Catalyzing Precision Medicine: Artificial Intelligence Advancements in Prostate Cancer Diagnosis and Management
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. MR-Based Prostate Reconstruction
3.2. MR-Based PCa Detection and Stratification
3.3. MR-Based Prostate Cancer Reconstruction
3.4. Positron Emission Tomography (PET)
3.5. Androgen Deprivation Therapy (ADT)
3.6. Prostate Biopsy
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef] [PubMed]
- Westphalen, A.C.; McCulloch, C.E.; Anaokar, J.M.; Arora, S.; Barashi, N.S.; Barentsz, J.O.; Bathala, T.K.; Bittencourt, L.K.; Booker, M.T.; Braxton, V.G.; et al. Variability of the Positive Predictive Value of PI-RADS for Prostate MRI across 26 Centers: Experience of the Society of Abdominal Radiology Prostate Cancer Disease-focused Panel. Radiology 2020, 296, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Harish, V.; Morgado, F.; Stern, A.D.; Das, S. Artificial Intelligence and Clinical Decision Making: The New Nature of Medical Uncertainty. Acad. Med. 2021, 96, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Gassenmaier, S.; Küstner, T.; Nickel, D.; Herrmann, J.; Hoffmann, R.; Almansour, H.; Afat, S.; Nikolaou, K.; Othman, A.E. Deep Learning Applications in Magnetic Resonance Imaging: Has the Future Become Present? Diagnostics 2021, 11, 2181. [Google Scholar] [CrossRef] [PubMed]
- da Silva, G.L.F.; Diniz, P.S.; Ferreira, J.L.; França, J.V.F.; Silva, A.C.; de Paiva, A.C.; de Cavalcanti, E.A.A. Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans. Med. Biol. Eng. Comput. 2020, 58, 1947–1964. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lei, Y.; Tian, S.; Wang, T.; Liu, Y.; Patel, P.; Jani, A.B.; Mao, H.; Curran, W.J.; Liu, T.; et al. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation. Med. Phys. 2019, 46, 1707–1718. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Fu, M.; Gong, X.; Jiang, H. Densely Dilated Spatial Pooling Convolutional Network using benign loss functions for imbalanced volumetric prostate segmentation. Curr. Bioinform. 2018, 15, 788–799. [Google Scholar] [CrossRef]
- Nai, Y.H.; Teo, B.W.; Tan, N.L.; Chua, K.Y.W.; Wong, C.K.; O’Doherty, S.; Stephenson, M.C.; Schaefferkoetter, J.; Thian, Y.L.; Chiong, E.; et al. Evaluation of Multimodal Algorithms for the Segmentation of Multiparametric MRI Prostate Images. Comput. Math. Methods Med. 2020, 20, 8861035. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yang, X.; Chen, H.; Qin, J.; Heng, P.A. Volumetric ConvNets with Mixed Residual Connections for Automated Prostate Segmentation from 3D MR Images. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31, pp. 66–72. [Google Scholar] [CrossRef]
- Karimi, D.; Samei, G.; Kesch, C.; Nir, G.; Salcudean, S.E. Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Ushinsky, A.; Bardis, M.; Glavis-Bloom, J.; Uchio, E.; Chantaduly, C.; Nguyentat, M.; Chow, D.; Chang, P.D.; Houshyar, R.A. 3D-2D Hybrid U-Net Convolutional Neural Network Approach to Prostate Organ Segmentation of Multiparametric MRI. AJR Am. J. Roentgenol. 2021, 216, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Wang, X.; Kim, J.; Khadra, M.; Fulham, M.; Feng, D.A. propagation-DNN: Deep combination learning of multi-level features for MR prostate segmentation. Comput. Methods Programs Biomed. 2019, 170, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Xia, Y.; Song, Y.; Zhang, D.; Huang, H.; Zhang, Y.; Cai, W. 3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images. IEEE Trans. Med. Imaging 2020, 39, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Comelli, A.; Dahiya, N.; Stefano, A.; Vernuccio, F.; Portoghese, M.; Cutaia, G.; Bruno, A.; Salvaggio, G.; Yezzi, A. Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging. Appl. Sci. 2021, 11, 782. [Google Scholar] [CrossRef] [PubMed]
- Bardis, M.; Houshyar, R.; Chantaduly, C.; Tran-Harding, K.; Ushinsky, A.; Chahine, C.; Rupasinghe, M.; Chow, D.; Chang, P. Segmentation of the Prostate Transition Zone and Peripheral Zone on MR Images with Deep Learning. Radiol. Imaging Cancer 2021, 3, e200024. [Google Scholar] [CrossRef] [PubMed]
- Sanford, T.H.; Zhang, L.; Harmon, S.A.; Sackett, J.; Yang, D.; Roth, H.; Xu, Z.; Kesani, D.; Mehralivand, S.; Baroni, R.H.; et al. Data Augmentation and Transfer Learning to Improve Generalizability of an Automated Prostate Segmentation Model. AJR Am. J. Roentgenol. 2020, 215, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Dou, Q.; Yu, L.; Heng, P.A. MS-Net: Multi-Site Network for Improving Prostate Segmentation with Heterogeneous MRI Data. IEEE Trans. Med. Imaging 2020, 39, 2713–2724. [Google Scholar] [CrossRef] [PubMed]
- Sanford, T.H.; Zhang, L.; Harmon, S.A.; Sackett, J.; Yang, D.; Roth, H.; Xu, Z.; Kesani, D.; Mehralivand, S.; Baroni, R.H.; et al. Automatic segmentation of prostate magnetic resonance imaging using generative adversarial networks. Clin. Imaging 2021, 70, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Aldoj, N.; Biavati, F.; Michallek, F.; Stober, S.; Dewey, M. Automatic prostate and prostate zones segmentation of magnetic resonance images using DenseNet-like U-net. Sci. Rep. 2020, 10, 14315. [Google Scholar] [CrossRef] [PubMed]
- To, M.N.N.; Vu, D.Q.; Turkbey, B.; Choyke, P.L.; Kwak, J.T. Deep dense multi-path neural network for prostate segmentation in magnetic resonance imaging. Int. J. Comput. Assist. Radiol. Surg. 2018, 13, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Du, B.; Yan, P. Boundary-weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation HHS Public Access. IEEE Trans. Med. Imaging 2020, 39, 753–763. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wei, R.; Gao, G.; Ding, L.; Zhang, X.; Wang, X.; Zhang, J. Fully automatic segmentation on prostate MR images based on cascaded fully convolution network. J. Magn. Reson. Imaging 2019, 49, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.; Chlebus, G.; Rak, M.; Schindele, D.; Schostak, M.; van Ginneken, B.; Schenk, A.; Meine, H.; Hahn, H.K.; Schreiber, A. Anisotropic 3D Multi-Stream CNN for Accurate Prostate Segmentation from Multi-Planar MRI. Comput. Methods Programs Biomed. 2021, 200, 105821. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wan, Z.; Zhang, J.; Li, W.; Chen, Y.; Li, Y.; Duan, Y. Medical image segmentation and reconstruction of prostate tumor based on 3D AlexNet. Comput. Methods Programs Biomed. 2021, 200, 105878. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liu, D.; Xiang, Q.; Luo, Y.; Wang, T.; Wu, D.; Chen, H.; Zhang, Y.; Li, Q. PSP net-based automatic segmentation network model for prostate magnetic resonance imaging. Comput. Methods Programs Biomed. 2021, 207, 106211. [Google Scholar] [CrossRef] [PubMed]
- Ishioka, J.; Matsuoka, Y.; Uehara, S.; Yasuda, Y.; Kijima, T.; Yoshida, S.; Yokoyama, M.; Saito, K.; Kihara, K.; Numao, N.; et al. Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm. BJU Int. 2018, 122, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Zabihollahy, F.; Ukwatta, E.; Krishna, S.; Schieda, N. Fully automated localization of prostate peripheral zone tumors on apparent diffusion coefficient map MR images using an ensemble learning method. J. Magn. Reson. Imaging 2020, 51, 1223–1234. [Google Scholar] [CrossRef] [PubMed]
- Mehrtash, A.; Sedghi, A.; Ghafoorian, M.; Taghipour, M.; Tempany, C.M.; Wells, W.M., 3rd; Kapur, T.; Mousavi, P.; Abolmaesumi, P.; Fedorov, A. Classification of Clinical Significance of MRI Prostate Findings Using 3D Convolutional Neural Networks. Proc. SPIE Int. Soc. Opt. Eng. 2017, 10134, 101342A. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Hosseinzadeh, M.; Huisman, H. End-to-end prostate cancer detection in bpMRI via 3D CNNs: Effects of attention mechanisms, clinical priori and decoupled false positive reduction. Med. Image Anal. 2021, 73, 102155. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Hu, S.; Long, P.; Lu, F.; Shi, Y.; Li, Y. A Transfer Learning Approach for Malignant Prostate Lesion Detection on Multiparametric MRI. Technol. Cancer Res. Treat. 2019, 18, 1533033819858363. [Google Scholar] [CrossRef] [PubMed]
- Sobecki, P.; Jóźwiak, R.; Sklinda, K.; Przelaskowski, A. Effect of domain knowledge encoding in CNN model architecture—A prostate cancer study using mpMRI images. PeerJ 2021, 9, e11006. [Google Scholar] [CrossRef] [PubMed]
- Sanyal, J.; Banerjee, I.; Hahn, L.; Rubin, D. An Automated Two-step Pipeline for Aggressive Prostate Lesion Detection from Multi-parametric MR Sequence. AMIA Jt. Summits Transl. Sci. Proc. 2020, 2020, 552–560. [Google Scholar] [PubMed] [PubMed Central]
- Bhattacharya, I.; Seetharaman, A.; Shao, W.; Sood, W.; Kunder, C.A.; Fan, R.E.; Soerensen, S.J.C.; Wang, J.B.; Ghanouni, P.; Teslovich, N.C.; et al. CorrSigNet: Learning CORRelated Prostate Cancer SIGnatures from Radiology and Pathology Images for Improved Computer Aided Diagnosis. Lect. Notes Comput. Sci. 2020, 12262, 315–325. [Google Scholar] [CrossRef]
- Yu, X.; Lou, B.; Shi, B.; Winkel, D.; Arrahmane, N.; Diallo, M.; Meng, T.; von Busch, H.; Grimm, R.; Kiefer, B.; et al. False Positive Reduction Using Multiscale Contextual Features for Prostate Cancer Detection in Multi-Parametric MRI Scans. Proc.-Int. Symp. Biomed. Imaging 2020, 2020, 1355–1359. [Google Scholar] [CrossRef]
- Yoo, S.; Gujrathi, I.; Haider, M.A.; Khalvati, F. Prostate Cancer Detection using Deep Convolutional Neural Networks. Sci. Rep. 2019, 9, 19518. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Cao, R.; Shakeri, S.; Scalzo, F.; Lee, Y.; Enzmann, D.R.; Wu, H.H.; Raman, S.S.; Sung, K. Deep transfer learning-based prostate cancer classification using 3 Tesla multi-parametric MRI. Abdom. Radiol. 2019, 44, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, P.; Lysandrou, M.; Eljalby, M.; Li, Q.; Kazemi, E.; Zisimopoulos, P.; Sigaras, A.; Brendel, M.; Barnes, J.; Ricketts, C.; et al. A Deep Learning Approach to Diagnostic Classification of Prostate Cancer Using Pathology-Radiology Fusion. J. Magn. Reson. Imaging 2021, 54, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Schoots, I.G.; Castillo Tovar, J.; Bangma, C.H.; Krestin, G.P.; Roobol, M.J.; Niessen, W.; Veenland, J.F. Clinically significant prostate cancer detection and segmentation in low-risk patients using a convolutional neural network on multi-parametric MRI. Eur. Radiol. 2020, 30, 6582–6592. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, C.; Cheng, D.; Wang, L.; Yang, X.; Cheng, K.T. Automated Detection of Clinically Significant Prostate Cancer in mp-MRI Images Based on an End-to-End Deep Neural Network. IEEE Trans. Med. Imaging 2018, 37, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Abdelmaksoud, I.R.; Shalaby, A.; Mahmoud, A.; Elmogy, M.; Aboelfetouh, A.; Abou El-Ghar, M.; El-Melegy, M.; Alghamdi, N.S.; El-Baz, A. Precise Identification of Prostate Cancer from DWI Using Transfer Learning. Sensors 2021, 21, 3664. [Google Scholar] [CrossRef] [PubMed]
- Aldoj, N.; Lukas, S.; Dewey, M.; Penzkofer, T. Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network. Eur. Radiol. 2020, 30, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, Y.D.; Yan, X.; Liu, H.; Zhou, M.; Hu, B.; Yang, G. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI. J. Magn. Reson. Imaging 2018, 48, 1570–1577. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Zhang, Y.D.; Yan, X.; Liu, H.; Zhou, M.; Hu, B.; Yang, G. Deep learning for fully automatic detection, segmentation, and Gleason grade estimation of prostate cancer in multiparametric magnetic resonance images. Sci. Rep. 2022, 12, 2975. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Baxter, J.S.H.; Akin, O.; Cantor-Rivera, D. Prostate cancer detection using residual networks. Int. J. Comput. Assist. Radiol. Surg 2019, 14, 1647–1650. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Mohammadian Bajgiran, A.; Afshari Mirak, S.; Shakeri, S.; Zhong, X.; Enzmann, D.; Raman, S.; Sung, K. Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet. IEEE Trans. Med. Imaging 2019, 38, 2496–2506. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Zhang, Y.H.; Bao, J.; Bao, M.L.; Yang, G.; Shi, H.B.; Song, Y.; Zhang, Y.D. Artificial intelligence is a promising prospect for the detection of prostate cancer extracapsular extension with mpMRI: A two-center comparative study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3805–3816. [Google Scholar] [CrossRef] [PubMed]
- Zong, W.; Lee, J.K.; Liu, C.; Carver, E.N.; Feldman, A.M.; Janic, B.; Elshaikh, M.A.; Pantelic, M.V.; Hearshen, D.; Chetty, I.J.; et al. A Deep Dive into Understanding Tumor Foci Classification using Multiparametric MRI Based on Convolutional Neural Network. Med. Phys. 2019, 47, 4077–4086. [Google Scholar] [CrossRef] [PubMed]
- Gunashekar, D.D.; Bielak, L.; Hägele, L.; Oerther, B.; Benndorf, M.; Grosu, A.L.; Brox, T.; Zamboglou, C.; Bock, M. Explainable AI for CNN-based prostate tumor segmentation in multi-parametric MRI correlated to whole mount histopathology. Radiat. Oncol. 2022, 17, 65. [Google Scholar] [CrossRef] [PubMed]
- Vente, C.; Vos, P.; Hosseinzadeh, M.; Pluim, J.; Veta, M. Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-Parametric MRI. IEEE Trans. Biomed. Eng. 2021, 68, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Wang, H.K.; Wang, F.N.; Peng, Y.C.; Lin, T.P.; Peng, H.H.; Shen, S.H. Autosegmentation of Prostate Zones and Cancer Regions from Biparametric Magnetic Resonance Images by Using Deep-Learning-Based Neural Networks. Sensors 2021, 21, 2709. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.Q.; Guida, A.; Patterson, S.; Trappenberg, T.; Bowen, C.; Beyea, S.D.; Merrimen, J.; Wang, C.; Clarke, S.E. Model-free prostate cancer segmentation from dynamic contrast-enhanced MRI with recurrent convolutional networks: A feasibility study. Comput. Med. Imaging Graph. 2019, 75, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xing, L.; Yu, L.; Bagshaw, H.P.; Buyyounouski, M.K.; Han, B. Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet. Med. Phys. 2020, 47, 6421–6429. [Google Scholar] [CrossRef] [PubMed]
- Alkadi, R.; Taher, F.; El-Baz, A.; Werghi, N. A Deep Learning-Based Approach for the Detection and Localization of Prostate Cancer in T2 Magnetic Resonance Images. J. Digit. Imaging 2019, 32, 793–807. [Google Scholar] [CrossRef] [PubMed]
- Hartenstein, A.; Lübbe, F.; Baur, A.D.J.; Rudolph, M.M.; Furth, C.; Brenner, W.; Amthauer, H.; Hamm, B.; Makowski, M.; Penzkofer, T. Prostate Cancer Nodal Staging: Using Deep Learning to Predict 68Ga-PSMA-Positivity from CT Imaging Alone. Sci. Rep. 2020, 10, 3398. [Google Scholar] [CrossRef] [PubMed]
- Capobianco, N.; Sibille, L.; Chantadisai, M.; Gafita, A.; Langbein, T.; Platsch, G.; Solari, E.L.; Shah, V.; Spottiswoode, B.; Eiber, M.; et al. Whole-body uptake classification and prostate cancer staging in 68Ga-PSMA-11 PET/CT using dual-tracer learning. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Ghezzo, S.; Mongardi, S.; Bezzi, C.; Samanes Gajate, A.M.; Preza, E.; Gotuzzo, I.; Baldassi, F.; Jonghi-Lavarini, L.; Neri, I.; Russo, T.; et al. External validation of a convolutional neural network for the automatic segmentation of intraprostatic tumor lesions on 68Ga-PSMA PET images. Front. Med. 2023, 10, 1133269. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, J.; Francis, R.J.; Hassan, G.M.; Rowshanfarzad, P.; Ong, J.S.L.; Ebert, M.A. Fully automatic prognostic biomarker extraction from metastatic prostate lesion segmentations in whole-body [68Ga]Ga-PSMA-11 PET/CT images. Eur. J. Nucl. Med. Mol. Imaging 2022, 50, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.H.; Rowe, S.P.; Leal, J.P.; Ashrafinia, S.; Sadaghiani, M.S.; Chung, H.W.; Dalaie, P.; Tulbah, R.; Yin, Y.; VanDenBerg, R.; et al. Deep learning and radiomics framework for PSMA-RADS classification of prostate cancer on PSMA PET. EJNMMI Res. 2022, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Trägårdh, E.; Enqvist, O.; Ulén, J.; Jögi, J.; Bitzén, U.; Hedeer, F.; Valind, K.; Garpered, S.; Hvittfeldt, E.; Borrelli, P.; et al. Freely Available, Fully Automated AI-Based Analysis of Primary Tumour and Metastases of Prostate Cancer in Whole-Body [18F]-PSMA-1007 PET-CT. Diagnostics 2022, 12, 2101. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gafita, A.; Vollnberg, B.; Tetteh, G.; Haupt, F.; Afshar-Oromieh, A.; Menze, B.; Eiber, M.; Rominger, A.; Shi, K. Deep neural network for automatic characterization of lesions on 68Ga-PSMA-11 PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Spratt, D.E.; Tang, S.; Sun, Y.; Huang, H.C.; Chen, E.; Mohamad, O.; Armstrong, A.J.; Tward, J.D.; Nguyen, P.L.; Lang, J.M.; et al. Artificial Intelligence Predictive Model for Hormone Therapy Use in Prostate Cancer. NEJM Evid. 2023, 2, EVIDoa2300023. [Google Scholar] [CrossRef] [PubMed]
- Mobadersany, P.; Lucas, J.; Govind, D.; Aguilar-Bonavides, C.; McCarthy, S.; Brookman-May, S.; Yu, M.K.; Tian, K.; Hutnick, N.; Zamalloa, J.; et al. Artificial intelligence (AI)-based multimodal framework predicts androgen-deprivation therapy (ADT) outcomes in non-metastatic castration resistant prostate cancer (nmCRPC) from SPARTAN. Cancer Res. 2022, 82, 5053. [Google Scholar] [CrossRef]
- Sedghi, A.; Pesteie, M.; Javadi, G.; Azizi, S.; Yan, P.; Kwak, J.T.; Xu, S.; Turkbey, B.; Choyke, P.; Pinto, P.; et al. Deep neural maps for unsupervised visualization of high-grade cancer in prostate biopsies. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Bayat, S.; Yan, P.; Tahmasebi, A.; Kwak, J.T.; Xu, S.; Turkbey, B.; Choyke, P.; Pinto, P.; Wood, B.; et al. Deep Recurrent Neural Networks for Prostate Cancer Detection: Analysis of Temporal Enhanced Ultrasound. IEEE Trans. Med. Imaging 2018, 37, 2695–2703. [Google Scholar] [CrossRef] [PubMed]
- van Sloun, R.J.G.; Wildeboer, R.R.; Mannaerts, C.K.; Postema, A.W.; Gayet, M.; Beerlage, H.P.; Salomon, G.; Wijkstra, H.; Mischi, M. Deep Learning for Real-time, Automatic, and Scanner-adapted Prostate (Zone) Segmentation of Transrectal Ultrasound, for Example, Magnetic Resonance Imaging-transrectal Ultrasound Fusion Prostate Biopsy. Eur. Urol. Focus 2021, 7, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Orlando, N.; Gillies, D.J.; Gyacskov, I.; Romagnoli, C.; D’Souza, D.; Fenster, A. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Med. Phys. 2020, 47, 2413–2426. [Google Scholar] [CrossRef] [PubMed]
- To, M.N.N.; Fooladgar, F.; Wilson, P.; Harmanani, M.; Gilany, M.; Sojoudi, S.; Jamzad, A.; Chang, S.; Black, P.; Mousavi, P.; et al. LensePro: Label noise-tolerant prototype-based network for improving cancer detection in prostate ultrasound with limited annotations. Int. J. Comput. Assist. Radiol. Surg. 2024; Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Soerensen, S.J.C.; Fan, R.E.; Seetharaman, A.; Chen, L.; Shao, W.; Bhattacharya, I.; Kim, Y.H.; Sood, R.; Borre, M.; Chung, B.I.; et al. Deep Learning Improves Speed and Accuracy of Prostate Gland Segmentations on Magnetic Resonance Imaging for Targeted Biopsy. J. Urol. 2021, 206, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Altok, M.; Troncoso, P.; Achim, M.F.; Matin, S.F.; Gonzalez, G.N.; Davis, J.W. Prostate cancer upgrading or downgrading of biopsy Gleason scores at radical prostatectomy: Prediction of “regression to the mean” using routine clinical features with correlating biochemical relapse rates. Asian J. Androl. 2019, 21, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Bhayana, R.; O’Shea, A.; Anderson, M.A.; Bradley, W.R.; Gottumukkala, R.V.; Mojtahed, A.; Pierce, T.T.; Harisinghani, M. PI-RADS Versions 2 and 2.1: Interobserver Agreement and Diagnostic Performance in Peripheral and Transition Zone Lesions Among Six Radiologists. AJR Am. J. Roentgenol. 2021, 217, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Sanford, T.; Harmon, S.A.; Turkbey, E.B.; Kesani, D.; Tuncer, S.; Madariaga, M.; Yang, C.; Sackett, J.; Mehralivand, S.; Yan, P.; et al. Deep-Learning-Based Artificial Intelligence for PI-RADS Classification to Assist Multiparametric Prostate MRI Interpretation: A Development Study. J. Magn. Reson. Imaging 2020, 52, 1499–1507. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.M.; Silva, S.; Vanneschi, L.; Papanikolaou, N. A Comparative Study of Automated Deep Learning Segmentation Models for Prostate MRI. Cancers 2023, 15, 1467. [Google Scholar] [CrossRef] [PubMed]
- Youn, S.Y.; Choi, M.H.; Kim, D.H.; Lee, Y.J.; Huisman, H.; Johnson, E.; Penzkofer, T.; Shabunin, I.; Winkel, D.J.; Xing, P.; et al. Detection and PI-RADS classification of focal lesions in prostate MRI: Performance comparison between a deep learning-based algorithm (DLA) and radiologists with various levels of experience. Eur. J. Radiol. 2021, 142, 109894. [Google Scholar] [CrossRef] [PubMed]
- Castillo, T.J.M.; Starmans, M.P.A.; Arif, M.; Niessen, W.J.; Klein, S.; Bangma, C.H.; Schoots, I.G.; Veenland, J.F. A Multi-Center, Multi-Vendor Study to Evaluate the Generalizability of a Radiomics Model for Classifying Prostate cancer: High Grade vs. Low Grade. Diagnostics 2021, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, M.; Saha, A.; Brand, P.; Slootweg, I.; de Rooij, M.; Huisman, H. Deep learning-assisted prostate cancer detection on bi-parametric MRI: Minimum training data size requirements and effect of prior knowledge. Eur. Radiol. 2022, 32, 2224–2234. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, A.; Redekop, E.; Kemisetti, A.; Kulkarni, R.; Raman, S.; Sarma, K.; Magudia, K.; Arnold, C.W.; Larson, P.E.Z. Federated Learning with Research Prototypes: Application to Multi-Center MRI-based Detection of Prostate Cancer with Diverse Histopathology. Acad. Radiol. 2023, 30, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.J.; Wienke, A.; Surov, A. Discrimination between clinical significant and insignificant prostate cancer with apparent diffusion coefficient—A systematic review and meta analysis. BMC Cancer 2020, 20, 482. [Google Scholar] [CrossRef] [PubMed]
- Bonekamp, D.; Kohl, S.; Wiesenfarth, M.; Schelb, P.; Radtke, J.P.; Götz, M.; Kickingereder, P.; Yaqubi, K.; Hitthaler, B.; Gählert, N.; et al. Radiomic machine learning for characterization of prostate lesions with MRI: Comparison to ADC values. Radiology 2018, 289, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Løvf, M.; Zhao, S.; Axcrona, U.; Johannessen, B.; Bakken, A.C.; Carm, K.T.; Hoff, A.M.; Myklebost, O.; Meza-Zepeda, L.A.; Lie, A.K.; et al. Multifocal Primary Prostate Cancer Exhibits High Degree of Genomic Heterogeneity. Eur. Urol. 2019, 75, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Bleker, J.; Kwee, T.C.; Rouw, D.; Roest, C.; Borstlap, J.; de Jong, I.J.; Dierckx, R.A.J.O.; Huisman, H.; Yakar, D. A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics. Eur. Radiol. 2022, 32, 6526–6535. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, S.; Wei, C.; Zhang, Y.; Szewczyk-Bieda, M.; Wilson, J.; Huang, Z.; Nabi, G. Prediction of prostate cancer Gleason score upgrading from biopsy to radical prostatectomy using pre-biopsy multiparametric MRI PIRADS scoring system. Sci. Rep. 2020, 10, 7722. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.M.; Rais-Bahrami, S.; Truong, H.; Stamatakis, L.; Vourganti, S.; Nix, J.; Hoang, A.N.; Walton-Diaz, A.; Shuch, B.; Weintraub, M.; et al. Magnetic resonance imaging/ultrasound-fusion biopsy significantly upgrades prostate cancer versus systematic 12-core transrectal ultrasound biopsy. Eur. Urol. 2013, 64, 713–719. [Google Scholar] [CrossRef] [PubMed]
Authors | Network | Power of Magnetic Field, Tesla | Number of Institutional Datasets | Open Datasets Used | Vendors | Sequences | Number of Cases | Prostate Segmentation | Validity | Test | DSC |
---|---|---|---|---|---|---|---|---|---|---|---|
da Silva et al. [6] | coarse-to-fine segmentation DCNN | 3 | - | PROMISE12 | Multi | T2WI | 56 | Manual | Internal | Internal | 0.85 |
Wang et al. [7] | 3D DSD-FCN | 3 | 1 | PROMISE12 | Multi | T2WI | 90 | Manual | Internal | - | 0.855 |
Liu et al. [8] | DDSP ConNet | 3 | - | PROMISE12 | Multi | T2WI | 80 | Manual | Internal | - | 0.8578 |
Nai et al. [9] | HighRes3DNet | 3 | - | ProstateX | Multi | T2WI, DWI, ADC | 160 | Manual | Internal | - | 0.890 |
Yu et al. [10] | ConvNet | 3 | - | PROMISE12 | Multi | T2WI | 80 | Manual | Internal | - | 0.8693 |
Karimi et al. [11] | CNN with statistical shape model | 3 | 1 | PROMISE12 | Multi | T2WI | 75 | Manual | Internal | - | 0.88 |
Ushinsky et al. [12] | Hybrid 3D/2D U-Net | 3 | 1 | - | Single | T2WI | 299 | Manual | Internal | - | 0.898 |
Yan et al. [13] | P-DNN | 3 | - | PROMISE12 | Multi | T2WI | 80 | Manual | Internal | - | 0.899 |
Jia et al. [14] | 3D APA-Net | 3/1.5 | - | PROMISE12, ASPS13 | Multi | T2WI | 140 | Manual | Internal | - | 0.901 |
Comelli et al. [15] | E-Net | 3 | 1 | - | Single | T2WI | 85 | Manual | Internal | - | 0.9089 |
Bardis et al. [16] | Hybrid 3D/2D U-Net | 3 | 1 | - | Multi | T2WI | 242 | Manual | Internal | Internal | 0.940 |
Sanford et al. [17] | 2D-3D hybrid CNN | 3/1.5 | 5 | - | Multi | T2WI | 648 | Manual | Internal | External | 0.915 |
Liu et al. [18] | MS-Net | 3/1.5 | - | ISBI13, I2CVB | Multi | T2WI | 79 | Manual | Internal | Internal | 0.9166 |
Wang et al. [19] | SegDGAN | 3 T | 1 | Decathlon, ISBI13, QIN-PROSTATE, PROMISE12 | Multi | T2WI | 335 | Manual | Internal | External | 0.9166 |
Aldoj et al. [20] | Dense U-net | 3 | 1 | - | Single | T2WI | 188 | Manual | Internal | - | 0.921 |
To et al. [21] | 3D DM-net-8feat | 3 | 1 | PROMISE12 | Multi | T2WI, ADC | 280 | Manual | Internal | Internal | 0.9511 |
Zhu et al. [22] | BOWDA-Net | 3 | 1 | PROMISE12, BWH | Multi | T2WI | 146 | Manual | Internal | External | 0.9254 |
Zhu et al. [23] | double 2D U-Net | 3 | 1 | - | Single | T2WI | 163 | Manual | Internal | - | 0.927 |
Meyer et al. [24] | anisotropic 3D multi-stream CNN | 3 | 1 | ProstateX | Multi | T2WI | 156 | Manual | Internal | Internal | 0.933 |
Chen et al. [25] | AlexNet | 3 | 1 | - | Single | T2WI | 25 | Manual | Internal | - | 0.9768 |
Yan et al. [26] | PSPNet | 3 | - | PROMISE12 | Multi | T2WI | 270 | Manual | Internal | - | 0.9865 |
Authors | Network | Power of Magnetic Field, Tesla | Number of Institutional Datasets | Open Datasets Used | Different Scanners Vendors | Number of Cases | Segmentation Type | PCa Location | Reference | Sequences | Validity | Test | AUC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ishioka et al. [27] | U-net + ResNet50 | 1.5 | 1 | - | Multi | 335 | Manual | - | Biopsy | T2WI | Internal | - | 0.645 |
Zabihollahy et al. [28] | Ensemble U-Net-based model | 3 | 1 | - | Single | 226 | Manual | PZ | Whole-mount histopathology | ADC | Internal | - | 0.779 |
Mehrtash et al. [29] | 9-layer 3D CNN | 3 | - | ProstateX | Multi | 344 | Manual | PZ, TZ, AFMS, SV | Biopsy | T2WI, DWI, ADC, DCE | Internal | Internal | 0.80 |
Saha et al. [30] | Two parallel 3D CNNs | 3 | 2 | - | Multi | 2137 | Manual | PZ, TZ | Biopsy | T2WI, DWI, ADC | Internal | External | 0.885 |
Chen et al. [31] | VGG-16 | 3 | - | ProstateX | Multi | 344 | Manual | PZ, TZ, AS, SV | Biopsy | T2WI, DWI, DCE | Internal | Internal | 0.83 |
Sobecki et al. [32] | 3D VGG-16 | 3 | - | ProstateX | Multi | 344 | Manual | PZ, TZ, AS, SV | Biopsy | T2, DWI, ADC, DCE | Internal | Internal | 0.84 |
Sanyal et al. [33] | U-Net | 3 | 1 | - | Multi | 77 | Manual | PZ | Biopsy | DWI, ADC | Internal | - | 0.86 |
Bhattacharya et al. [34] | CorrSigNet | 3 | 1 | - | Multi | 95 | Manual | - | Whole-mount histopathology | T2WI, ADC | Internal | Internal | 0.86 |
Yu et al. [35] | Res-U-Net | 3 | 7 | ProstateX | Multi | 2170 | Semi-automated | - | Biopsy | T2WI, DWI, ADC | Internal | External | 0.867 |
Yoo et al. [36] | ResNet | 3 | 1 | - | Single | 427 | Semi-automated | - | Biopsy | ADC | Internal | Internal | 0.87 |
Zhong et al. [37] | ResNet | 3 | 1 | - | Multi | 140 | Manual | PZ, TZ | Whole-mount histopathology | T2WI, ADC | Internal | Internal | 0.876 |
Khosravi et al. [38] | GoogLeNet | 3/1.5 | 1 | ProstateX, Prostate-MRI, Prostate-Diagnosis, TCGA-PRAD | Multi | 400 | Manual | - | Whole-mount histopathology | T2WI | Internal | Internal | 0.89 |
Arif et al. [39] | 12-layer CNN | 3 | 1 | - | Single | 292 | Manual | PZ, TZ | Biopsy | T2WI, DWI, ADC | Internal | - | 0.89 |
Wang et al. [40] | TDN and dual-path CNN | 3 | 1 | ProstateX | Multi | 360 | Manual | - | Biopsy | T2WI, ADC | Internal | - | 0.8978 |
Abdelmaksoud et al. [41] | VGGnet | 3/1.5 | 1 | - | Multi | 37 | Manual | - | Biopsy | ADC | Internal | - | 0.91 |
Aldoj et al. [42] | 12-layer 3D CNN | 3 | - | ProstateX | Multi | 200 | Manual | PZ, TZ, AS, SV | Biopsy | DWI, ADC, DCE | Internal | - | 0.91 |
Song et al. [43] | Modificated VGGNet | 3 | - | ProstateX | Multi | 195 | Manual | PZ, TZ, AS, SV | Biopsy | T2WI, DWI, ADC | Internal | Internal | 0.944 |
Pellicer-Valero et al. [44] | 3D Retina U-Net | 3 | 1 | ProstateX | Multi | 490 | Manual | PZ, TZ, AS, SV | Biopsy | T2WI, DWI, ADC, DCE | Internal | Internal | 0.95 |
Xu et al. [45] | ResNet | 3 | - | ProstateX | Multi | 346 | Manual | PZ, TZ, AS, SV | Biopsy | T2WI, DWI, ADC | Internal | - | 0.97 |
Cao et al. [46] | FocalNet | 3 | 1 | - | Multi | 417 | Manual | - | Whole-mount histopathology | T2WI, ADC | Internal | - | 0.81 |
Hou et al. [47] | PAGNet | 3 | 2 | - | Single | 840 | Manual | - | Whole-mount histopathology | T2WI, DWI, ADC | Internal | External | 0.728 |
Zong et al. [48] | “Vanilla” VGG | 3 | 1 | ProstateX | Multi | 367 | Manual | PZ, TZ, AS, SV | Biopsy | T2WI, DWI, ADC | Internal | External | 0.84 |
Authors | Network | Power of Magnetic Field, Tesla | Number of Institutional Datasets | Open Datasets Use | Different Scanners Vendors | Sequences | Segmentation Type | PCa Location | Reference | Number of Cases | Validity | Test | DSC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gunashekar et al. [49] | 3D U-Net | 3/1.5 | 1 | - | Multi | T2, DWI, ADC | Manual | - | Whole-mount histopathology | 122 | Internal | - | 0.32 |
de Vente et al. [50] | 2D U-Net | 3 | - | ProstateX | Multi | T2, ADC | Semi-automated | PZ, TZ, AS, SV | Biopsy | 172 | Internal | Internal | 0.370 |
Lai et al. [51] | SegNet | 3 | - | ProstateX | Multi | T2, DWI, ADC | Manual | PZ, TZ, AS, SV | Biopsy | 204 | Internal | Internal | 0.5273 |
Lee et al. [52] | SUconvGRU | 3 | 1 | - | Single | T2, DWI, DCE | Manual | PZ, TZ | Whole-mount histopathology | 16 | Internal | - | 0.5323 |
Chen et al. [53] | 2D U-Net | 3 | 1 | - | Multi | T2, DWI, ADC | Manual | PZ, TZ | Biopsy | 136 | Internal | Internal | 0.6333 |
Alkadi et al. [54] | DCNN with modified VGG16 | 3 | - | 12CVB | Single | T2 | Manual | PZ, TZ, CZ | Biopsy | 19 | Internal | - | 0.892 |
Authors | Network | Radiotracer | Number of Institutional Datasets | Open Datasets Use | Segmentation Type | Number of Cases | Validity | Test |
---|---|---|---|---|---|---|---|---|
Hartenstein et al. [55] | CNN | [68Ga]Ga-PSMA-11 | 1 | - | Semi-automated | 549 | Internal | Internal |
Capobianco et al. [56] | CNN | [68Ga]Ga-PSMA-11 | 1 | - | Semi-automated | 173 | Internal | Internal |
Ghezzo et al. [57] | CNN | [68Ga]Ga-PSMA-11 | 1 | - | Manual | 39 | Internal | Internal |
Kendrick et al. [58] | 3D U-Net | [68Ga]Ga-PSMA-11 | 1 | - | Manual | 193 | Internal | Internal |
Leung et al. [59] | CNN | [18F]DCFPyl | 1 | - | Manual | 267 | Internal | Internal |
Trägårdh et al. [60] | 3D U-Net | [18F]PSMA-1007 | 1 | - | Manual | 660 | Internal | Internal |
Zhao et al. [61] | 2.5D U-Net | [68Ga]Ga-PSMA-11 | 3 | - | Manual | 193 | Internal | External |
Authors | Network | Input | Number of Institutional Datasets | Open Datasets Use | Segmentation Type | Number of Cases | Validity | Test |
---|---|---|---|---|---|---|---|---|
Spratt et al. [62] | Res-Net | DP | 1 | - | Manual | 5727 | Internal | - |
Mobadersany et al. [63] | SCNNs1 and CPH | Clinics + DP + rBS | 1 | - | Manual | 154 | Internal | Internal |
Authors | Network | Modality | Number of Institutional Datasets | Open Datasets Use | Segmentation Type | Groundtruth | Number of Cases | Validity | Test |
---|---|---|---|---|---|---|---|---|---|
Sedghi et al. [64] | DNM | TeUS | 1 | - | Manual | Biopsy | 157 | Internal | - |
Azizi et al. [65] | Res-Net | TeUS | 2 | - | Manual | Biopsy | 163 | Internal | External |
Van Sloun et al. [66] | U-net | TRUS | 3 | - | Manual | - | 181 | Internal | - |
Orlando et al. [67] | 2D U-net | TRUS | 1 | - | Manual | Biopsy | 206 | Internal | Internal |
To et al. [68] | DNN | TRUS | 1 | - | Manual | - | 124 | Internal | - |
Soerensen et al. [69] | ProGNet | MRI | 29 | - | Manual | Biopsy | 905 | Internal | External |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talyshinskii, A.; Hameed, B.M.Z.; Ravinder, P.P.; Naik, N.; Randhawa, P.; Shah, M.; Rai, B.P.; Tokas, T.; Somani, B.K. Catalyzing Precision Medicine: Artificial Intelligence Advancements in Prostate Cancer Diagnosis and Management. Cancers 2024, 16, 1809. https://doi.org/10.3390/cancers16101809
Talyshinskii A, Hameed BMZ, Ravinder PP, Naik N, Randhawa P, Shah M, Rai BP, Tokas T, Somani BK. Catalyzing Precision Medicine: Artificial Intelligence Advancements in Prostate Cancer Diagnosis and Management. Cancers. 2024; 16(10):1809. https://doi.org/10.3390/cancers16101809
Chicago/Turabian StyleTalyshinskii, Ali, B. M. Zeeshan Hameed, Prajwal P. Ravinder, Nithesh Naik, Princy Randhawa, Milap Shah, Bhavan Prasad Rai, Theodoros Tokas, and Bhaskar K. Somani. 2024. "Catalyzing Precision Medicine: Artificial Intelligence Advancements in Prostate Cancer Diagnosis and Management" Cancers 16, no. 10: 1809. https://doi.org/10.3390/cancers16101809
APA StyleTalyshinskii, A., Hameed, B. M. Z., Ravinder, P. P., Naik, N., Randhawa, P., Shah, M., Rai, B. P., Tokas, T., & Somani, B. K. (2024). Catalyzing Precision Medicine: Artificial Intelligence Advancements in Prostate Cancer Diagnosis and Management. Cancers, 16(10), 1809. https://doi.org/10.3390/cancers16101809