Metastases and Recurrence Risk Factors in Endometrial Cancer—The Role of Selected Molecular Changes, Hormonal Factors, Diagnostic Methods and Surgery Procedures
Abstract
:Simple Summary
Abstract
1. Introduction
2. Molecular Classification of Endometrial Cancer
3. Hormonal and Molecular Aspects
4. Imaging in Metastasis
5. Hysteroscopy and Laparoscopy
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Yasin, H.K.; Taylor, A.H.; Ayakannu, T. A Narrative Review of the Role of Diet and Lifestyle Factors in the Development and Prevention of Endometrial Cancer. Cancers 2021, 13, 2149. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.J.; George, A.S.; Subrahmanyan, N.A.; Pappachan, J.M. Epidemiological link between obesity, type 2 diabetes mellitus and cancer. World J. Methodol. 2021, 11, 23–45. [Google Scholar] [CrossRef] [PubMed]
- Medina-Gutiérrez, E.; Céspedes, M.V.; Gallardo, A.; Rioja-Blanco, E.; Pavón, M.; Asensio-Puig, L.; Farré, L.; Alba-Castellón, L.; Unzueta, U.; Villaverde, A.; et al. Novel Endometrial Cancer Models Using Sensitive Metastasis Tracing for CXCR4-Targeted Therapy in Advanced Disease. Biomedicines 2022, 10, 1680. [Google Scholar] [CrossRef] [PubMed]
- Santaballa, A.; García, Y.; Herrero, A.; Laínez, N.; Fuentes, J.; De Juan, A.; Freixinós, V.R.; Aparicio, J.; Casado, A.; García-Martinez, E. SEOM clinical guidelines in gestational trophoblastic disease (2017). Clin. Transl. Oncol. 2018, 20, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Tung, H.-J.; Huang, H.-J.; Lai, C.-H. Adjuvant and post-surgical treatment in endometrial cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2022, 78, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Benbrook, D.M.; Hocker, J.R.S.; Moxley, K.M.; Hanas, J.S. Sera Protein Signatures of Endometrial Cancer Lymph Node Metastases. Int. J. Mol. Sci. 2022, 23, 3277. [Google Scholar] [CrossRef] [PubMed]
- Buldukoglu, O.C.; Turker, A.; Usubutun, A.; Salman, M.C. Relationship of lymph node status with survival and recurrence among women with endometrial cancer. Int. J. Gynecol. Obstet. 2020, 151, 267–271. [Google Scholar] [CrossRef]
- Tran, L.; Christensen, P.; Barroeta, J.E.; Hunter, K.M.; Sookram, J.D.; McGregor, S.M.M.; Wilkinson, N.M.; Orsi, N.M.B.; Lastra, R.R. Prognostic Significance of Size, Location, and Number of Lymph Node Metastases in Endometrial Carcinoma. Int. J. Gynecol. Pathol. 2022, 42, 376–389. [Google Scholar] [CrossRef]
- Holloway, R.W.; Abu-Rustum, N.R.; Backes, F.J.; Boggess, J.F.; Gotlieb, W.H.; Lowery, W.J.; Rossi, E.C.; Tanner, E.J.; Wolsky, R.J. Sentinel lymph node mapping and staging in endometrial cancer: A Society of Gynecologic Oncology literature review with consensus recommendations. Gynecol. Oncol. 2017, 146, 405–415. [Google Scholar] [CrossRef]
- Restaino, S.; Buda, A.; Puppo, A.; Capozzi, V.A.; Sozzi, G.; Casarin, J.; Gallitelli, V.; Murgia, F.; Vizzielli, G.; Baroni, A.; et al. Anatomical distribution of sentinel lymph nodes in patients with endometrial cancer: A multicenter study. Int. J. Gynecol. Cancer 2022, 32, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, M.; Yılmaz, A.; Yılmaz, F.; İlhan, O.; Atalay, F.O.; Ozan, H. Omental Micrometastasis in Endometrial Cancer. Oncol. Res. Treat. 2019, 42, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Bhambhvani, H.P.; Zhou, O.; Cattle, C.; Taiwo, R.; Diver, E.; Gephart, M.H. Brain Metastases from Endometrial Cancer: Clinical Characteristics, Outcomes, and Review of the Literature. World Neurosurg. 2021, 147, e32–e39. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network; Levine, D.A. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Corr, B.; Cosgrove, C.; Spinosa, D.; Guntupalli, S. Endometrial cancer: Molecular classification and future treatments. BMJ Med. 2022, 1, e000152. [Google Scholar] [CrossRef]
- Stelloo, E.; Bosse, T.; Nout, R.A.; Mackay, H.J.; Church, D.N.; Nijman, H.W.; Leary, A.; Edmondson, R.J.; Powell, M.E.; Crosbie, E.J.; et al. Refining prognosis and identifying targetable pathways for high-risk endometrial cancer; a TransPORTEC initiative. Mod. Pathol. 2015, 28, 836–844. [Google Scholar] [CrossRef]
- Talhouk, A.; McAlpine, J.N. New classification of endometrial cancers: The development and potential applications of genomic-based classification in research and clinical care. Gynecol. Oncol. Res. Pract. 2016, 3, 14. [Google Scholar] [CrossRef]
- Talhouk, A.; McConechy, M.K.; Leung, S.; Yang, W.; Lum, A.; Senz, J.; Boyd, N.; Pike, J.; Anglesio, M.; Kwon, J.S.; et al. Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer: Molecular Classification of EC. Cancer 2017, 123, 802–813. [Google Scholar] [CrossRef]
- Stelloo, E.; Nout, R.A.; Osse, E.M.; Jürgenliemk-Schulz, I.J.; Jobsen, J.J.; Lutgens, L.C.; van der Steen-Banasik, E.M.; Nijman, H.W.; Putter, H.; Bosse, T.; et al. Improved Risk Assessment by Integrating Molecular and Clinicopathological Factors in Early-stage Endometrial Cancer—Combined Analysis of the PORTEC Cohorts. Clin. Cancer Res. 2016, 22, 4215–4224. [Google Scholar] [CrossRef]
- Ashley, C.W.; Paula, A.D.C.; Kumar, R.; Mandelker, D.; Pei, X.; Riaz, N.; Reis-Filho, J.S.; Weigelt, B. Analysis of mutational signatures in primary and metastatic endometrial cancer reveals distinct patterns of DNA repair defects and shifts during tumor progression. Gynecol. Oncol. 2019, 152, 11–19. [Google Scholar] [CrossRef]
- Lewczuk, Ł.; Pryczynicz, A.; Guzińska-Ustymowicz, K. Cell adhesion molecules in endometrial cancer—A systematic review. Adv. Med. Sci. 2019, 64, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Ray, I.; Meira, L.B.; Michael, A.; Ellis, P.E. Adipocytokines and disease progression in endometrial cancer: A systematic review. Cancer Metastasis Rev. 2022, 41, 211–242. [Google Scholar] [CrossRef]
- Flamini, M.; Sanchez, A.; Goglia, L.; Tosi, V.; Genazzani, A.; Simoncini, T. Differential actions of estrogen and SERMs in regulation of the actin cytoskeleton of endometrial cells. Mol. Hum. Reprod. 2009, 15, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Agacayak, E.; Keles, A.; Deger, U.; Ozcelik, M.S.; Peker, N.; Gunduz, R.; Akkus, M.; Buyukbayram, H. Could Moesin Be a New Marker for Indicating Progression in Endometrial Cancer? Cancer Manag. Res. 2022, 14, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- Che, Q.; Xiao, X.; Xu, J.; Liu, M.; Lu, Y.; Liu, S.; Dong, X. 17β-Estradiol promotes endometrial cancer proliferation and invasion through IL-6 pathway. Endocr. Connect. 2019, 8, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Atıcı, Ö.K.; Govindrajan, N.; Lopetegui-González, I.; Shemanko, C.S. Prolactin: A hormone with diverse functions from mammary gland development to cancer metastasis. Semin. Cell Dev. Biol. 2021, 114, 159–170. [Google Scholar] [CrossRef]
- Ding, K.; Yuan, Y.; Chong, Q.-Y.; Yang, Y.; Li, R.; Li, X.; Kong, X.; Qian, P.; Xiong, Z.; Pandey, V.; et al. Autocrine Prolactin Stimulates Endometrial Carcinoma Growth and Metastasis and Reduces Sensitivity to Chemotherapy. Endocrinology 2017, 158, 1595–1611. [Google Scholar] [CrossRef] [PubMed]
- Dobroch, J.; Bojczuk, K.; Kołakowski, A.; Baczewska, M.; Knapp, P. The Exploration of Chemokines Importance in the Pathogenesis and Development of Endometrial Cancer. Molecules 2022, 27, 2041. [Google Scholar] [CrossRef]
- Schmidt, E.; Haase, M.; Ziegler, E.; Emons, G.; Gründker, C. Kisspeptin-10 inhibits stromal-derived factor 1-induced invasion of human endometrial cancer cell. Int. J. Gynecol. Cancer 2014, 24, 210–217. [Google Scholar] [CrossRef]
- Zhang, L.; Wan, Y.; Zhang, Z.; Jiang, Y.; Lang, J.; Cheng, W.; Zhu, L. FTO demethylates m6A modifications in HOXB13 mRNA and promotes endometrial cancer metastasis by activating the WNT signalling pathway. RNA Biol. 2021, 18, 1265–1278. [Google Scholar] [CrossRef]
- Tamaru, S.; Kajihara, T.; Mizuno, Y.; Mizuno, Y.; Tochigi, H.; Ishihara, O. Endometrial microRNAs and their aberrant expression patterns. Med. Mol. Morphol. 2020, 53, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Wang, N.; Chen, H.; Zhang, M.; Lin, Q. MicroRNA-199a/b-5p inhibits endometrial cancer cell metastasis and invasion by targeting FAM83B in the epithelial-to-mesenchymal transition signaling pathway. Mol. Med. Rep. 2021, 23, 304. [Google Scholar] [CrossRef] [PubMed]
- Geng, A.; Luo, L.; Ren, F.; Zhang, L.; Zhou, H.; Gao, X. miR-29a-3p inhibits endometrial cancer cell proliferation, migration and invasion by targeting VEGFA/CD C42/PAK1. BMC Cancer 2021, 21, 843. [Google Scholar] [CrossRef] [PubMed]
- Ahsen, M.E.; Boren, T.P.; Singh, N.K.; Misganaw, B.; Mutch, D.G.; Moore, K.N.; Backes, F.J.; McCourt, C.K.; Lea, J.S.; Miller, D.S.; et al. Sparse feature selection for classification and prediction of metastasis in endometrial cancer. BMC Genom. 2017, 18 (Suppl. S3), 233. [Google Scholar] [CrossRef] [PubMed]
- Doll, A.; Gonzalez, M.; Abal, M.; Llaurado, M.; Rigau, M.; Colas, E.; Monge, M.; Xercavins, J.; Capella, G.; Diaz, B.; et al. An orthotopic endometrial cancer mouse model demonstrates a role for RUNX1 in distant metastasis. Int. J. Cancer 2009, 125, 257–263. [Google Scholar] [CrossRef]
- Colombo, N.; Creutzberg, C.; Amant, F.; Bosse, T.; González-Martín, A.; Ledermann, J.; Marth, C.; Nout, R.; Querleu, D.; Mirza, M.R.; et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, treatment and follow-up. Ann. Oncol. 2016, 27, 16–41. [Google Scholar] [CrossRef]
- Wong, M.; Amin, T.; Thanatsis, N.; Naftalin, J.; Jurkovic, D. A prospective comparison of the diagnostic accuracies of ultrasound and magnetic resonance imaging in preoperative staging of endometrial cancer. J. Gynecol. Oncol. 2022, 33, 22. [Google Scholar] [CrossRef]
- Epstein, E.; Van Holsbeke, C.; Mascilini, F.; Måsbäck, A.; Kannisto, P.; Ameye, L.; Fischerova, D.; Zannoni, G.; Vellone, V.; Timmerman, D.; et al. Gray-scale and color Doppler ultrasound characteristics of endometrial cancer in relation to stage, grade and tumor size. Ultrasound Obstet. Gynecol. 2011, 38, 586–593. [Google Scholar] [CrossRef]
- Middelkoop, M.-A.; Don, E.E.; Hehenkamp, W.J.K.; Polman, N.J.; Griffioen, A.W.; Huirne, J.A.F. Angiogenesis in abnormal uterine bleeding: A narrative review. Hum. Reprod. Update 2023, 29, 457–485. [Google Scholar] [CrossRef]
- Alcázar, J.L.; Galán, M.J.; Jurado, M.; López-García, G. Intratumoral blood flow analysis in endometrial carcinoma: Correlation with tumor characteristics and risk for recurrence. Gynecol. Oncol. 2002, 84, 258–262. [Google Scholar] [CrossRef]
- Lee, J.; Kong, T.-W.; Paek, J.; Chang, S.-J.; Ryu, H.-S. Predicting model of lymph node metastasis using preoperative tumor grade, transvaginal ultrasound and serum CA-125 level in patients with endometrial cancer. Int. J. Gynecol. Cancer 2016, 26, 1630–1635. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E.; Fischerova, D.; Valentina, L.; Testa, A.C.; Franchi, D.; Sladkevicius, P.; Frühauf, F.; Lindqvist, P.G.; Mascilini, F.; Fruscio, R.; et al. Ultrasound characteristics of endometrial cancer as defined by International Endometrial Tumor Analysis (IETA) consensus nomenclature: Prospective multicenter study. Ultrasound Obstet. Gynecol. 2018, 51, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.-F.; Chen, C.-A.; Lee, C.-N.; Chen, T.-M.; Huang, K.-T.; Hsieh, C.-Y.; Hsieh, F.-J. Preoperative ultrasound study in predicting lymph node metastasis for endometrial cancer patients. Gynecol. Oncol. 1998, 71, 424–427. [Google Scholar] [CrossRef] [PubMed]
- Van Holsbeke, C.; Ameye, L.; Testa, A.C.; Mascilini, F.; Lindqvist, P.; Fischerova, D.; Frühauf, F.; Fransis, S.; de Jonge, E.; Timmerman, D.; et al. Development and external validation of new ultrasound-based mathematical models for preoperative prediction of high-risk endometrial cancer. Ultrasound Obstet. Gynecol. 2014, 43, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Bo, J.; Jia, H.; Zhang, Y.; Fu, B.; Jiang, X.; Chen, Y.; Shi, B.; Fang, X.; Dong, J. Preoperative Prediction Value of Pelvic Lymph Node Metastasis of Endometrial Cancer: Combining of ADC Value and Radiomics Features of the Primary Lesion and Clinical Parameters. J. Oncol. 2022, 2022, 3335048. [Google Scholar] [CrossRef] [PubMed]
- Lindauer, J.; Fowler, J.M.; Manolitsas, T.P.; Copeland, L.J.; Eaton, L.A.; Ramirez, N.C.; Cohn, D.E. Is there a prognostic difference between depth of myometrial invasion and the tumor-free distance from the uterine serosa in endometrial cancer? Gynecol. Oncol. 2003, 91, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Alcázar, J.L.; Galván, R.; Albela, S.; Martinez, S.; Pahisa, J.; Jurado, M.; López-García, G. Assessing myometrial infiltration by endometrial cancer: Uterine virtual navigation with three-dimensional US. Radiology 2009, 250, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, V.; Meydanli, M.M.; Yalçın, I.; Sarı, M.E.; Sahin, H.; Kocaman, E.; Haberal, A.; Dursun, P.; Güngör, T.; Ayhan, A. Comparison of three different risk-stratification models for predicting lymph node involvement in endometrioid endometrial cancer clinically confined to the uterus. J. Gynecol. Oncol. 2017, 28, 78. [Google Scholar] [CrossRef]
- Meydanli, M.M.; Aslan, K.; Oz, M.; Muftuoglu, K.H.; Yalcin, I.; Engin-Ustun, Y. A novel multivariable prediction model for lymphatic dissemination in endometrioid endometrial cancer: The lymph node Metastasis Risk Index. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 240, 310–315. [Google Scholar] [CrossRef]
- Reyes-Baez, F.E.; Garzon, S.; Mariani, A. Lumping and splitting: The need for precision medicine and “personomics” in endometrial cancer. J. Gynecol. Oncol. 2021, 32, e38. [Google Scholar] [CrossRef]
- Kommoss, S.; McConechy, M.K.; Kommoss, F.; Leung, S.; Bunz, A.; Magrill, J.; Britton, H.; Grevenkamp, F.; Karnezis, A.; Yang, W.; et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann. Oncol. 2018, 29, 1180–1188. [Google Scholar] [CrossRef]
- Loffer, F.D. The Time Has Come to Quit Relying on a Blind Endometrial Biopsy or Dilation and Curettage to Rule out Malignant Endometrial Changes. J. Minim. Invasive Gynecol. 2019, 26, 1207–1208. [Google Scholar] [CrossRef]
- Gou, J.; Li, Z. Accuracy of endometrial biopsy by Pipelle: A systematic review and meta-analysis. Ann. Oncol. 2019, 30 (Suppl. S9), ix84–ix85. [Google Scholar] [CrossRef]
- Van Dongen, H.; De Kroon, C.; Jacobi, C.; Trimbos, J.; Jansen, F. Diagnostic Hysteroscopy in Abnormal Uterine Bleeding: A Systematic Review and Meta-Analysis. BJOG Int. J. Obstet. Gynaecol. 2007, 114, 664–675. [Google Scholar] [CrossRef]
- Dueholm, M.; Hjorth, I.M.D.; Secher, P.; Jørgensen, A.; Ørtoft, G. Structured Hysteroscopic Evaluation of Endometrium in Women with Postmenopausal Bleeding. J. Minim. Invasive Gynecol. 2015, 22, 1215–1224. [Google Scholar] [CrossRef]
- Sardo, A.D.S.; De Angelis, M.C.; Della Corte, L.; Carugno, J.; Zizolfi, B.; Guadagno, E.; Gencarelli, A.; Cecchi, E.; Simoncini, T.; Bifulco, G.; et al. Should endometrial biopsy under direct hysteroscopic visualization using the grasp technique become the new gold standard for the preoperative evaluation of the patient with endometrial cancer? Gynecol. Oncol. 2020, 158, 347–353. [Google Scholar] [CrossRef]
- Chang, Y.-N.; Zhang, Y.; Wang, Y.-J.; Wang, L.-P.; Duan, H. Effect of hysteroscopy on the peritoneal dissemination of endometrial cancer cells: A meta-analysis. Fertil. Steril. 2011, 96, 957–961. [Google Scholar] [CrossRef]
- Dovnik, A.; Crnobrnja, B.; Zegura, B.; Takac, I.; Pakiz, M. Incidence of positive peritoneal cytology in patients with endometrial carcinoma after hysteroscopy vs. dilatation and curettage. Radiol. Oncol. 2017, 51, 88–93. [Google Scholar] [CrossRef]
- Chen, J.; Clark, L.H.; Kong, W.-M.; Yan, Z.; Han, C.; Zhao, H.; Liu, T.-T.; Zhang, T.-Q.; Song, D.; Jiao, S.-M.; et al. Does hysteroscopy worsen prognosis in women with type II endometrial carcinoma? PLoS ONE 2017, 12, e0174226. [Google Scholar] [CrossRef]
- Polyzos, N.P.; Mauri, D.; Tsioras, S.; Messini, C.I.; Valachis, A.; Messinis, I.E. Intraperitoneal dissemination of endometrial cancer cells after hysteroscopy: A systematic review and meta-analysis. Int. J. Gynecol. Cancer 2010, 20, 261–267. [Google Scholar] [CrossRef]
- Damião, R.d.S.; Lopes, R.G.C.; dos Santos, E.S.; Lippi, U.G.; da Fonseca, E.B. Evaluation of the risk of spreading endometrial cell by hysteroscopy: A prospective longitudinal study. Obstet. Gynecol. Int. 2009, 2009, 397079. [Google Scholar] [CrossRef]
- Solima, E.; Brusati, V.; Ditto, A.; Kusamura, S.; Martinelli, F.; Hanozet, F.; Carcangiu, M.L.; Maccauro, M.; Raspagliesi, F. Hysteroscopy in endometrial cancer: New methods to evaluate transtubal leakage of saline distension medium. Am. J. Obstet. Gynecol. 2008, 198, 214.e1–214.e4. [Google Scholar] [CrossRef]
- Cicinelli, E.; Tinelli, R.; Colafiglio, G.; Fortunato, F.; Fusco, A.; Mastrolia, S.; Fucci, A.R.; Lepera, A. Risk of long-term pelvic recurrences after fluid minihysteroscopy in women with endometrial carcinoma: A controlled randomized study. Menopause 2010, 17, 511–515. [Google Scholar] [CrossRef]
- Tempfer, C.B.; Froese, G.; Buerkle, B.; Polterauer, S.; Grimm, C.; Concin, N.; Hofstetter, G.; Weigert, M.; Oehler, M.K. Does duration of hysteroscopy increase the risk of disease recurrence in patients with endometrial cancer? A multi-centre trial. Exp. Ther. Med. 2011, 2, 991–995. [Google Scholar] [CrossRef]
- Arikan, G.; Reich, O.; Weiss, U.; Hahn, T.; Reinisch, S.; Tamussino, K.; Pickel, H.; Desoye, G. Are endometrial carcinoma cells disseminated at hysteroscopy functionally viable? Gynecol. Oncol. 2001, 83, 221–226. [Google Scholar] [CrossRef]
- Seagle, B.-L.L.; Alexander, A.L.; Lantsman, T.; Shahabi, S. Prognosis and treatment of positive peritoneal cytology in early endometrial cancer: Matched cohort analyses from the National Cancer Database. Am. J. Obstet. Gynecol. 2018, 218, 329.e1–329.e15. [Google Scholar] [CrossRef]
- Guo, X.M.; Roman, L.D.; Klar, M.; Wright, J.D.; Matsuo, K. Malignant peritoneal cytology in endometrial cancer: A contemporary review. Expert Rev. Anticancer. Ther. 2022, 22, 947–955. [Google Scholar] [CrossRef]
- Du, Y.; Xu, Y.; Qin, Z.; Sun, L.; Chen, Y.; Han, L.; Zheng, A. The Oncology Safety of Diagnostic Hysteroscopy in Early-Stage Endometrial Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 742761. [Google Scholar] [CrossRef]
- Liu, S.; Zhen, L.; Zhang, S.; Cai, Y.; Lin, Y.; Chen, F.; Li, X.; You, Q.; Lai, X.; Lai, H.; et al. Comparison of prognosis of patients with endometrial cancer after hysteroscopy versus dilatation and curettage: A multicenter retrospective study. Front. Med. 2023, 9, 1097133. [Google Scholar] [CrossRef]
- Kelly, R.A.; Contos, G.T.; Walker, C.A.; Ayoola-Adeola, M.; Kim, S.; Winer, I.S. Hysteroscopic Morcellation in Endometrial Cancer Diagnosis: Increased Risk? J. Minim. Invasive Gynecol. 2021, 28, 1625–1632. [Google Scholar] [CrossRef]
- Fujiwara, S.; Nishie, R.; Ueda, S.; Miyamoto, S.; Terada, S.; Kogata, Y.; Tanaka, T.; Tanaka, Y.; Ohmichi, M. Prognostic significance of peritoneal cytology in low-risk endometrial cancer: Comparison of laparoscopic surgery and laparotomy. Int. J. Clin. Oncol. 2021, 26, 777–783. [Google Scholar] [CrossRef]
- Scutiero, G.; Vizzielli, G.; Taliento, C.; Bernardi, G.; Martinello, R.; Cianci, S.; Riemma, G.; Scambia, G.; Greco, P. Influence of uterine manipulator on oncological outcome in minimally invasive surgery of endometrial cancer: A systematic review and meta-analysis. Eur. J. Surg. Oncol. 2022, 48, 2112–2118. [Google Scholar] [CrossRef]
- Gao, Q.; Guo, L.; Wang, B. The Pathogenesis and Prevention of Port-Site Metastasis in Gynecologic Oncology. Cancer Manag. Res. 2020, 12, 9655–9663. [Google Scholar] [CrossRef]
- Hisamoto, K.; Kitai, M.; Otoshi, A.; Tsukahara, C.; Nishio, Y.; Miyatake, T. Vaginal Mucosal Implantation after Total Laparoscopic Hysterectomy for an Early Stage Endometrial Cancer. J. Clin. Gynecol. Obstet. 2018, 7, 57–61. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer. J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef]
- Talhouk, A.; McConechy, M.K.; Leung, S.; Li-Chang, H.H.; Kwon, J.S.; Melnyk, N.; Yang, W.; Senz, J.; Boyd, N.; Karnezis, A.N.; et al. A clinically applicable molecular-based classification for endometrial cancers. Br. J. Cancer 2015, 113, 299–310. [Google Scholar] [CrossRef]
- Travaglino, A.; Raffone, A.; Mascolo, M.; Guida, M.; Insabato, L.; Zannoni, G.F.; Zullo, F. Clear cell endometrial carcinoma and the TCGA classification. Histopathology 2020, 76, 336–338. [Google Scholar] [CrossRef]
- Gilks, C.B.; Oliva, E.; Soslow, R.A. Poor interobserver reproducibility in the diagnosis of high-grade endometrial carcinoma. Am. J. Surg. Pathol. 2013, 37, 874–881. [Google Scholar] [CrossRef]
- Hoang, L.N.; McConechy, M.K.B.; Köbel, M.; Han, G.; Rouzbahman, M.; Davidson, B.; Irving, J.; Ali, R.H.; Leung, S.M.; McAlpine, J.N.; et al. Histotype-genotype correlation in 36 high-grade endometrial carcinomas. Am. J. Surg. Pathol. 2013, 37, 1421–1432. [Google Scholar] [CrossRef]
- Raffone, A.; Travaglino, A.; Raimondo, D.; Neola, D.; Renzulli, F.; Santoro, A.; Insabato, L.; Casadio, P.; Zannoni, G.F.; Zullo, F.; et al. Prognostic value of myometrial invasion and TCGA groups of endometrial carcinoma. Gynecol. Oncol. 2021, 162, 401–406. [Google Scholar] [CrossRef]
Aspect | Summary |
---|---|
Metastasis Elements | Disturbances in cell-ECM adhesion, cytoskeleton disruptions, and invasive properties are crucial in cancer metastasis. |
Influence of Estrogen | Estrogen affects actin and cell membranes, increasing migration and implantation capabilities in endometrial cells. |
Role of Prolactin | Prolactin has complex actions, including anti-apoptotic effects, proliferation stimulation, and angiogenic influence in EC. |
Involvement of Adipocytokines | Adipocytokines like leptin, visfatin, and resistin contribute to the progression and spread of endometrial cancer cells. |
SDF-1 and Kisspeptin-10 | SDF-1 plays a crucial role in EC metastasis, and kisspeptin-10 therapy shows promise as a metastasis inhibitor (in vitro). |
MicroRNAs (miRNAs) | Abnormal miRNA expression, such as miR-199a/b 5p and miR-29a-3p, is linked to EC metastasis, and profiles are under development. |
RUNX1 and Metastasis | Overexpression of the transcription factor RUNX1 is associated with EC lung and nodal metastasis. |
Aspect | Summary |
---|---|
Role of Transvaginal Ultrasound (TVUS) | TVUS is fundamental in evaluating endometrial pathology, serving as a preliminary prognostic factor later confirmed by histological examination. |
Prognostic Factors in Endometrial Cancer | Myometrial infiltration depth is a primary prognostic factor; deep infiltration (stage IB) is associated with a higher risk of metastasis. Histological differentiation (grading) is also a prognostic factor. |
Sonomorphologic and Doppler Features | Low-risk endometrial cancers exhibit homogeneous echogenicity with minimal vasculature, while high-grade tumors show differentiated echogenicity and abundant perfusion. These parameters can predict lymph node metastasis and recurrence. |
Ultrasound Parameters for Prediction | Preoperative grading, myometrial infiltration depth (uMI), and serum CA 125 levels can predict lymph node metastasis. Tumor size > 2.5 cm, uMI > 50%, RI < 0.4, and uTFD correlate with metastasis and unfavorable outcomes. |
Two-Step Strategy | Combining preoperative histopathologic evaluation with ultrasound assessment of myometrial and cervical stroma invasion aids in identifying high and low-risk cases of lymph node metastasis. |
Tumor-Free Distance (uTFD) | uTFD measurement is valuable for assessing locoregional cancer invasion and may be recommended alongside uMI, especially when myomas or adenomyosis coexist. |
Ultrasound for Risk Identification | Tumor size and p53 status assessment on ultrasound help identify women at risk of recurrence or progression, aiding in treatment decisions and prognosis in endometrial cancer. |
Combined Demographic and Ultrasound Factors | Combining demographic factors, ultrasound findings, and ProMisE subtype improves preoperative risk stratification, outperforming traditional risk classifications in endometrial cancer. |
Aspect | Summary |
---|---|
Diagnosis of Endometrial Cancer | Diagnosis primarily involves histopathological examination of uterine cavity material. Hysteroscopy-guided endometrial biopsy is the gold standard for precise diagnosis (sensitivity: 67–86.4%, specificity: 99.2%). |
HYCA Grading System | The HYCA grading system enhances the sensitivity and specificity of hysteroscopy for endometrial cancer diagnosis. |
Influence of Diagnostic Methods on Spread | Concerns exist regarding potential tumor spread during diagnostic methods like hysteroscopy, especially in advanced cancer stages. |
Pressure During Hysteroscopy | Pressure exceeding 100 mm Hg during hysteroscopy may increase the risk of tumor spread beyond the uterus. |
Medium Used in Hysteroscopy | The impact of the type of medium (liquid vs. carbon dioxide) on tumor cell migration during hysteroscopy remains inconclusive. |
Peritoneal Cavity Cytology | Studies on peritoneal cytology after hysteroscopy have yielded inconsistent results regarding its link to diagnostic procedures. |
Effect on Prognosis | Positive cytology after hysteroscopy may be associated with an unfavorable prognosis, especially when tumor foci are already present outside the uterus. |
Oncological Safety of Hysteroscopy | Recent systematic reviews and meta-analyses suggest the oncological safety of hysteroscopy in early endometrial cancer diagnosis. |
Laparoscopic Hysterectomy | Laparoscopic hysterectomy is an established treatment for endometrial cancer; spread risk is associated with various factors such as uterine manipulator use and pressure. |
Metastasis at Trocar Insertion Site | Rare metastasis occurs at trocar insertion sites during laparoscopic procedures; measures to reduce risk include minimizing tissue trauma and using proper techniques. |
Implantation in the Vaginal Stump | Laparoscopic hysterectomy does not significantly increase the risk of implantation in the vaginal stump or endometrial cancer recurrence compared to traditional hysterectomy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markowska, A.; Baranowski, W.; Pityński, K.; Chudecka-Głaz, A.; Markowska, J.; Sawicki, W. Metastases and Recurrence Risk Factors in Endometrial Cancer—The Role of Selected Molecular Changes, Hormonal Factors, Diagnostic Methods and Surgery Procedures. Cancers 2024, 16, 179. https://doi.org/10.3390/cancers16010179
Markowska A, Baranowski W, Pityński K, Chudecka-Głaz A, Markowska J, Sawicki W. Metastases and Recurrence Risk Factors in Endometrial Cancer—The Role of Selected Molecular Changes, Hormonal Factors, Diagnostic Methods and Surgery Procedures. Cancers. 2024; 16(1):179. https://doi.org/10.3390/cancers16010179
Chicago/Turabian StyleMarkowska, Anna, Włodzimierz Baranowski, Kazimierz Pityński, Anita Chudecka-Głaz, Janina Markowska, and Włodzimierz Sawicki. 2024. "Metastases and Recurrence Risk Factors in Endometrial Cancer—The Role of Selected Molecular Changes, Hormonal Factors, Diagnostic Methods and Surgery Procedures" Cancers 16, no. 1: 179. https://doi.org/10.3390/cancers16010179
APA StyleMarkowska, A., Baranowski, W., Pityński, K., Chudecka-Głaz, A., Markowska, J., & Sawicki, W. (2024). Metastases and Recurrence Risk Factors in Endometrial Cancer—The Role of Selected Molecular Changes, Hormonal Factors, Diagnostic Methods and Surgery Procedures. Cancers, 16(1), 179. https://doi.org/10.3390/cancers16010179