluation of circulating biomarkers as predictors of cardiotoxicity in patients with her2-positive breast cancer receiving anthracyclines and trastuzumab. J. Am. Coll. Cardiol. 2018, 71 (Suppl. S11), A691. [Google Scholar] [CrossRef]
- Quagliariello, V.; Paccone, A.; Saviano, C.; Maurea, F.; Buccolo, S.; Bonelli, A.; Conforti, G.; Caronna, A.; Maurea, N. 200 berberine associated to dapagliflozin synergistically reduces cardiac cell apoptosis during exposure to trastuzumab through induction of pampk and recution of nlrp3, il6 and leukotrienes levels. Eur. Heart J. Suppl. 2022, 24 (Suppl. K), suac121.132. [Google Scholar] [CrossRef]
- Maurea, N.; Buccolol, S.; Bisceglia, I.; Canale, M.; Scala, S.; Paccone, A.; Scherillo, M.; Quaglieriello, V. Abstract 12406: Sglt2i Dapagliflozin Associated to Berberine Reduces Cardiac Cell Apoptosis and Necrosis During Exposure to Her-2 Blocking Agents Through Induction of Pampk and Reduction of Inflammasome, Il-6, Methylglyoxal and Leukotrienes-B4 Levels. Circulation 2022, 146, A12406. [Google Scholar] [CrossRef]
- Mantovani, G.; Dessi, M.; Orgiano, L.; Piras, A.; Cadeddu, C.; Deidda, M.; Ghiani, M.; Antoni, G.; Serpe, R.; Mercuro, G. Trastuzumab-based adjuvant chemotherapy for breast cancer: Early myocardial dysfunction detected by “speckle tracking” echocardiography (STE). J. Clin. Oncol. 2013, 31 (Suppl. S15), 603. [Google Scholar] [CrossRef]
- Moore, Z.; Yu, A.; Liu, J.; Dang, C.; Oeffinger, K.; Steingart, R.; Schmitt, A. Quantification of methylation-specific cardiomyocyte cell-free DNA as an early marker of cardiotoxicity in patients with breast cancer receiving anthracyclines and trastuzumab. J. Clin. Oncol. 2022, 40 (Suppl. S16), 12090. [Google Scholar] [CrossRef]
- Nakano, M.H.; Udagawa, C.; Shimo, A.; Kojima, Y.; Yoshie, R.; Zaha, H.; Abe, N.; Motonari, T.; Unesoko, M.; Tamura, K.; et al. A Genome-Wide Association Study Identifies Five Novel Genetic Markers for Trastuzumab-Induced Cardiotoxicity in Japanese Population. Biol. Pharm. Bull. 2019, 42, 2045–2053. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; Guo, H.; Barry, W.; Murray, B.; Lynch, J.; Bastick, P.; Chantrill, L.; Kiely, B.; Bell, R.; Abdi, E.; et al. Abstract nr P4-15-02: Clinical, biochemical, and genomic predictors of trastuzumab-related cardiotoxicity: Results of CATS [abstract]. Cancer Res. 2015, 75 (Suppl. S9), P4–P15. [Google Scholar] [CrossRef]
- Mitchell, C.; Rahko, P.S.; Blauwet, L.A.; Canaday, B.; Finstuen, J.A.; Foster, M.C.; Horton, K.; Ogunyankin, K.O.; Palma, R.A.; Velazquez, E.J. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2019, 32, 1–64. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Appleton, C.P.; Gillebert, T.C.; Marino, P.N.; Oh, J.K.; Smiseth, O.A.; Waggoner, A.D.; Flachskampf, F.A.; Pellikka, P.A.; Evangelista, A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J. Am. Soc. Echocardiogr. 2009, 22, 107–133. [Google Scholar] [CrossRef] [PubMed]
- Kalam, K.; Otahal, P.; Marwick, T.H. Prognostic implications of global LV dysfunction: A systematic review and meta-analysis of global longitudinal strain and ejection fraction. Heart 2014, 100, 1673–1680. [Google Scholar] [CrossRef] [PubMed]
- Jorge, A.J.L.; Villacorta, H.; Danzmann, L.C.; Mesquita, E.T. Heart Failure with Preserved Ejection Fraction and Cancer. ABC Heart Fail. Cardiomyopathy 2022, 4, 343–345. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, P.; Cosyns, B. The EACVI Echo Handbook; Oxford University Press: Oxford, UK, 2016. [Google Scholar] [CrossRef]
- Carlisle, M.A.; Fudim, M.; DeVore, A.D.; Piccini, J.P. Heart Failure and Atrial Fibrillation, Like Fire and Fury. JACC Heart Fail. 2019, 7, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, J.N.; Wong, T.; Bednarz, J.E.; Spencer, K.T.; Sugeng, L.; Ward, R.P.; DeCara, J.M.; Weinert, L.; Krausz, T.; Lang, R.M. Differential diagnosis of cardiac masses using contrast echocardiographic perfusion imaging. J. Am. Coll. Cardiol. 2004, 43, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, L.; Kasner, S.E.; Rhodes, J.F.; Andersen, G.; Iversen, H.K.; Nielsen-Kudsk, J.E.; Settergren, M.; Sjöstrand, C.; Roine, R.O.; Hildick-Smith, D.; et al. Patent Foramen Ovale Closure or Antiplatelet Therapy for Cryptogenic Stroke. N. Engl. J. Med. 2017, 377, 1033–1042. [Google Scholar] [CrossRef]
- Hahn, R.T.; Abraham, T.; Adams, M.S.; Bruce, C.J.; Glas, K.E.; Lang, R.M.; Reeves, S.T.; Shanewise, J.S.; Siu, S.C.; Stewart, W.; et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: Recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J. Am. Soc. Echocardiogr. 2013, 26, 921–964. [Google Scholar] [CrossRef]
- Budoff, M.J.; Dowe, D.; Jollis, J.G.; Gitter, M.; Sutherland, J.; Halamert, E.; Scherer, M.; Bellinger, R.; Martin, A.; Benton, R.; et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: Results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J. Am. Coll. Cardiol. 2008, 52, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Meijboom, W.B.; Meijs, M.F.; Schuijf, J.D.; Cramer, M.J.; Mollet, N.R.; van Mieghem, C.A.; Nieman, K.; van Werkhoven, J.M.; Pundziute, G.; Weustink, A.C.; et al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: A prospective, multicenter, multivendor study. J. Am. Coll. Cardiol. 2008, 52, 2135–2144. [Google Scholar] [CrossRef]
- Cury, R.C.; Abbara, S.; Achenbach, S.; Agatston, A.; Berman, D.S.; Budoff, M.J.; Dill, K.E.; Jacobs, J.E.; Maroules, C.D.; Rubin, G.D.; et al. CAD-RADS(TM) Coronary Artery Disease—Reporting and Data System. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J. Cardiovasc. Comput. Tomogr. 2016, 10, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Greenland, P.; Blaha, M.J.; Budoff, M.J.; Erbel, R.; Watson, K.E. Coronary Calcium Score and Cardiovascular Risk. J. Am. Coll. Cardiol. 2018, 72, 434–447. [Google Scholar] [CrossRef] [PubMed]
- Juarez-Orozco, L.E.; Saraste, A.; Capodanno, D.; Prescott, E.; Ballo, H.; Bax, J.J.; Wijns, W.; Knuuti, J. Impact of a decreasing pre-test probability on the performance of diagnostic tests for coronary artery disease. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1198–1207. [Google Scholar] [CrossRef] [PubMed]
- Cury, R.C.; Leipsic, J.; Abbara, S.; Achenbach, S.; Berman, D.; Bittencourt, M.; Budoff, M.; Chinnaiyan, K.; Choi, A.D.; Ghoshhajra, B.; et al. CAD-RADS™ 2.2022 Coronary Artery Disease—Reporting and Data System An Expert Consensus Document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Cardiology (ACC), the American College of Radiology (ACR) and the North America Society of Cardiovascular Imaging (NASCI). Radiol. Cardiothorac. Imaging 2022, 4, e220183. [Google Scholar] [CrossRef] [PubMed]
- Kolossváry, M.; Szilveszter, B.; Merkely, B.; Maurovich-Horvat, P. Plaque imaging with CT-a comprehensive review on coronary CT angiography based risk assessment. Cardiovasc. Diagn. Ther. 2017, 7, 489–506. [Google Scholar] [CrossRef] [PubMed]
- Foy, A.J.; Dhruva, S.S.; Peterson, B.; Mandrola, J.M.; Morgan, D.J.; Redberg, R.F. Coronary Computed Tomography Angiography vs. Functional Stress Testing for Patients With Suspected Coronary Artery Disease: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2017, 177, 1623–1631. [Google Scholar] [CrossRef] [PubMed]
- Douglas, P.S.; Hoffmann, U.; Patel, M.R.; Mark, D.B.; Al-Khalidi, H.R.; Cavanaugh, B.; Cole, J.; Dolor, R.J.; Fordyce, C.B.; Huang, M.; et al. Outcomes of anatomical versus functional testing for coronary artery disease. N. Engl. J. Med. 2015, 372, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Newby, D.E.; Adamson, P.D.; Berry, C.; Boon, N.A.; Dweck, M.R.; Flather, M.; Forbes, J.; Hunter, A.; Lewis, S.; MacLean, S.; et al. Coronary CT Angiography and 5-Year Risk of Myocardial Infarction. N. Engl. J. Med. 2018, 379, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Bruce, C.J. Cardiac tumours: Diagnosis and management. Heart 2011, 97, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J. Cardiac CT Imaging—Diagnosis of Cardiovascular Disease; Springer London Publishing: London, UK, 2010. [Google Scholar] [CrossRef]
- Ternacle, J.; Clavel, M.A. Assessment of Aortic Stenosis Severity: A Multimodality Approach. Cardiol. Clin. 2020, 38, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Francone, M.; Budde, R.P.J.; Bremerich, J.; Dacher, J.N.; Loewe, C.; Wolf, F.; Natale, L.; Pontone, G.; Redheuil, A.; Vliegenthart, R.; et al. CT and MR imaging prior to transcatheter aortic valve implantation: Standardisation of scanning protocols, measurements and reporting-a consensus document by the European Society of Cardiovascular Radiology (ESCR). Eur. Radiol. 2020, 30, 2627–2650. [Google Scholar] [CrossRef] [PubMed]
- Blanke, P.; Dvir, D.; Cheung, A.; Levine, R.A.; Thompson, C.; Webb, J.G.; Leipsic, J. Mitral Annular Evaluation With CT in the Context of Transcatheter Mitral Valve Replacement. JACC Cardiovasc. Imaging 2015, 8, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Weir-McCall, J.R.; Blanke, P.; Naoum, C.; Delgado, V.; Bax, J.J.; Leipsic, J. Mitral Valve Imaging with CT: Relationship with Transcatheter Mitral Valve Interventions. Radiology 2018, 288, 638–655. [Google Scholar] [CrossRef] [PubMed]
- Guglielmo, M.; Baggiano, A.; Muscogiuri, G.; Fusini, L.; Andreini, D.; Mushtaq, S.; Conte, E.; Annoni, A.; Formenti, A.; Mancini, E.M.; et al. Multimodality imaging of left atrium in patients with atrial fibrillation. J. Cardiovasc. Comput. Tomogr. 2019, 13, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Korsholm, K.; Berti, S.; Iriart, X.; Saw, J.; Wang, D.D.; Cochet, H.; Chow, D.; Clemente, A.; De Backer, O.; Møller Jensen, J.; et al. Expert Recommendations on Cardiac Computed Tomography for Planning Transcatheter Left Atrial Appendage Occlusion. JACC Cardiovasc. Interv. 2020, 13, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Jain, V.; Wang, T.K.M.; Bansal, A.; Farwati, M.; Gad, M.; Montane, B.; Kaur, S.; Bolen, M.A.; Grimm, R.; Griffin, B.; et al. Diagnostic performance of cardiac computed tomography versus transesophageal echocardiography in infective endocarditis: A contemporary comparative meta-analysis. J. Cardiovasc. Comput. Tomogr. 2021, 15, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.S.; Ho, A.S.; Ahmed, A.; Bhalla, S.; Menias, C.O. Borne identity: CT imaging of vascular infections. Emerg. Radiol. 2011, 18, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Schoepf, J.U. CT of the Heart—Contempoary Medical Imaging; Humana: Totowa, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Karius, P.; Schuetz, G.M.; Schlattmann, P.; Dewey, M. Extracardiac findings on coronary CT angiography: A systematic review. J. Cardiovasc. Comput. Tomogr. 2014, 8, 174–182.e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Gaemperli, O.; Maurovich-Horvat, P.; Nieman, K.; Pontone, G.; Pugliese, F. The EACVI Handbook of Cardiovascular CT; Oxford University Press: Oxford, UK, 2023. [Google Scholar] [CrossRef]
- Morton, G.; Schuster, A.; Perera, D.; Nagel, E. Cardiac magnetic resonance imaging to guide complex revascularization in stable coronary artery disease. Eur. Heart J. 2010, 31, 2209–2215. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.G.; Carpenter, J.P.; Cameli, M.; Donal, E.; Dweck, M.R.; Flachskampf, F.A.; Maceira, A.M.; Muraru, D.; Neglia, D.; Pasquet, A.; et al. Multimodality imaging of myocardial viability: An expert consensus document from the European Association of Cardiovascular Imaging (EACVI). Eur. Heart J. Cardiovasc. Imaging 2021, 22, e97–e125. [Google Scholar] [CrossRef] [PubMed]
- Kali, A.; Choi, E.Y.; Sharif, B.; Kim, Y.J.; Bi, X.; Spottiswoode, B.; Cokic, I.; Yang, H.J.; Tighiouart, M.; Conte, A.H.; et al. Native T1 Mapping by 3-T CMR Imaging for Characterization of Chronic Myocardial Infarctions. JACC Cardiovasc. Imaging 2015, 8, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Demirkiran, A.; Everaars, H.; Amier, R.P.; Beijnink, C.; Bom, M.J.; Götte, M.J.W.; van Loon, R.B.; Selder, J.L.; van Rossum, A.C.; Nijveldt, R. Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Dastidar, A.G.; Rodrigues, J.C.L.; Johnson, T.W.; De Garate, E.; Singhal, P.; Baritussio, A.; Scatteia, A.; Strange, J.; Nightingale, A.K.; Angelini, G.D.; et al. Myocardial Infarction With Nonobstructed Coronary Arteries: Impact of CMR Early After Presentation. JACC Cardiovasc. Imaging 2017, 10 Pt A, 1204–1206. [Google Scholar] [CrossRef]
- Liu, D.; Borlotti, A.; Viliani, D.; Jerosch-Herold, M.; Alkhalil, M.; De Maria, G.L.; Fahrni, G.; Dawkins, S.; Wijesurendra, R.; Francis, J.; et al. CMR Native T1 Mapping Allows Differentiation of Reversible Versus Irreversible Myocardial Damage in ST-Segment-Elevation Myocardial Infarction: An OxAMI Study (Oxford Acute Myocardial Infarction). Circ. Cardiovasc. Imaging 2017, 10, e005986. [Google Scholar] [CrossRef] [PubMed]
- Messroghli, D.R.; Moon, J.C.; Ferreira, V.M.; Grosse-Wortmann, L.; He, T.; Kellman, P.; Mascherbauer, J.; Nezafat, R.; Salerno, M.; Schelbert, E.B.; et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J. Cardiovasc. Magn. Reson. 2017, 19, 75. [Google Scholar] [CrossRef] [PubMed]
- Halliday, B.P.; Baksi, A.J.; Gulati, A.; Ali, A.; Newsome, S.; Izgi, C.; Arzanauskaite, M.; Lota, A.; Tayal, U.; Vassiliou, V.S.; et al. Outcome in Dilated Cardiomyopathy Related to the Extent, Location, and Pattern of Late Gadolinium Enhancement. JACC Cardiovasc. Imaging 2019, 12 Pt 2, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Di Marco, A.; Anguera, I.; Schmitt, M.; Klem, I.; Neilan, T.G.; White, J.A.; Sramko, M.; Masci, P.G.; Barison, A.; Mckenna, P.; et al. Late Gadolinium Enhancement and the Risk for Ventricular Arrhythmias or Sudden Death in Dilated Cardiomyopathy: Systematic Review and Meta-Analysis. JACC Heart Fail. 2017, 5, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.M.; Schulz-Menger, J.; Holmvang, G.; Kramer, C.M.; Carbone, I.; Sechtem, U.; Kindermann, I.; Gutberlet, M.; Cooper, L.T.; Liu, P.; et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J. Am. Coll. Cardiol. 2018, 72, 3158–3176. [Google Scholar] [CrossRef] [PubMed]
- Adler, Y.; Charron, P.; Imazio, M.; Badano, L.; Barón-Esquivias, G.; Bogaert, J.; Brucato, A.; Gueret, P.; Klingel, K.; Lionis, C.; et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC)Endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2015, 36, 2921–2964. [Google Scholar] [CrossRef] [PubMed]
- Alraies, M.C.; AlJaroudi, W.; Yarmohammadi, H.; Yingchoncharoen, T.; Schuster, A.; Senapati, A.; Tariq, M.; Kwon, D.; Griffin, B.P.; Klein, A.L. Usefulness of cardiac magnetic resonance-guided management in patients with recurrent pericarditis. Am. J. Cardiol. 2015, 115, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.L.; Abbara, S.; Agler, D.A.; Appleton, C.P.; Asher, C.R.; Hoit, B.; Hung, J.; Garcia, M.J.; Kronzon, I.; Oh, J.K.; et al. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with pericardial disease: Endorsed by the Society for Cardiovascular Magnetic Resonance and Society of Cardiovascular Computed Tomography. J. Am. Soc. Echocardiogr. 2013, 26, 965–1012.e15. [Google Scholar] [CrossRef] [PubMed]
- Esposito, A.; De Cobelli, F.; Ironi, G.; Marra, P.; Canu, T.; Mellone, R.; Del Maschio, A. CMR in the assessment of cardiac masses: Primary malignant tumors. JACC Cardiovasc. Imaging 2014, 7, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Henzlova, M.J.; Duvall, W.L.; Einstein, A.J.; Travin, M.I.; Verberne, H.J. ASNC imaging guidelines for SPECT nuclear cardiology procedures: Stress, protocols, and tracers. J. Nucl. Cardiol. 2016, 23, 606–639. [Google Scholar] [CrossRef] [PubMed]
- Sirajuddin, A.; Mirmomen, S.M.; Kligerman, S.J.; Groves, D.W.; Burke, A.P.; Kureshi, F.; White, C.S.; Arai, A.E. Ischemic Heart Disease: Noninvasive Imaging Techniques and Findings. Radiographics 2021, 41, 990–1021. [Google Scholar] [CrossRef] [PubMed]
- Danad, I.; Szymonifka, J.; Twisk, J.W.R.; Norgaard, B.L.; Zarins, C.K.; Knaapen, P.; Min, J.K. Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: A meta-analysis. Eur. Heart J. 2017, 38, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Hyafil, F.; Rouzet, F.; Le Guludec, D. Nuclear imaging for patients with a suspicion of infective endocarditis: Be part of the team! J. Nucl. Cardiol. 2017, 24, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, C.; Mikaïl, N.; Benali, K.; Iung, B.; Duval, X.; Nataf, P.; Jondeau, G.; Hyafil, F.; Le Guludec, D.; Rouzet, F. Characterization of 18F-Fluorodeoxyglucose Uptake Pattern in Noninfected Prosthetic Heart Valves. Circ. Cardiovasc. Imaging 2017, 10, e005585. [Google Scholar] [CrossRef] [PubMed]
- Juneau, D.; Golfam, M.; Hazra, S.; Zuckier, L.S.; Garas, S.; Redpath, C.; Bernick, J.; Leung, E.; Chih, S.; Wells, G.; et al. Positron Emission Tomography and Single-Photon Emission Computed Tomography Imaging in the Diagnosis of Cardiac Implantable Electronic Device Infection: A Systematic Review and Meta-Analysis. Circ. Cardiovasc. Imaging 2017, 10, e005772. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; Dent, S.; Stanway, S.; Earl, H.; Brezden-Masley, C.; Cohen-Solal, A.; Tocchetti, C.G.; Moslehi, J.J.; Groarke, J.D.; Bergler-Klein, J.; et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: A position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur. J. Heart Fail. 2020, 22, 1945–1960. [Google Scholar] [CrossRef] [PubMed]
- Battisti, N.M.L.; Andres, M.S.; Lee, K.A.; Ramalingam, S.; Nash, T.; Mappouridou, S.; Senthivel, N.; Asavisanu, K.; Obeid, M.; Tripodaki, E.S.; et al. Incidence of cardiotoxicity and validation of the Heart Failure Association-International Cardio-Oncology Society risk stratification tool in patients treated with trastuzumab for HER2-positive early breast cancer. Breast Cancer Res. Treat. 2021, 188, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.C.; Ewertz, M.; McGale, P.; Bennet, A.M.; Blom-Goldman, U.; Brønnum, D.; Correa, C.; Cutter, D.; Gagliardi, G.; Gigante, B.; et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N. Engl. J. Med. 2013, 368, 987–998. [Google Scholar] [CrossRef] [PubMed]
- Sara, J.D.; Kaur, J.; Khodadadi, R.; Rehman, M.; Lobo, R.; Chakrabarti, S.; Herrmann, J.; Lerman, A.; Grothey, A. 5-fluorouracil and cardiotoxicity: A review. Ther. Adv. Med. Oncol. 2018, 10, 1758835918780140. [Google Scholar] [CrossRef] [PubMed]
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Muñoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef] [PubMed]
- Kalay, N.; Basar, E.; Ozdogru, I.; Er, O.; Cetinkaya, Y.; Dogan, A.; Inanc, T.; Oguzhan, A.; Eryol, N.K.; Topsakal, R.; et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J. Am. Coll. Cardiol. 2006, 48, 2258–2262. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Colombo, A.; Sandri, M.T.; Lamantia, G.; Colombo, N.; Civelli, M.; Martinelli, G.; Veglia, F.; Fiorentini, C.; Cipolla, C.M. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation 2006, 114, 2474–2481. [Google Scholar] [CrossRef] [PubMed]
- Bosch, X.; Rovira, M.; Sitges, M.; Domènech, A.; Ortiz-Pérez, J.T.; de Caralt, T.M.; Morales-Ruiz, M.; Perea, R.J.; Monzó, M.; Esteve, J. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: The OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J. Am. Coll. Cardiol. 2013, 61, 2355–2362. [Google Scholar] [PubMed]
- Akpek, M.; Ozdogru, I.; Sahin, O.; Inanc, M.; Dogan, A.; Yazici, C.; Berk, V.; Karaca, H.; Kalay, N.; Oguzhan, A.; et al. Protective effects of spironolactone against anthracycline-induced cardiomyopathy. Eur. J. Heart Fail. 2015, 17, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Gulati, G.; Heck, S.L.; Ree, A.H.; Hoffmann, P.; Schulz-Menger, J.; Fagerland, M.W.; Gravdehaug, B.; von Knobelsdorff-Brenkenhoff, F.; Bratland, Å.; Storås, T.H.; et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): A 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur. Heart J. 2016, 37, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Pituskin, E.; Mackey, J.R.; Koshman, S.; Jassal, D.; Pitz, M.; Haykowsky, M.J.; Pagano, J.J.; Chow, K.; Thompson, R.B.; Vos, L.J.; et al. Multidisciplinary Approach to Novel Therapies in Cardio-Oncology Research (MANTICORE 101-Breast): A randomized trial for the prevention of trastuzumab-associated cardiotoxicity. J. Clin. Oncol. 2017, 35, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Avila, M.S.; Ayub-Ferreira, S.M.; de Barros Wanderley, M.R., Jr.; das Dores Cruz, F.; Gonçalves Brandão, S.M.; Rigaud, V.O.C.; Higuchi-Dos-Santos, M.H.; Hajjar, L.A.; Kalil Filho, R.; Hoff, P.M.; et al. Carvedilol for Prevention of Chemotherapy-Related Cardiotoxicity: The CECCY Trial. J. Am. Coll. Cardiol. 2018, 71, 2281–2290. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Ciceri, F.; Latini, R.; Franzosi, M.G.; Sandri, M.T.; Civelli, M.; Cucchi, G.; Menatti, E.; Mangiavacchi, M.; Cavina, R.; et al. Anthracycline-induced cardiotoxicity: A multicenter randomised trial comparing two strategies for guiding prevention with enalapril: The International CardioOncology Society-one trial. Eur. J. Cancer 2018, 94, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Guglin, M.; Krischer, J.; Tamura, R.; Fink, A.; Bello-Matricaria, L.; McCaskill-Stevens, W.; Munster, P.N. Randomized trial of lisinopril versus carvedilol to prevent trastuzumab cardiotoxicity in patients with breast cancer. J. Am. Coll. Cardiol. 2019, 73, 2859–2868. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Garris, R.; Abboud, R.; Vasudev, R.; Patel, H.; Doshi, R.; Shamoon, F.; Bikkina, M. Meta-analysis comparing usefulness of beta blockers to preserve left ventricular function during anthracycline therapy. Am. J. Cardiol. 2019, 124, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Vaduganathan, M.; Hirji, S.A.; Qamar, A.; Bajaj, N.; Gupta, A.; Zaha, V.; Chandra, A.; Haykowsky, M.; Ky, B.; Moslehi, J. Efficacy of neurohormonal therapies in preventing cardiotoxicity in patients with cancer undergoing chemotherapy. JACC CardioOncol. 2019, 1, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.O.; Van Spall, H.G.C.; Kontopantelis, E.; Alkhouli, M.; Barac, A.; Elgendy, I.Y.; Khan, S.U.; Kwok, C.S.; Shoaib, A.; Bhatt, D.L.; et al. Effect of primary percutaneous coronary intervention on in-hospital outcomes among active cancer patients presenting with ST-elevation myocardial infarction: A propensity score matching analysis. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Armenian, S.H.; Lacchetti, C.; Barac, A.; Carver, J.; Constine, L.S.; Denduluri, N.; Dent, S.; Douglas, P.S.; Durand, J.B.; Ewer, M.; et al. Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2017, 35, 893–911. [Google Scholar] [CrossRef] [PubMed]
- López-Sendón, J.; Álvarez-Ortega, C.; Zamora Auñon, P.; Buño Soto, A.; Lyon, A.R.; Farmakis, D.; Cardinale, D.; Canales Albendea, M.; Feliu Batlle, J.; Rodríguez Rodríguez, I.; et al. Classification, prevalence, and outcomes of anticancer therapy-induced cardiotoxicity: The CARDIOTOX registry. Eur. Heart J. 2020, 41, 1720–1729. [Google Scholar] [CrossRef] [PubMed]
- Jacobse, J.N.; Steggink, L.C.; Sonke, G.S.; Schaapveld, M.; Hummel, Y.M.; Steenbruggen, T.G.; Lefrandt, J.D.; Nuver, J.; Crijns, A.P.G.; Aleman, B.M.P.; et al. Myocardial dysfunction in long-term breast cancer survivors treated at ages 40-50 years. Eur. J. Heart Fail. 2020, 22, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Darby, S.C.; McGale, P.; Taylor, C.W.; Peto, R. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: Prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol. 2005, 6, 557–565. [Google Scholar] [CrossRef] [PubMed]
CTR-CVT | CTRCD |
---|---|
Heart Failure
| Symptomatic CTRCD
|
Myocarditis
| Asymptomatic CTRCD
|
Chemotherapy Agent | Mechanism of Action |
---|---|
Carboplatin | Forms intracellular platinum complexes inhibiting DNA synthesis |
Cyclophosphamide | Alkylating agent: leads to cross-linking of DNA inhibiting protein synthesis |
Fluoropyrimidines (5-Fluorouracil/Capecitabine) | Inhibits processing, maturation, and modification of RNA |
Taxanes (Paclitaxel, Docetaxel) | Inhibits mitosis and induces apoptosis |
Anthracyclines (Doxorubicin, Epirubicin) | Poison topoisomerase causing programmed cell death |
Immune Checkpoint Inhibitors (Pembrolizumab, Atezolizumab) | Blocks checkpoint proteins from binding with partner proteins, thus allowing T cells to kill cancer cells |
Cyclin-dependent Kinase 4/6 inhibitors (Ribociclib) | Through inhibition of this pathway, inhibiting tumour cell proliferation |
HER2-specific Tyrosine Kinase Inhibitor (Tucatinib, Lapatinib) | Inhibits phosphorylation of HER2 and HER3, affecting downstream MAPK, AKT and cell proliferation |
Nucleoside Analogues (Gemcitabine) | Incorporation of dFdCTP into DNA leading to cell death |
Receptor-Positive | HER2 | Triple-Negative |
---|---|---|
Premenopausal: Luminal A/B (stage 1–3) = Tamoxifen Postmenopausal = Tamoxifen followed by AI High-risk Luminal A/all luminal B—neoadjuvant CT. If stage 3 or high-risk stage 2, then include gBRCA1/2 testing (include CDK4/6i treatment if positive) | Determined by >T2 or node-positive disease Involves surgery, radiotherapy (if indicated), and mixture of trastuzumab, chemotherapy (e.g., paclitaxel) and endocrine therapy (if receptor-positive) | Determined by tumour and nodal status. If >T1c stage, then for neoadjuvant taxane + platinum therapy (consider pembrolizumab). Then, surgery/radiotherapy (performed first is stage < T1c). Clarify gBRCA1/2 (including wild-type). Further treatments include CDK4/6i, ICI and capecitabine. |
1st Line | 2nd Line | 3rd Line |
---|---|---|
(1) HR-positive Trastuzumab (if chemotherapy CI) and ET Or Trastuzumab + Docetaxel for over 6 cycles (if no CI to chemotherapy), followed by trastuzumab + ET until progression (2) HR-negative Trastuzumab until progression (if chemotherapy CI) Or Trastuzumab + Docetaxel for over 6 cycles (if no CI to chemotherapy), followed by trastuzumab + ET until progression | (1) If no/stable BM Trastuzumab deruxtecan (2) If active BM Local intervention not required: Tucatinib + Capecitabine + Trastuzumab Or Trastuzumab deruxtecan If local intervention required: 1–10 BM + favourable features then consider SRT ± resection; >10 then consider whole brain radiotherapy | (1) If no/stable BM Any of: Lapatinib + Capecitabine, Lapatinib + Trastuzumab, or chemotherapy + Trastuzumab (2) If active BM Local intervention not required: Any of: Lapatinib + Capecitabine, Lapatinib + Trastuzumab, or chemotherapy + Trastuzumab If local intervention required: 1–10 BM + favourable features then consider SRT ± resection; >10 then consider whole brain radiotherapy |
1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|
Endocrine therapy + CDK 4/6i Or Chemotherapy (if imminent organ failure) with trastuzumab deruxtecan after 1st line (if HER2 low) | -> (progressive disease) | Decide progression-free survival and if imminent organ failure | If no organ failure, then defer to genetics (PIKC3Am, ESR1m, BRCA/PALB2m) to guide endocrine therapy. If organ failure or short survival proceed to column on far right. | -> (progressive disease | Trastuzumab deruxtecan + Chemotherapy (in low HER2) Or Sacituzumab + Chemotherapy (if no HER2) |
PD-L1-Positive | gBRCAm-Positive | gBRCAm Wild-Type-Positive |
---|---|---|
Atezolizumab + Paclitaxel Or Pembrolizumab + chemotherapy Then if progression Sacituzumab or chemotherapy Then if progression Trastuzumab deruxtecan (if HER2 low) or capecitabine | Platinum chemotherapy (taxane alternative but less desirable option) Then if progression Sacituzumab or chemotherapy Then if progression Trastuzumab deruxtecan (if HER2 low) or capecitabine | If no IOF Taxane or anthracycline monotherapy If IOF Anthracyline + taxane Or Taxane + Bevacuzimab Or Capecitabine +Bevacuzimab Then if progression Sacituzumab or chemotherapy Then if progression Trastuzumab deruxtecan (if HER2 low) or capecitabine |
Stage | Element | Features |
---|---|---|
1 | 2D Echocardiography and M mode | Two-dimensional acquisition of parasternal (long and short axis and right ventricular outflow view, including diameter of LVOT), apical (2, 3, 4 and 5 chamber), subcostal and suprasternal windows (consider right parasternal window). M mode: Intraventricular septal diameter, LV internal diameter (diastole), posterior wall thickness (parasternal long axis) Aortic root and left atrium (parasternal long axis). Through mitral valve (parasternal long axis). Through RV free wall for TAPSE (apical 4-chamber view). Through IVC through inspiration/expiration for respiratory variation. |
2 | Doppler Echocardiography | Aortic Valve: Continuous wave Doppler in multiple views (apical, suprasternal, right parasternal), measure peak gradient, trace velocity time integral for mean gradient, and trace LVOT VTI for valve area and cardiac output. If a regurgitant jet is present then assess pressure half-time in a 3- or 5-chamber view by tracing a continuous Doppler jet (important that Doppler is coaxial), and measure deceleration time. Mitral Valve: Either continuous or pulsed wave Doppler in apical view for E and A wave, trace velocity curve for VTI and mean gradient. If stenosis is present, measure pressure half-time for valve area. In regurgitation, assess envelope (complete envelope indicating severe). Tricuspid Valve: Either continuous or pulsed wave Doppler in apical view on ventricular side if concern for stenosis, and trace VTI if present. Place on atrial side and repeat for regurgitant jet. In regurgitation assess envelope (complete envelope indicating severe). Pulmonary Valve: Use left parasternal or subcostal view. Other: In suprasternal view, if aortic regurgitation is present, then assess for diastolic flow reversal, assess pulmonary venous flow in apical 4 chamber with pulsed wave Doppler. |
3 | Colour-Flow Doppler | Aortic: In stenosis flow, acceleration can help different locations of stenosis (valvular vs. sub/supravalvular). In regurgitation, describe timing (early diastole or holo-diastolic), jet width, measure vena contracta, and calculate EROA and regurgitant volume. Mitral: PISA method can calculate mitral valve area in stenosis. In regurgitation, comment on atrial area covered by jet, measure vena contracta and PISA. Tricuspid: PISA method can calculate mitral valve area in stenosis. In regurgitation, comment on atrial area covered by jet and vena contracta. Pulmonary: Appears as flow acceleration across the valve when visualised. Other: Across intra-atrial septum and intra-ventricular septum in apical view. |
4 | Tissue Doppler Imaging | As per manufacture settings in TDI mode, calculate Doppler over the septum and lateral wall for e’. |
5 | Flow-related calculations | Stroke Volume Cardiac Output Qp:Qs (if shunt present) Right atrial pressure Pulmonary Artery Systolic Pressure |
6 | Extra considerations | Atrial volume Strain Imaging Three-dimensional Echocardiography Contrast enhancement/Use of agitated medium |
Disease Process | Essential Imaging Features |
---|---|
Cardiovascular source of embolism | Imaging of the left atrial appendage inclusive of pulsed wave Doppler for inflow velocity, assessment of left atrium for spontaneous echo contrast, valvular assessment for vegetations and masses, ascending and descending aorta for mural thrombus, and intra-atrial septum for foramen ovale, septal defect/aneurysmal septum. |
Infective Endocarditis (inclusive of prosthetic material) | Assessment of mitral valve in multiple cross sections, aortic valve in short/long axis, tricuspid in transgastric and oesophageal window inclusive of RVOT, and pulmonary valve in short axis. Important to include central venous catheter and intra-cardiac device leads as present. |
Mitral Regurgitation | Description of mitral anatomy, mechanisms and origin of regurgitation, colour Doppler in left atrium to perform PISA, and left/right upper pulmonary vein venous flow. |
Location | Most Commonly Found Masses |
---|---|
Right Atrium | Thrombus, Eustachian Valve, Myxoma, Lipoma |
Left Atrium | Myxoma, Lipomatous Hypertrophy, Thrombus, Coumadin Ridge |
Right Ventricle | Thrombus, Angiosarcoma, Rhabdomyosarcoma, Metastasis |
Left Ventricle | Thrombus, Metastasis, Fibroelastoma |
Pericardium | Pericardial Cyst, Metastasis |
Valves | Thrombus, Vegetation, Papillary Fibroelastoma, Calcification |
Extra-Cardiac Finding | Prevalence |
---|---|
Suspicious Pulmonary Nodule | 0.4–16.5% |
Pleural effusion | 0.1–4% |
Mediastinal Lymphadenopathy | 0.1–2.3% |
Indeterminate Hepatic Nodule | 0–2.3% |
Pulmonary Embolism | 0–1.9% |
Breast nodules | 0–0.6% |
Agent | Risk Level | TTE | NP | cTn |
---|---|---|---|---|
Anthracycline | High/Very High | Class 1 | Class 1 | Class 1 |
Medium | Class 1 | Class 2a | Class 2a | |
Low | Class 1 | Class 2a | Class 2a | |
HER2 | High/Very High | Class 1 | Class 1 | Class 1 |
Medium | Class 1 | Class 2b | Class 2b | |
Low | Class 1 | Class 2b | Class 2b | |
Fluoropyrimidines | If previous CVD | Class 1 | - | - |
ICI | High/Very high | Class 1 | Class 1 | Class 1 |
All others | Class 2b | Class 1 | Class 1 | |
Cyclophosphamide | - | - | - | - |
Taxanes | - | - | - | - |
Carboplatin | - | - | - | - |
Radiotherapy (to a volume involving the heart) | If previous CVD | Class 2b | ||
CDKi 4/6 | - | - | - | - |
Nucleoside Analogue | - | - | - | - |
HER2-specific TKI | - | - | - | - |
Risk | Features |
---|---|
Low | <5 Gy mean heart dose |
Moderate | 5–15 Gy mean heart dose Or <5 Gy mean heart dose, and cumulative doxorubicin dose ≥100 mg/m2 |
High | >15–25 Gy mean heart dose Or 5–15 Gy mean heart dose, and cumulative doxorubicin dose ≥100 mg/m2 |
Very High | >25 Gy mean heart dose Or >15 Gy mean heart dose, and cumulative doxorubicin dose ≥100 mg/m2 |
Type | Baseline | Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5 | Cycle 6 | 3 m | 12 m | |
---|---|---|---|---|---|---|---|---|---|---|
Low | ECG | Class 1 | - | - | - | - | - | - | - | - |
TTE | Class 1 | - | - | - | - | - | - | - | Class 1 | |
NP/cTN | - | - | - | - | - | - | - | - | - | |
Moderate | ECG | Class 1 | - | - | - | - | - | - | - | - |
TTE | Class 1 | - | - | - | - | - | - | - | Class 1 | |
NP/cTN | - | - | - | - | - | - | - | - | - | |
High/Very high | ECG | Class 1 | - | - | - | - | - | - | - | - |
TTE | Class 1 | - | Class 1 | - | Class 1 | - | Class 1 | Class 1 | Class 1 | |
NP/cTN | Class 1 | Class 1 | Class 1 | Class 1 | Class 1 | Class 1 | Class 1 | Class 1 | Class 1 |
Risk | Type | Baseline | 3 m | 6 m | 9 m | 12 m | 3 m Post | 12 m Post |
---|---|---|---|---|---|---|---|---|
Low and Moderate | ECG | Class 1 | - | - | - | - | - | - |
TTE | Class 1 | Class 1 | Class 1 | Class 1 | Class 1 | - | Class 1 | |
NP/cTn | - | - | - | - | - | - | - | |
High and Very High | ECG | Class 1 | - | - | - | - | - | - |
TTE | Class 1 | Class 1 | Class 1 | Class 1 | Class 1 | Class 1 | Class 1 | |
NP/cTN | Class 1 | - | - | - | - | - | - |
Risk | Type | Baseline | Cycle 2 | Cycle 3 | Cycle 4 | Every 3C | Every 6–12 m |
---|---|---|---|---|---|---|---|
Low | CV Ax | Class 1 | - | - | - | Class 1 | - |
ECG | Class 1 | - | - | - | - | - | |
TTE | - | - | - | - | - | - | |
cTN | Class 1 | - | - | - | - | - | |
NP | Class 1 | - | - | - | - | - | |
High | CV Ax | Class 1 | - | - | - | Class 1 | Class 1 |
ECG | Class 1 | - | - | - | - | Class 1 | |
TTE | Class 1 | - | - | - | - | - | |
cTN | Class 1 | - | - | - | - | - | |
NP | Class 1 | - | - | - | - | Class 1 |
PI | Type | Agent | Cancer | Outcome |
---|---|---|---|---|
Kalay | RCT (N = 50) | Carvedilol | Anthracycline | In Carvedilol vs. placebo, carvedilol arm mean LVEF remained unchanged (p = 0.3), placebo arm decreased from 68.9% to 52.3% at 6 months (p = 0.001) |
Cardinale | RCT (N = 114) | Enalapril | High-dose chemotherapy | In enalapril vs. standard of care, no patients on enalapril had LVEF < 50%/decrease by 10%, whereas 43% of standard of care group had decrease in LVEF > 10% |
Bosch | RCT (N = 90) | Enalapril and Carvedilol | Autologous HSCT | In medication vs. standard of care group, standard of care had a lower mean LVEF of 3.1% at 6 months (as measured by TTE and CMR) |
Akpek | RCT (N = 83) | Spironolactone | AC for BC | Those on spironolactone had a more modest LVEF reduction (1.3%) than the placebo arm (14.4%) |
Gulati | RCT (N = 130) | Candesartan or Metoprolol | AC for BC | Metoprolol arm had no effect on LVEF decrease; otherwise, decrease was 2.6% (placebo) and 0.8% (candesartan) |
Pituskin | RCT (N = 94) | Perindopril or Bisoprolol | Tz for BC | No difference in primary endpoint (left ventricular end-diastolic volume) |
Avila | RCT (N = 200) | Carvedilol | AC, Cycph, Paclitaxel | No difference in primary endpoint (>10% LVEF decline at 6 months)—placebo 13.%, carvedilol 14.5% (p = 1) |
Cardinale | RCT (N = 273) | Enalapril | AC | Primary endpoint of elevated troponin was 23% in enalapril group vs. troponin-triggered cohort (26%)—p = 0.5 |
Guglin | RCT (N = 468) | Lisinopril + Carvedilol | Tz for HER2 BC | No difference in cardiotoxicity between study arms (drop in LVEF > 10%, or <5% to below 50%) |
Shah | MA (9/771) | BB | Tz for HER2 BC | Post-chemotherapy LVEF was higher in BB group than placebo arm (3.84%, CI 95% 1.48–6.19) |
Vaduganathan | MA (17/1984) | BB, MRA, ACEi/ARB | Ca treatment in those randomised to neurohormonal tx vs. placebo | NH treatment was associated with higher LVEF (1%, CI 95% 0.57–1.5) |
1 | 2 | 4 | 5 | |
---|---|---|---|---|
Symptomatic CTRCD | Mild | MDT discussion | -> | Heart Failure Therapy (1) |
Moderate | Interrupt | -> | Heart Failure Therapy (1) | |
Severe | Discontinue | -> | Heart Failure Therapy (1) | |
Asymptomatic CTRCD | Mild | Continue + Monitor | NP Increase | ACEi/ARB + BB (2b) |
GLS decrease >15% or cTn increase | ACE/ARB + BB (2a) | |||
Moderate/Severe | Interrupt | -> | Heart Failure Therapy (1) |
1 | 2 | 4 | 5 | |
---|---|---|---|---|
Symptomatic CTRCD | Mild | MDT discussion | -> | Heart Failure Therapy (1) |
Moderate, severe or very severe | Interrupt + MDT | -> | Heart Failure Therapy (1) | |
Asymptomatic CTRCD | Mild | Continue + Monitor | GLS decrease >15% or NP or cTn increase | ACEi/ARB + BB (2a) |
Moderate | Continue + Monitor (2a) | -> | Heart Failure Therapy (1) | |
Severe | -> | Heart Failure Therapy (1) |
Risk | Annual Assessment | TTE |
---|---|---|
Low | Clinical exam, ECG, and natriuretic peptides each year | - |
Moderate | Clinical exam, ECG, and natriuretic peptides each year | Transthoracic echocardiography every 5 years after treatment completion (2b) |
High/Very High | Clinical exam, ECG, and natriuretic peptides each year | Transthoracic echocardiography 1, 3, and 5 years after treatment completion, and every 5 years after this (2a) |
CTR-CVT | CTRCD |
---|---|
Heart Failure
| Symptomatic CTRCD
|
Myocarditis
| Asymptomatic CTRCD
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cronin, M.; Lowery, A.; Kerin, M.; Wijns, W.; Soliman, O. Risk Prediction, Diagnosis and Management of a Breast Cancer Patient with Treatment-Related Cardiovascular Toxicity: An Essential Overview. Cancers 2024, 16, 1845. https://doi.org/10.3390/cancers16101845
Cronin M, Lowery A, Kerin M, Wijns W, Soliman O. Risk Prediction, Diagnosis and Management of a Breast Cancer Patient with Treatment-Related Cardiovascular Toxicity: An Essential Overview. Cancers. 2024; 16(10):1845. https://doi.org/10.3390/cancers16101845
Chicago/Turabian StyleCronin, Michael, Aoife Lowery, Michael Kerin, William Wijns, and Osama Soliman. 2024. "Risk Prediction, Diagnosis and Management of a Breast Cancer Patient with Treatment-Related Cardiovascular Toxicity: An Essential Overview" Cancers 16, no. 10: 1845. https://doi.org/10.3390/cancers16101845
APA StyleCronin, M., Lowery, A., Kerin, M., Wijns, W., & Soliman, O. (2024). Risk Prediction, Diagnosis and Management of a Breast Cancer Patient with Treatment-Related Cardiovascular Toxicity: An Essential Overview. Cancers, 16(10), 1845. https://doi.org/10.3390/cancers16101845