Plasma Device Functions and Tissue Effects in the Female Pelvis—A Systematic Review
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Depth of Tissue Effects
3.1.1. Electrosurgical Devices
Author, Year [Ref.] | Experimental Setting | Device Use Parameters | Thermal Tissue Effect Metrics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tissue Models | Patients/ Samples | Type a | Power | Time (s) | Dist. (mm) | Flow (L/min) | TDD (mm) | VD (mm) | TED (mm) | ||
Eschar | Necrosis | ||||||||||
Electrosurgical (plasma-assisted) devices | |||||||||||
Bristow, 2001 [6] | H2-O b | 1/16 1/16 1/16 1/16 1/16 1/16 | ABC | 60 W 60 W 80 W 80 W 100 W 100 W | 1 5 1 5 1 5 | <10 <10 <10 <10 <10 <10 | 7 7 7 7 8 8 | 1.7 ± 0.3 2.4 ± 0.4 2.2 ± 0.3 3.7 ± 0.7 3.2 ± 0.4 5.6 ± 0.5 | 0.6 ± 0.2 - - - - 3.2 ± 0.3 | 0.5 ± 0.1 - - - - 1.1 ± 0.2 | 0.6 ± 0.2 - - - - 1.3 ± 0.3 |
Gale, 1998 [7] | P1-U P1-I | 2/15 2/24 | ABC | 60–80 W 40–80 W | 1–5 1–5 | 5–10 5–10 | 4 4 | - - | - - | - - | 0.5–1.0 0.4–2.1 |
Tanner, 2017 [8] | P1-I | 1/16 | ABC | 30–90 W | 1 | 5–10 | - | 0.7–1.9 | - | - | - |
Johanns, 1997 [9] | H2-I | -/10 | APC | 40–155 W | 1–10 | 5 | 2–7 | - | - | 0.1–2.4 | |
Kraemer, 2011 [10] | R1-Pe | 9/36 9/36 | APC | 10 W 25 W | 4 4 | 2–3 2–3 | 0.3 0.3 | - - | - - | 0.6 ± 0.4 e 1.7 ± 1.2 e | |
Kraemer, 2014 [11] | R1-Pe | 16/62 | APC | 25 W | 4 | 2–3 | 0.3 | - | - | 1.3 ± 1.1 e | |
Kraemer, 2014 [12] | R1-Pe | 16/64 | APC | 25 W | 4 | 2–3 | 0.4 | - | - | 2.2 ± 0.7 e | |
Kraemer, 2018 [13] | R1-Pe | 24/48 | Hybrid APC | 25 W | - | 3 | 0.4 | - | - | 0.3 ± 0.1 e | |
Llarena, 2019 [17] | P1-O P1-U | 8/15 8/32 | J-Plasma | 20% 20% | 5 5 | 5 5 | - - | - - | - - | 0.11 ± 0.04 0.42 ± 0.13 | |
Deb, 2012 [19] | H1-U H1-O H1-F | 15/15 10/10 10/10 | HTC | 4 W 4 W 4 W | - - - | 5 5 5 | - - - | 0.7 ± 0.2 f 0.7 ± 0.2 f 0.6 ± 0.1 f | |||
Neutral argon plasma devices | |||||||||||
Tanner, 2017 [8] | P1-I | 1/24 | PJ | 10–30% | 1 | 5 | - | 0.6–1.0 | - | - | - |
Deb, 2012 [19] | H1-U H1-O H1-F | 15/15 10/10 10/10 | PJ | 20% 20% 20% | 5 5 5 | 5–10 5–10 5–10 | - - - | 0.6 ± 0.2 f 0.6 ± 0.1 f 0.6 ± 0.2 f | |||
Madhuri, 2014 [20] | H1-U c H1-S b | 3/48 3/48 | PJ | 10–60% 10–80% | 1–9 1–4 | 10 10 | - - | - - | 0.2–3.5 0.2–3.5 | 0.2–1.0 0.1–0.4 | |
Sonoda, 2010 [21] | H2-O H2-Pe b | 4/48 4/48 | PJ | 70–85% 70–85% | 2 4 | 10 10 | - - | - - | 1.6–2.2 2.7–4.0 | 0.11–0.12 0.13–0.15 | |
Roman, 2011 [22] | H1-O d | 8/10 | PJ | 40% | 1 | 5 | - | - | - | - | 0.1 ± 0.1 |
Nieuwenhuyzen-de Boer, 2022 [23] | H1-U/O/ I/Pe/Om/M | 17/106 | PJ | 10% | 3–4 | 5–10 | - | - | - | 0.15 |
3.1.2. Neutral Argon Plasma Devices
3.1.3. Cold Atmospheric Plasma Devices
3.2. Device Function: Type of Tissue Effects
3.2.1. Cutting, Incision and Dissection
3.2.2. Coagulation
3.2.3. Ablation I: Endometriosis
3.2.4. Ablation II: Carcinomatosis
3.2.5. Topical Therapy I: Gynaecological Intraepithelial Neoplasia
3.2.6. Topical Therapy II: Selective Cancer Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | Argon Beam Coagulation |
APC | Argon Plasma Coagulation |
APPJ | Atmospheric Pressure Plasma Jet |
CAP | Cold Atmospheric Plasma |
CIN | Cervical Intraepithelial Neoplasia |
DBD | Dielectric Barrier Discharge |
ES | Electrosurgery |
HTC | Helica Thermal Coagulator |
NAP | Neutral Argon Plasma |
PAM/PAL | Plasma Activated Medium/Plasma Activated Liquid |
PJ | PlasmaJet |
TDD | Total Depth of Damage |
TED | Thermal Effects Depth |
VD | Vaporization Depth |
VIN | Vulvar Intraepithelial Neoplasia |
References
- Brand, E.; Pearlman, N. Electrosurgical debulking of ovarian cancer: A new technique using the argon beam coagulator. Gynecol. Oncol. 1990, 39, 115–118. [Google Scholar] [CrossRef]
- Nieuwenhuyzen-de Boer, G.M.; Hofhuis, W.; Reesink-Peters, N.; Willemsen, S.; Boere, I.A.; Schoots, I.G.; Piek, J.M.J.; Hofman, L.N.; Beltman, J.J.; van Driel, W.J.; et al. Adjuvant Use of PlasmaJet Device During Cytoreductive Surgery for Advanced-Stage Ovarian Cancer: Results of the PlaComOv-study, a Randomized Controlled Trial in The Netherlands. Ann. Surg. Oncol. 2022, 29, 4833–4843. [Google Scholar] [CrossRef] [PubMed]
- Dewhirst, M.W.; Viglianti, B.L.; Lora-Michiels, M.; Hanson, M.; Hoopes, P.J. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int. J. Hyperth. 2003, 19, 267–294. [Google Scholar] [CrossRef] [PubMed]
- van de Berg, N.J.; van den Dobbelsteen, J.J.; Jansen, F.W.; Grimbergen, C.A.; Dankelman, J. Energetic soft-tissue treatment technologies: An overview of procedural fundamentals and safety factors. Surg. Endosc. 2013, 27, 3085–3099. [Google Scholar] [CrossRef] [PubMed]
- Glowka, T.R.; Standop, J.; Paschenda, P.; Czaplik, M.; Kalff, J.C.; Tolba, R.H. Argon and helium plasma coagulation of porcine liver tissue. J. Int. Med. Res. 2017, 45, 1505–1517. [Google Scholar] [CrossRef] [PubMed]
- Bristow, R.E.; Smith Sehdev, A.E.; Kaufman, H.S.; Montz, F.J. Ablation of metastatic ovarian carcinoma with the argon beam coagulator: Pathologic analysis of tumor destruction. Gynecol. Oncol. 2001, 83, 49–55. [Google Scholar] [CrossRef]
- Gale, P.; Adeyemi, B.; Ferrer, K.; Ong, A.; Brill, A.I.; Scoccia, B. Histologic characteristics of laparoscopic argon beam coagulation. J. Am. Assoc. Gynecol. Laparosc. 1998, 5, 19–22. [Google Scholar] [CrossRef]
- Tanner, E.J.; Dun, E.; Sonoda, Y.; Olawaiye, A.B.; Chi, D.S. A Comparison of Thermal Plasma Energy Versus Argon Beam Coagulator-Induced Intestinal Injury After Vaporization in a Porcine Model. Int. J. Gynecol. Cancer 2017, 27, 177–182. [Google Scholar] [CrossRef][Green Version]
- Johanns, W.; Luis, W.; Janssen, J.; Kahl, S.; Greiner, L. Argon plasma coagulation (APC) in gastroenterology: Experimental and clinical experiences. Eur. J. Gastroenterol. Hepatol. 1997, 9, 581–587. [Google Scholar] [CrossRef]
- Kraemer, B.; Rothmund, R.; Fischer, K.; Scharpf, M.; Fend, F.; Smaxwil, L.; Enderle, M.D.; Wallwiener, D.; Neugebauer, A. A prospective, randomized, experimental study to investigate the peritoneal adhesion formation of noncontact argon plasma coagulation in a rat model. Fertil. Steril. 2011, 95, 1328–1332. [Google Scholar] [CrossRef]
- Kraemer, B.; Rothmund, R.; Fischer, K.; Scharpf, M.; Smaxwil, L.; Enderle, M.D.; Wallwiener, C.; Neugebauer, A. A prospective experimental study to investigate the peritoneal adhesion formation of argon plasma coagulation (APC) versus a novel aerosol plasma in a rat model. Surg. Innov. 2014, 21, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, B.; Scharpf, M.; Planck, C.; Tsaousidis, C.; Enderle, M.D.; Neugebauer, A.; Kroeker, K.; Fend, F.; Brucker, S.; Rothmund, R. Randomized experimental study to investigate the peritoneal adhesion formation of conventional monopolar contact coagulation versus noncontact argon plasma coagulation in a rat model. Fertil. Steril. 2014, 102, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, B.; Scharpf, M.; Keckstein, S.; Dippon, J.; Tsaousidis, C.; Brunecker, K.; Enderle, M.D.; Neugebauer, A.; Nuessle, D.; Fend, F.; et al. A prospective randomized experimental study to investigate the peritoneal adhesion formation after waterjet injection and argon plasma coagulation (HybridAPC) in a rat model. Arch. Gynecol. Obstet. 2018, 297, 961–967. [Google Scholar] [CrossRef]
- Fujishiro, M.; Yahagi, N.; Nakamura, M.; Kakushima, N.; Kodashima, S.; Ono, S.; Kobayashi, K.; Hashimoto, T.; Yamamichi, N.; Tateishi, A.; et al. Submucosal injection of normal saline may prevent tissue damage from argon plasma coagulation: An experimental study using resected porcine esophagus, stomach, and colon. Surg. Laparosc. Endosc. Percutaneous Tech. 2006, 16, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Norton, I.D.; Wang, L.; Levine, S.A.; Burgart, L.J.; Hofmeister, E.K.; Yacavone, R.F.; Gostout, C.J.; Petersen, B.T. In vivo characterization of colonic thermal injury caused by argon plasma coagulation. Gastrointest. Endosc. 2002, 55, 631–636. [Google Scholar] [CrossRef]
- Norton, I.D.; Wang, L.; Levine, S.A.; Burgart, L.J.; Hofmeister, E.K.; Rumalla, A.; Gostout, C.J.; Petersen, B.T. Efficacy of colonic submucosal saline solution injection for the reduction of iatrogenic thermal injury. Gastrointest. Endosc. 2002, 56, 95–99. [Google Scholar] [CrossRef]
- Llarena, N.C.; Shah, A.B.; Biscotti, C.; Falcone, T.; Uy-Kroh, M.J. Thermal injury to the ovary and uterus in a porcine model: A comparison of four energy sources. Clin. Exp. Obstet. Gynecol. 2019, 46, 964–968. [Google Scholar] [CrossRef]
- Alletti, S.G.; Rosati, A.; Capozzi, V.A.; Pavone, M.; Gioe, A.; Cianci, S.; Chiantera, V.; Vizzielli, G.; Scaglione, G.; Fagotti, A.; et al. Use of Laparoscopic and Laparotomic J-Plasma Handpiece in Gynecological Malignancies: Results From A Pilot Study in A Tertiary Care Center. Front. Oncol. 2022, 12, 868390. [Google Scholar]
- Deb, S.; Sahu, B.; Deen, S.; Newman, C.; Powell, M. Comparison of tissue effects quantified histologically between PlasmaJet coagulator and Helica thermal coagulator. Arch. Gynecol. Obstet. 2012, 286, 399–402. [Google Scholar] [CrossRef]
- Madhuri, T.K.; Haagsma, B.E.N.; Williams, P.; Tailor, A.; Butler-Manuel, S.A. Pathologic analysis of tissue destruction with neutral argon plasma. Int. J. Gynecol. Cancer 2014, 24, 1022–1023. [Google Scholar]
- Sonoda, Y.; Olvera, N.; Chi, D.S.; Brown, C.L.; Abu-Rustum, N.R.; Levine, D.A. Pathologic analysis of ex vivo plasma energy tumor destruction in patients with ovarian or peritoneal cancer. Int. J. Gynecol. Cancer 2010, 20, 1326–1330. [Google Scholar] [PubMed]
- Roman, H.; Pura, I.; Tarta, O.; Mokdad, C.; Auber, M.; Bourdel, N.; Marpeau, L.; Sabourin, J.C. Vaporization of ovarian endometrioma using plasma energy: Histologic findings of a pilot study. Fertil. Steril. 2011, 95, 1853–1856.e4. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuyzen-de Boer, G.M.; van de Berg, N.J.; Gao, X.S.; Ewing-Graham, P.C.; van Beekhuizen, H.J. The effects of neutral argon plasma versus electrocoagulation on tissue in advanced-stage ovarian cancer: A case series. J. Ovarian Res. 2022, 15, 140. [Google Scholar] [CrossRef] [PubMed]
- Holl, M.; Rasch, M.L.; Becker, L.; Keller, A.L.; Schultze-Rhonhof, L.; Ruoff, F.; Templin, M.; Keller, S.; Neis, F.; Kessler, F.; et al. Cell Type-Specific Anti-Adhesion Properties of Peritoneal Cell Treatment with Plasma-Activated Media (PAM). Biomedicines 2022, 10, 927. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Lu, X.; He, G. On the penetration depth of reactive oxygen and nitrogen species generated by a plasma jet through real biological tissue. Phys. Plasmas 2017, 24, 073506. [Google Scholar] [CrossRef]
- Partecke, L.I.; Evert, K.; Haugk, J.; Doering, F.; Normann, L.; Diedrich, S.; Weiss, F.U.; Evert, M.; Huebner, N.O.; Guenther, C.; et al. Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer 2012, 12, 473. [Google Scholar] [CrossRef][Green Version]
- Wenzel, T.; Berrio, D.A.C.; Daum, R.; Reisenauer, C.; Weltmann, K.D.; Wallwiener, D.; Brucker, S.Y.; Schenke-Layland, K.; Brauchle, E.M.; Weiss, M. Molecular Effects and Tissue Penetration Depth of Physical Plasma in Human Mucosa Analyzed by Contact- and Marker-Independent Raman Microspectroscopy. Acs Appl. Mater. Interfaces 2019, 11, 42885–42895. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, T.; Berrio, D.A.C.; Reisenauer, C.; Layland, S.; Koch, A.; Wallwiener, D.; Brucker, S.Y.; Schenke-Layland, K.; Brauchle, E.M.; Weiss, M. Trans-mucosal efficacy of non-thermal plasma treatment on cervical cancer tissue and human cervix uteri by a next generation electrosurgical argon plasma device. Cancers 2020, 12, 267. [Google Scholar] [CrossRef][Green Version]
- Dai, X.F.; Bazaka, K.; Richard, D.J.; Thompson, E.W.; Ostrikov, K. The Emerging Role of Gas Plasma in Oncotherapy. Trends Biotechnol. 2018, 36, 1183–1198. [Google Scholar] [CrossRef]
- Ranieri, P.; Shrivastav, R.; Wang, M.; Lin, A.; Fridman, G.; Fridman, A.A.; Han, L.H.; Miller, V. Nanosecond-Pulsed Dielectric Barrier Discharge–Induced Antitumor Effects Propagate through Depth of Tissue via Intracellular Signaling. Plasma Med. 2017, 7, 283–297. [Google Scholar] [CrossRef][Green Version]
- Laroussi, M. From Killing Bacteria to Destroying Cancer Cells: 20 Years of Plasma Medicine. Plasma Process. Polym. 2014, 11, 1138–1141. [Google Scholar] [CrossRef]
- Szili, E.J.; Hong, S.H.; Oh, J.S.; Gaur, N.; Short, R.D. Tracking the Penetration of Plasma Reactive Species in Tissue Models. Trends Biotechnol. 2018, 36, 594–602. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Weiss, M.; Stope, M.B. Physical plasma: A new treatment option in gynecological oncology. Arch. Gynecol. Obstet. 2018, 298, 853–855. [Google Scholar] [CrossRef]
- Ruidiaz, M.E.; Cortes-Mateos, M.J.; Sandoval, S.; Martin, D.T.; Wang-Rodriguez, J.; Hasteh, F.; Wallace, A.; Vose, J.G.; Kummel, A.C.; Blair, S.L. Quantitative Comparison of Surgical Margin Histology Following Excision With Traditional Electrosurgery and a Low-Thermal-Injury Dissection Device. J. Surg. Oncol. 2011, 104, 746–754. [Google Scholar] [CrossRef]
- Ekin, M.; Dagdeviren, H.; Caypinar, S.S.; Erdogan, B.; Ayag, M.E.; Cengiz, H.; Yasar, L.; Helvacioglu, C. Comparative cosmetic outcome of surgical incisions created by the PEAK Plasma Blade and a scalpel after cesarean section by Patient and Observer Assessment Scale (POSAS): A randomized double blind study. Taiwan. J. Obstet. Gyne 2018, 57, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Peprah, K.; Spry, C. Pulsed Electron Avalanche Knife (PEAK) PlasmaBlade versus Traditional Electrocautery for Surgery: A Review of Clinical Effectiveness and Cost-Effectiveness; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2019. [Google Scholar]
- Abu-Rustum, N.R.; Chi, D.S.; Sonoda, Y.; DiClemente, M.J.; Bekker, G.; Gemignani, M.; Poynor, E.; Brown, C.; Barakat, R.R. Transperitoneal laparoscopic pelvic and para-aortic lymph node dissection using the argon-beam coagulator and monopolar instruments: An 8-year study and description of technique. Gynecol. Oncol. 2003, 89, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Madhuri, T.K.; Papatheodorou, D.; Tailor, A.; Sutton, C.; Butler-Manuel, S. First clinical experience of argon neutral plasma energy in gynaecological surgery in the UK. Gynecol. Surg. 2010, 7, 423–425. [Google Scholar] [CrossRef]
- Paquette, I.M.; Vogel, J.D.; Abbas, M.A.; Feingold, D.L.; Steele, S.R. The American society of colon and rectal surgeons clinical practice guidelines for the treatment of chronic radiation proctitis. Dis. Colon. Rectum 2018, 61, 1135–1140. [Google Scholar] [CrossRef][Green Version]
- Siow, S.L.; Mahendran, H.A.; Seo, C.J. Complication and remission rates after endoscopic argon plasma coagulation in the treatment of haemorrhagic radiation proctitis. Int. J. Color. Dis. 2017, 32, 131–134. [Google Scholar] [CrossRef]
- Swan, M.P.; Moore, G.T.C.; Sievert, W.; Devonshire, D.A. Efficacy and safety of single-session argon plasma coagulation in the management of chronic radiation proctitis. Gastrointest. Endosc. 2010, 72, 150–154. [Google Scholar] [CrossRef]
- Sultania, S.; Sarkar, R.; Das, K.; Dhali, G.K. Argon plasma coagulation is an effective treatment for chronic radiation proctitis in gynaecological malignancy: An observational study. Color. Dis. 2019, 21, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Agrawal, D.; Thosani, N.; Al-Haddad, M.; Buxbaum, J.L.; Calderwood, A.H.; Fishman, D.S.; Fujii-Lau, L.L.; Jamil, L.H.; Jue, T.L.; et al. ASGE guideline on the role of endoscopy for bleeding from chronic radiation proctopathy. Gastrointest. Endosc. 2019, 90, 171–182. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Triantafyllou, K.; Gkolfakis, P.; Gralnek, I.M.; Oakland, K.; Manes, G.; Radaelli, F.; Awadie, H.; Duboc, M.C.; Christodoulou, D.; Fedorov, E.; et al. Diagnosis and management of acute lower gastrointestinal bleeding: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2021, 53, C10. [Google Scholar] [PubMed]
- Panos, M.Z.; Koumi, A. Argon plasma coagulation in the right and left colon: Safety-risk profile of the 60W-1.2 l/min setting. Scand. J. Gastroenterol. 2014, 49, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Olmos, J.A.; Marcolongo, M.; Pogorelsky, V.; Herrera, L.; Tobal, F.; Davolos, J.R. Long-term outcome of argon plasma ablation therapy for bleeding in 100 consecutive patients with colonic angiodysplasia. Dis. Colon. Rectum 2006, 49, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Eickhoff, A.; Enderle, M.D.; Hartmann, D.; Eickhoff, J.C.; Riemann, J.F.; Jakobs, R. Effectiveness and Safety of PRECISE APC for the Treatment of Bleeding Gastrointestinal Angiodysplasia-A Retrospective Evaluation. Z. Gastroenterol. 2011, 49, 195–200. [Google Scholar] [CrossRef]
- Hill, N.; McQueen, J.; Morey, R.; Hanna, L.; Chandakas, S.; El-Toukhy, T.; Erian, J. Over one thousand patients with early stage endometriosis treated with the Helica Thermal Coagulator (HELICA): Safety aspects. Arch. Gynecol. Obstet. 2006, 274, 203–205. [Google Scholar] [CrossRef]
- Ai-Inizi, S.; Bamigboye, V. Laparoscopic Helica Thermal Coagulation for the Treatment of Early Endometriosis. J. Gynecol. Surg. 2007, 23, 45–51. [Google Scholar] [CrossRef]
- Hill, N.C.; El-Toukhy, T.; Chandakas, S.; Grigoriades, T.; Erian, J. Safety of the Helica Thermal Coagulator in treatment of early stage endometriosis. J. Obstet. Gynaecol. 2005, 25, 52–54. [Google Scholar] [CrossRef]
- Misra, G.; Sim, J.; El-Gizawy, Z.; Watts, K.; Jerreat, S.; Coia, T.; Ritchie, J.; O′Brien, S. Laparoscopic ablation or excision with helium thermal coagulator versus electrodiathermy for the treatment of mild-to-moderate endometriosis: Randomised controlled trial. BJOG 2020, 127, 1528–1535. [Google Scholar] [CrossRef]
- Al-Inizi, S. Re: Laparoscopic ablation or excision with helium thermal coagulator versus electrodiathermy for the treatment of mild-to-moderate endometriosis: Randomised controlled trial. BJOG 2020, 127, 1715–1716. [Google Scholar] [CrossRef]
- Nezhat, C.; Kho, K.A.; Morozov, V. Use of neutral argon plasma in the laparoscopic treatment of endometriosis. J. Soc. Laparoendosc. Surg. 2009, 13, 479–483. [Google Scholar] [CrossRef][Green Version]
- Fuchs, P.; Czech, I.; Fuchs, A.; Sikora, J. Use of neutral argon plasma in the treatment of endometriosis initial findings. Clin. Exp. Obstet. Gynecol. 2019, 46, 434–436. [Google Scholar] [CrossRef]
- Roman, H.; Auber, M.; Mokdad, C.; Martin, C.; Diguet, A.; Marpeau, L.; Bourdel, N. Ovarian endometrioma ablation using plasma energy versus cystectomy: A step toward better preservation of the ovarian parenchyma in women wishing to conceive. Fertil. Steril. 2011, 96, 1396–1400. [Google Scholar] [CrossRef][Green Version]
- Mircea, O.; Puscasiu, L.; Resch, B.; Lucas, J.; Collinet, P.; von Theobald, P.; Merviel, P.; Roman, H. Fertility Outcomes After Ablation Using Plasma Energy Versus Cystectomy in Infertile Women with Ovarian Endometrioma: A Multicentric Comparative Study. J. Minim. Invasive Gynecol. 2016, 23, 1138–1145. [Google Scholar] [CrossRef]
- Delbos, L.; Bouet, P.E.; Catala, L.; Lefebvre, C.; Teyssedou, C.; Descamps, P.; Legendre, G. Surgery using plasma energy for deep endometriosis: A quality of life assessment. J. Gynecol. Obstet. Hum. Reprod. 2018, 47, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Bristow, R.E.; Montz, F.J. Complete surgical cytoreduction of advanced ovarian carcinoma using the argon beam coagulator. Gynecol. Oncol. 2001, 83, 39–48. [Google Scholar] [CrossRef]
- Trinh, H.; Ott, C.; Fanning, J. FeasibiLity of laparoscopic debulking with electrosurgical loop excision procedure and argon beam coagulator at recurrence in patients with previous laparotomy debulking. Am. J. Obstet. Gynecol. 2004, 190, 1394–1397. [Google Scholar] [CrossRef] [PubMed]
- Panuccio, E.; Leunen, K.; Van Nieuwenhuysen, E.; Neven, P.; Lambrechts, S.; Vergote, I. Use of PlasmaJet for Peritoneal Carcinomatosis in Ovarian Cancer. Int. J. Gynecol. Cancer 2016, 26, 1521–1524. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vidal, G.C.; Babin, G.; Querleu, D.; Guyon, F. Primary debulking surgery of the upper abdomen and the diaphragm, with a plasma device surgery system, for advanced ovarian cancer. Gynecol. Oncol. 2017, 144, 223–224. [Google Scholar] [CrossRef] [PubMed]
- Volcke, A.; Van Nieuwenhuysen, E.; Han, S.; Salihi, R.; Van Gorp, T.; Vergote, I. Experience with PlasmaJet™ in debulking surgery in 87 patients with advanced-stage ovarian cancer. J. Surg. Oncol. 2021, 123, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Kushnir, C.L.; Fleury, A.C.; Hill, M.C.; Silver, D.F.; Spirtos, N.M. The use of argon beam coagulation in treating vulvar intraepithelial neoplasia III: A retrospective review. Gynecol. Oncol. 2013, 131, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Jeevananthan, P.; Sayasneh, A.; Saso, S.; Chatterjee, J.; Boyle, D.; Smith, J.R. The novel application of plasma energy as a tissue preserving treatment modality for vulval and perianal intraepithelial neoplasia. BJOG Int. J. Obstet. Gynaecol. 2016, 123, 81. [Google Scholar] [CrossRef]
- Henes, M.; Bosmuller, H.; Neis, F.; Wallwiener, D.; Brucker, S.; Weiss, M. Non-invasive-physical-plasma treatment of low- and high-grade cervical intraepithelial neoplasia: A non-invasive and anaesthesia-independent treatment procedure evaluated in a prospective, monocentric clinical trial. Geburtsh Frauenheilk 2020, 80, E211. [Google Scholar]
- Marzi, J.; Stope, M.B.; Henes, M.; Koch, A.; Wenzel, T.; Holl, M.; Layland, S.L.; Neis, F.; Bosmuller, H.; Ruoff, F.; et al. Noninvasive Physical Plasma as Innovative and Tissue-Preserving Therapy for Women Positive for Cervical Intraepithelial Neoplasia. Cancers 2022, 14, 1933. [Google Scholar] [CrossRef]
- Polat, G.; Erni, B.; Navarini, A.; Kind, A.; Mueller, S.M. Three patients with chronic vulvar pruritus successfully treated with cold atmospheric pressure plasma. J. Dtsch. Dermatol. Ges. 2021, 19, 1346–1349. [Google Scholar] [CrossRef]
- Zubor, P.; Wang, Y.; Liskova, A.; Samec, M.; Koklesova, L.; Dankova, Z.; Dorum, A.; Kajo, K.; Dvorska, D.; Lucansky, V.; et al. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int. J. Mol. Sci. 2020, 21, 7988. [Google Scholar] [CrossRef]
- Ahn, H.J.; Kim, K.I.; Kim, G.; Moon, E.; Yang, S.S.; Lee, J.S. Atmospheric-Pressure Plasma Jet Induces Apoptosis Involving Mitochondria via Generation of Free Radicals. PLoS ONE 2011, 6, e28154. [Google Scholar] [CrossRef][Green Version]
- Li, Y.; Kang, M.H.; Uhm, H.S.; Lee, G.J.; Choi, E.H.; Han, I. Effects of atmospheric-pressure non-thermal bio-compatible plasma and plasma activated nitric oxide water on cervical cancer cells. Sci. Rep. 2017, 7, 45781. [Google Scholar] [CrossRef][Green Version]
- Jezeh, M.A.; Tayebi, T.; Khani, M.R.; Niknejad, H.; Shokri, B. Direct cold atmospheric plasma and plasma-activated medium effects on breast and cervix cancer cells. Plasma Process. Polym. 2020, 17, 1900241. [Google Scholar] [CrossRef]
- Kenari, A.J.; Siadati, S.N.; Abedian, Z.; Sohbatzadeh, F.; Amiri, M.; Gorji, K.E.; Babapour, H.; Zabihi, E.; Ghoreishi, S.M.; Mehraeen, R.; et al. Therapeutic effect of cold atmospheric plasma and its combination with radiation as a novel approach on inhibiting cervical cancer cell growth (HeLa cells). Bioorg. Chem. 2021, 111, 104892. [Google Scholar] [CrossRef] [PubMed]
- Iseki, S.; Nakamura, K.; Hayashi, M.; Tanaka, H.; Kondo, H.; Kajiyama, H.; Kano, H.; Kikkawa, F.; Hori, M. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 2012, 100, 113702. [Google Scholar] [CrossRef]
- Utsumi, F.; Kajiyama, H.; Nakamura, K.; Tanaka, H.; Mizuno, M.; Ishikawa, K.; Kondo, H.; Kano, H.; Hori, M.; Kikkawa, F. Effect of Indirect Nonequilibrium Atmospheric Pressure Plasma on Anti-Proliferative Activity against Chronic Chemo-Resistant Ovarian Cancer Cells In Vitro and In Vivo. PLoS ONE 2013, 8, e81576. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Utsumi, F.; Kajiyama, H.; Nakamura, K.; Tanaka, H.; Hori, M.; Kikkawa, F. Selective cytotoxicity of indirect nonequilibrium atmospheric pressure plasma against ovarian clear-cell carcinoma. Springerplus 2014, 3, 1–9. [Google Scholar] [CrossRef][Green Version]
- Bekeschus, S.; Wulf, C.P.; Freund, E.; Koensgen, D.; Mustea, A.; Weltmann, K.D.; Stope, M.B. Plasma Treatment of Ovarian Cancer Cells Mitigates Their Immuno-Modulatory Products Active on THP-1 Monocytes. Plasma 2018, 1, 201–217. [Google Scholar] [CrossRef][Green Version]
- Bisag, A.; Bucci, C.; Coluccelli, S.; Girolimetti, G.; Laurita, R.; De Iaco, P.; Perrone, A.M.; Gherardi, M.; Marchio, L.; Porcelli, A.M.; et al. Plasma-activated Ringer’s Lactate Solution Displays a Selective Cytotoxic Effect on Ovarian Cancer Cells. Cancers 2020, 12, 476. [Google Scholar] [CrossRef][Green Version]
- Rasouli, M.; Mehdian, H.; Hajisharifi, K.; Amini, E.; Ostrikov, K.; Robert, E. Plasma-activated medium induces apoptosis in chemotherapy-resistant ovarian cancer cells: High selectivity and synergy with carboplatin. Plasma Process. Polym. 2021, 18, e2100074. [Google Scholar] [CrossRef]
- Tuhvatulin, A.I.; Sysolyatina, E.V.; Scheblyakov, D.V.; Logunov, D.Y.; Vasiliev, M.M.; Yurova, M.A.; Danilova, M.A.; Petrov, O.F.; Naroditsky, B.S.; Morfill, G.E.; et al. Non-thermal Plasma Causes p53-Dependent Apoptosis in Human Colon Carcinoma Cells. Acta Nat. 2012, 4, 82–87. [Google Scholar] [CrossRef][Green Version]
- Kumara, M.H.S.R.; Piao, M.J.; Kang, K.A.; Ryu, Y.S.; Park, J.E.; Shilnikova, K.; Jo, J.O.; Mok, Y.S.; Shin, J.H.; Park, Y.; et al. Non-thermal gas plasma-induced endoplasmic reticulum stress mediates apoptosis in human colon cancer cells. Oncol. Rep. 2016, 36, 2268–2274. [Google Scholar] [CrossRef][Green Version]
- Choi, J.S.; Kim, J.; Hong, Y.J.; Bae, W.Y.; Choi, E.H.; Jeong, J.W.; Park, H.K. Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells. Biomed. Opt. Express 2017, 8, 2649–2659. [Google Scholar] [CrossRef][Green Version]
- Zhang, H.; Zhang, J.S.; Xu, S.D.; Wang, Z.F.; Xu, D.H.; Guo, L.; Liu, D.X.; Kong, M.G.; Rong, M.Z. Antitumor effects of hyperthermia with plasma-treated solutions on 3D bladder tumor spheroids. Plasma Process. Polym. 2021, 18, 2100070. [Google Scholar] [CrossRef]
- Ha, J.H.; Kim, Y.J. Photodynamic and Cold Atmospheric Plasma Combination Therapy Using Polymeric Nanoparticles for the Synergistic Treatment of Cervical Cancer. Int. J. Mol. Sci. 2021, 22, 1172. [Google Scholar] [CrossRef] [PubMed]
- Feil, L.; Koch, A.; Utz, R.; Ackermann, M.; Barz, J.; Stope, M.; Kramer, B.; Wallwiener, D.; Brucker, S.Y.; Weiss, M. Cancer-Selective Treatment of Cancerous and Non-Cancerous Human Cervical Cell Models by a Non-Thermally Operated Electrosurgical Argon Plasma Device. Cancers 2020, 12, 1037. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, W.; Yu, K.N.; Bao, L.Z.; Shen, J.; Cheng, C.; Han, W. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression. Sci. Rep. 2016, 6, 19720. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Koensgen, D.; Besic, I.; Gumbel, D.; Kaul, A.; Weiss, M.; Diesing, K.; Kramer, A.; Bekeschus, S.; Mustea, A.; Stope, M.B. Cold Atmospheric Plasma (CAP) and CAP-Stimulated Cell Culture Media Suppress Ovarian Cancer Cell Growth-A Putative Treatment Option in Ovarian Cancer Therapy. Anticancer. Res. 2017, 37, 6739–6744. [Google Scholar]
- Nakamura, K.; Peng, Y.; Utsumi, F.; Tanaka, H.; Mizuno, M.; Toyokuni, S.; Hori, M.; Kikkawa, F.; Kajiyama, H. Novel Intraperitoneal Treatment With Non-Thermal Plasma-Activated Medium Inhibits Metastatic Potential of Ovarian Cancer Cells. Sci. Rep. 2017, 7, 6085. [Google Scholar] [CrossRef][Green Version]
- Nakamura, K.; Yoshikawa, N.; Mizuno, Y.; Ito, M.; Tanaka, H.; Mizuno, M.; Toyokuni, S.; Hori, M.; Kikkawa, F.; Kajiyama, H. Preclinical Verification of the Efficacy and Safety of Aqueous Plasma for Ovarian Cancer Therapy. Cancers 2021, 13, 1141. [Google Scholar] [CrossRef]
- Biscop, E.; Lin, A.; Van Boxem, W.; Van Loenhout, J.; De Backer, J.; Deben, C.; Dewilde, S.; Smits, E.; Bogaerts, A. The Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment. Cancers 2019, 11, 1287. [Google Scholar] [CrossRef][Green Version]
- Ruoff, F.; Henes, M.; Templin, M.; Enderle, M.; Boesmueller, H.; Wallwiener, D.; Brucker, S.Y.; Schenke-Layland, K.; Weiss, M. Targeted Protein Profiling of In Vivo NIPP-Treated Tissues Using DigiWest Technology. Appl. Sci. 2021, 11, 11238. [Google Scholar] [CrossRef]
- Garrido, T.; Baba, E.R.; Wodak, S.; Sakai, P.; Cecconello, I.; Maluf-Filho, F. Histology assessment of bipolar coagulation and argon plasma coagulation on digestive tract. World J. Gastrointest. Endosc. 2014, 6, 304–311. [Google Scholar] [CrossRef]
- Whitfield, A.M.; Burgess, N.G.; Bahin, F.F.; Kabir, S.; Pellisé, M.; Sonson, R.; Subramanian, V.; Mahajan, H.; McLeod, D.; Byth, K.; et al. Histopathological effects of electrosurgical interventions in an in vivo porcine model of colonic endoscopic mucosal resection. Gut 2021, 71, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Ridings, P.; Bailey, C.; Bucknall, T.E. Argon beam coagulation as an adjunct in breast-conserving surgery. Ann. R. Coll. Surg. Engl. 1998, 80, 61–62. [Google Scholar] [PubMed]
- Friebel, T.R.; Narayan, N.; Ramakrishnan, V.; Morgan, M.; Cellek, S.; Griffiths, M. Comparison of PEAK PlasmaBlade (TM) to conventional diathermy in abdominal-based free-flap breast reconstruction surgery-A single-centre double-blinded randomised controlled trial. J. Plast. Reconstr. Aes. 2021, 74, 1731–1742. [Google Scholar] [CrossRef] [PubMed]
- Chupradit, S.; Widjaja, G.; Majeed, B.R.; Kuznetsova, M.; Ansari, M.J.; Suksatan, W.; Jalil, A.T.; Esfahani, B.G. Recent advances in cold atmospheric plasma (CAP) for breast cancer therapy. Cell Biol. Int. 2023, 47, 327–340. [Google Scholar] [CrossRef]
- Tarricone, R.; Torbica, A.; Drummond, M. Challenges in the Assessment of Medical Devices: The MedtecHTA Project. Health Econ. 2017, 26 (Suppl. 1), 5–12. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nieuwenhuyzen-de Boer, G.M.; Geraerds, A.J.L.M.; van der Linden, M.H.; van Doorn, H.C.; Polinder, S.; van Beekhuizen, H.J. Cost Study of the PlasmaJet Surgical Device Versus Conventional Cytoreductive Surgery in Patients With Advanced-Stage Ovarian Cancer. JCO Clin. Cancer Inform. 2022, 6, e2200076. [Google Scholar] [CrossRef] [PubMed]
Type | Form | Brand |
---|---|---|
Electrosurgery (plasma-assisted) | Beam | ABC, ConMed, Largo, FL, USA. APC, ARCO series, Söring GmbH, Quickborn, DE. APC, ERBE GmbH, Tübingen, DE. HTC, Helica Instruments Ltd., Currie, UK. HybridAPC, ERBE GmbH, Tübingen, DE. J-Plasma, Apyx Medical, Clearwater, FL, USA. MABS, KLS Martin Group, Tuttlingen, DE. |
Rim | PlasmaBlade (PEAK), Medtronic, Dublin, IE. | |
NAP Neutral argon plasma | Beam | PlasmaJet, Plasma Surgical, Atlanta, GA, USA. |
CAP 1 Cold atmospheric plasma | Beam (APPJ) | kINPen, Neoplas med GmbH, Greifswald, DE. |
Surface (DBD) | PlasmaDerm, CINOGY System GmbH, Duderstadt, DE. | |
Medium (PAM/PAL) | All non-commercial or not clinically (gyn.) tested |
Author, Year [Ref.] | Experimental Setting | Device Type | |
---|---|---|---|
Tissue Models | Pelvic Organ (Cancer) Cell Lines | ||
Reduced viability/apoptosis | |||
Ahn, 2011 [69] Li, 2017 [70] Wenzel, 2020 [28] Jezeh, 2020 [71] Kenari, 2021 [72] | C2-Ce | HeLa HeLa, HFB SiHa HeLa, HFB HeLa | Custom APPJ (N2/air) Custom DBD (N2) and PAL (NO) Custom APPJ VIO3 APC ERBE (Ar) Custom APPJ (He) and PAM (He/He + O2) Custom APPJ and DBD (Ar + air) |
Iseki, 2012 [73] Utsumi, 2013 [74] Utsumi, 2014 [75] Bekeschus, 2018 [76] Bisag, 2020 [77] Rasouli, 2021 [78] | C2-O | SKOV-3, HRA, WI-38, MRC-5 NOS2, NOS3 TOV21G, SKOV-3, ES-2, NOS2, OHFC, HPMC SKOV-3, OVCAR-3 SKOV-3, OV-90, HOSE, F1, F2 SKOV-3, A2780 CP, GC | Custom APPJ (Ar) Custom PAM (Ar) Custom PAM (Ar) kINPen MED, APPJ (Ar) Custom/AlmaPlasma PAL (air) Custom APPJ (He) and PAM (He) |
Tuhvatulin, 2012 [79] Kumara, 2016 [80] Choi, 2017 [81] | C2-Co | HCT116 SNUC5 HCT116 | MicroPlaSter β, APPJ (Ar) Custom DBD (O2 + Ar) Custom DBD (N2) |
Reduced proliferation/growth | |||
Feil, 2020 [84] Li, 2016 [85] | C2-Ce | SiHa, CaSki, C-33-A, DoTc2 4510, NCCT HeLa | MABS, APPJ (Ar) Custom DBD (He) |
Koensgen, 2017 [86] Nakamura, 2017 [87] Nakamura, 2021 [88] | C2-O | SKOV-3, OVCAR-3, TOV-21G, TOV-112D ES2, SKOV3, HPMC ES2, SKOV3, OV90, OVCAR3, CAOV3 | kINPen MED, APPJ (Ar) Custom PAM (Ar) Custom/Tough Plasma PAM/PAL (Ar) |
Utsumi, 2013 [74] Nakamura, 2017 [87] Nakamura, 2021 [88] | R1-O | NOS2 ES2 ES2 | Custom PAM (Ar) Custom PAM (Ar) Custom PAM (Ar) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van de Berg, N.J.; Nieuwenhuyzen-de Boer, G.M.; Gao, X.S.; Rijstenberg, L.L.; van Beekhuizen, H.J. Plasma Device Functions and Tissue Effects in the Female Pelvis—A Systematic Review. Cancers 2023, 15, 2386. https://doi.org/10.3390/cancers15082386
van de Berg NJ, Nieuwenhuyzen-de Boer GM, Gao XS, Rijstenberg LL, van Beekhuizen HJ. Plasma Device Functions and Tissue Effects in the Female Pelvis—A Systematic Review. Cancers. 2023; 15(8):2386. https://doi.org/10.3390/cancers15082386
Chicago/Turabian Stylevan de Berg, Nick J., Gatske M. Nieuwenhuyzen-de Boer, Xu Shan Gao, L. Lucia Rijstenberg, and Heleen J. van Beekhuizen. 2023. "Plasma Device Functions and Tissue Effects in the Female Pelvis—A Systematic Review" Cancers 15, no. 8: 2386. https://doi.org/10.3390/cancers15082386
APA Stylevan de Berg, N. J., Nieuwenhuyzen-de Boer, G. M., Gao, X. S., Rijstenberg, L. L., & van Beekhuizen, H. J. (2023). Plasma Device Functions and Tissue Effects in the Female Pelvis—A Systematic Review. Cancers, 15(8), 2386. https://doi.org/10.3390/cancers15082386