Plasma Device Functions and Tissue Effects in the Female Pelvis—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Depth of Tissue Effects
3.1.1. Electrosurgical Devices
Author, Year [Ref.] | Experimental Setting | Device Use Parameters | Thermal Tissue Effect Metrics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tissue Models | Patients/ Samples | Type a | Power | Time (s) | Dist. (mm) | Flow (L/min) | TDD (mm) | VD (mm) | TED (mm) | ||
Eschar | Necrosis | ||||||||||
Electrosurgical (plasma-assisted) devices | |||||||||||
Bristow, 2001 [6] | H2-O b | 1/16 1/16 1/16 1/16 1/16 1/16 | ABC | 60 W 60 W 80 W 80 W 100 W 100 W | 1 5 1 5 1 5 | <10 <10 <10 <10 <10 <10 | 7 7 7 7 8 8 | 1.7 ± 0.3 2.4 ± 0.4 2.2 ± 0.3 3.7 ± 0.7 3.2 ± 0.4 5.6 ± 0.5 | 0.6 ± 0.2 - - - - 3.2 ± 0.3 | 0.5 ± 0.1 - - - - 1.1 ± 0.2 | 0.6 ± 0.2 - - - - 1.3 ± 0.3 |
Gale, 1998 [7] | P1-U P1-I | 2/15 2/24 | ABC | 60–80 W 40–80 W | 1–5 1–5 | 5–10 5–10 | 4 4 | - - | - - | - - | 0.5–1.0 0.4–2.1 |
Tanner, 2017 [8] | P1-I | 1/16 | ABC | 30–90 W | 1 | 5–10 | - | 0.7–1.9 | - | - | - |
Johanns, 1997 [9] | H2-I | -/10 | APC | 40–155 W | 1–10 | 5 | 2–7 | - | - | 0.1–2.4 | |
Kraemer, 2011 [10] | R1-Pe | 9/36 9/36 | APC | 10 W 25 W | 4 4 | 2–3 2–3 | 0.3 0.3 | - - | - - | 0.6 ± 0.4 e 1.7 ± 1.2 e | |
Kraemer, 2014 [11] | R1-Pe | 16/62 | APC | 25 W | 4 | 2–3 | 0.3 | - | - | 1.3 ± 1.1 e | |
Kraemer, 2014 [12] | R1-Pe | 16/64 | APC | 25 W | 4 | 2–3 | 0.4 | - | - | 2.2 ± 0.7 e | |
Kraemer, 2018 [13] | R1-Pe | 24/48 | Hybrid APC | 25 W | - | 3 | 0.4 | - | - | 0.3 ± 0.1 e | |
Llarena, 2019 [17] | P1-O P1-U | 8/15 8/32 | J-Plasma | 20% 20% | 5 5 | 5 5 | - - | - - | - - | 0.11 ± 0.04 0.42 ± 0.13 | |
Deb, 2012 [19] | H1-U H1-O H1-F | 15/15 10/10 10/10 | HTC | 4 W 4 W 4 W | - - - | 5 5 5 | - - - | 0.7 ± 0.2 f 0.7 ± 0.2 f 0.6 ± 0.1 f | |||
Neutral argon plasma devices | |||||||||||
Tanner, 2017 [8] | P1-I | 1/24 | PJ | 10–30% | 1 | 5 | - | 0.6–1.0 | - | - | - |
Deb, 2012 [19] | H1-U H1-O H1-F | 15/15 10/10 10/10 | PJ | 20% 20% 20% | 5 5 5 | 5–10 5–10 5–10 | - - - | 0.6 ± 0.2 f 0.6 ± 0.1 f 0.6 ± 0.2 f | |||
Madhuri, 2014 [20] | H1-U c H1-S b | 3/48 3/48 | PJ | 10–60% 10–80% | 1–9 1–4 | 10 10 | - - | - - | 0.2–3.5 0.2–3.5 | 0.2–1.0 0.1–0.4 | |
Sonoda, 2010 [21] | H2-O H2-Pe b | 4/48 4/48 | PJ | 70–85% 70–85% | 2 4 | 10 10 | - - | - - | 1.6–2.2 2.7–4.0 | 0.11–0.12 0.13–0.15 | |
Roman, 2011 [22] | H1-O d | 8/10 | PJ | 40% | 1 | 5 | - | - | - | - | 0.1 ± 0.1 |
Nieuwenhuyzen-de Boer, 2022 [23] | H1-U/O/ I/Pe/Om/M | 17/106 | PJ | 10% | 3–4 | 5–10 | - | - | - | 0.15 |
3.1.2. Neutral Argon Plasma Devices
3.1.3. Cold Atmospheric Plasma Devices
3.2. Device Function: Type of Tissue Effects
3.2.1. Cutting, Incision and Dissection
3.2.2. Coagulation
3.2.3. Ablation I: Endometriosis
3.2.4. Ablation II: Carcinomatosis
3.2.5. Topical Therapy I: Gynaecological Intraepithelial Neoplasia
3.2.6. Topical Therapy II: Selective Cancer Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | Argon Beam Coagulation |
APC | Argon Plasma Coagulation |
APPJ | Atmospheric Pressure Plasma Jet |
CAP | Cold Atmospheric Plasma |
CIN | Cervical Intraepithelial Neoplasia |
DBD | Dielectric Barrier Discharge |
ES | Electrosurgery |
HTC | Helica Thermal Coagulator |
NAP | Neutral Argon Plasma |
PAM/PAL | Plasma Activated Medium/Plasma Activated Liquid |
PJ | PlasmaJet |
TDD | Total Depth of Damage |
TED | Thermal Effects Depth |
VD | Vaporization Depth |
VIN | Vulvar Intraepithelial Neoplasia |
References
- Brand, E.; Pearlman, N. Electrosurgical debulking of ovarian cancer: A new technique using the argon beam coagulator. Gynecol. Oncol. 1990, 39, 115–118. [Google Scholar] [CrossRef]
- Nieuwenhuyzen-de Boer, G.M.; Hofhuis, W.; Reesink-Peters, N.; Willemsen, S.; Boere, I.A.; Schoots, I.G.; Piek, J.M.J.; Hofman, L.N.; Beltman, J.J.; van Driel, W.J.; et al. Adjuvant Use of PlasmaJet Device During Cytoreductive Surgery for Advanced-Stage Ovarian Cancer: Results of the PlaComOv-study, a Randomized Controlled Trial in The Netherlands. Ann. Surg. Oncol. 2022, 29, 4833–4843. [Google Scholar] [CrossRef] [PubMed]
- Dewhirst, M.W.; Viglianti, B.L.; Lora-Michiels, M.; Hanson, M.; Hoopes, P.J. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int. J. Hyperth. 2003, 19, 267–294. [Google Scholar] [CrossRef] [PubMed]
- van de Berg, N.J.; van den Dobbelsteen, J.J.; Jansen, F.W.; Grimbergen, C.A.; Dankelman, J. Energetic soft-tissue treatment technologies: An overview of procedural fundamentals and safety factors. Surg. Endosc. 2013, 27, 3085–3099. [Google Scholar] [CrossRef] [PubMed]
- Glowka, T.R.; Standop, J.; Paschenda, P.; Czaplik, M.; Kalff, J.C.; Tolba, R.H. Argon and helium plasma coagulation of porcine liver tissue. J. Int. Med. Res. 2017, 45, 1505–1517. [Google Scholar] [CrossRef] [PubMed]
- Bristow, R.E.; Smith Sehdev, A.E.; Kaufman, H.S.; Montz, F.J. Ablation of metastatic ovarian carcinoma with the argon beam coagulator: Pathologic analysis of tumor destruction. Gynecol. Oncol. 2001, 83, 49–55. [Google Scholar] [CrossRef]
- Gale, P.; Adeyemi, B.; Ferrer, K.; Ong, A.; Brill, A.I.; Scoccia, B. Histologic characteristics of laparoscopic argon beam coagulation. J. Am. Assoc. Gynecol. Laparosc. 1998, 5, 19–22. [Google Scholar] [CrossRef]
- Tanner, E.J.; Dun, E.; Sonoda, Y.; Olawaiye, A.B.; Chi, D.S. A Comparison of Thermal Plasma Energy Versus Argon Beam Coagulator-Induced Intestinal Injury After Vaporization in a Porcine Model. Int. J. Gynecol. Cancer 2017, 27, 177–182. [Google Scholar] [CrossRef]
- Johanns, W.; Luis, W.; Janssen, J.; Kahl, S.; Greiner, L. Argon plasma coagulation (APC) in gastroenterology: Experimental and clinical experiences. Eur. J. Gastroenterol. Hepatol. 1997, 9, 581–587. [Google Scholar] [CrossRef]
- Kraemer, B.; Rothmund, R.; Fischer, K.; Scharpf, M.; Fend, F.; Smaxwil, L.; Enderle, M.D.; Wallwiener, D.; Neugebauer, A. A prospective, randomized, experimental study to investigate the peritoneal adhesion formation of noncontact argon plasma coagulation in a rat model. Fertil. Steril. 2011, 95, 1328–1332. [Google Scholar] [CrossRef]
- Kraemer, B.; Rothmund, R.; Fischer, K.; Scharpf, M.; Smaxwil, L.; Enderle, M.D.; Wallwiener, C.; Neugebauer, A. A prospective experimental study to investigate the peritoneal adhesion formation of argon plasma coagulation (APC) versus a novel aerosol plasma in a rat model. Surg. Innov. 2014, 21, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, B.; Scharpf, M.; Planck, C.; Tsaousidis, C.; Enderle, M.D.; Neugebauer, A.; Kroeker, K.; Fend, F.; Brucker, S.; Rothmund, R. Randomized experimental study to investigate the peritoneal adhesion formation of conventional monopolar contact coagulation versus noncontact argon plasma coagulation in a rat model. Fertil. Steril. 2014, 102, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, B.; Scharpf, M.; Keckstein, S.; Dippon, J.; Tsaousidis, C.; Brunecker, K.; Enderle, M.D.; Neugebauer, A.; Nuessle, D.; Fend, F.; et al. A prospective randomized experimental study to investigate the peritoneal adhesion formation after waterjet injection and argon plasma coagulation (HybridAPC) in a rat model. Arch. Gynecol. Obstet. 2018, 297, 961–967. [Google Scholar] [CrossRef]
- Fujishiro, M.; Yahagi, N.; Nakamura, M.; Kakushima, N.; Kodashima, S.; Ono, S.; Kobayashi, K.; Hashimoto, T.; Yamamichi, N.; Tateishi, A.; et al. Submucosal injection of normal saline may prevent tissue damage from argon plasma coagulation: An experimental study using resected porcine esophagus, stomach, and colon. Surg. Laparosc. Endosc. Percutaneous Tech. 2006, 16, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Norton, I.D.; Wang, L.; Levine, S.A.; Burgart, L.J.; Hofmeister, E.K.; Yacavone, R.F.; Gostout, C.J.; Petersen, B.T. In vivo characterization of colonic thermal injury caused by argon plasma coagulation. Gastrointest. Endosc. 2002, 55, 631–636. [Google Scholar] [CrossRef]
- Norton, I.D.; Wang, L.; Levine, S.A.; Burgart, L.J.; Hofmeister, E.K.; Rumalla, A.; Gostout, C.J.; Petersen, B.T. Efficacy of colonic submucosal saline solution injection for the reduction of iatrogenic thermal injury. Gastrointest. Endosc. 2002, 56, 95–99. [Google Scholar] [CrossRef]
- Llarena, N.C.; Shah, A.B.; Biscotti, C.; Falcone, T.; Uy-Kroh, M.J. Thermal injury to the ovary and uterus in a porcine model: A comparison of four energy sources. Clin. Exp. Obstet. Gynecol. 2019, 46, 964–968. [Google Scholar] [CrossRef]
- Alletti, S.G.; Rosati, A.; Capozzi, V.A.; Pavone, M.; Gioe, A.; Cianci, S.; Chiantera, V.; Vizzielli, G.; Scaglione, G.; Fagotti, A.; et al. Use of Laparoscopic and Laparotomic J-Plasma Handpiece in Gynecological Malignancies: Results From A Pilot Study in A Tertiary Care Center. Front. Oncol. 2022, 12, 868390. [Google Scholar]
- Deb, S.; Sahu, B.; Deen, S.; Newman, C.; Powell, M. Comparison of tissue effects quantified histologically between PlasmaJet coagulator and Helica thermal coagulator. Arch. Gynecol. Obstet. 2012, 286, 399–402. [Google Scholar] [CrossRef]
- Madhuri, T.K.; Haagsma, B.E.N.; Williams, P.; Tailor, A.; Butler-Manuel, S.A. Pathologic analysis of tissue destruction with neutral argon plasma. Int. J. Gynecol. Cancer 2014, 24, 1022–1023. [Google Scholar]
- Sonoda, Y.; Olvera, N.; Chi, D.S.; Brown, C.L.; Abu-Rustum, N.R.; Levine, D.A. Pathologic analysis of ex vivo plasma energy tumor destruction in patients with ovarian or peritoneal cancer. Int. J. Gynecol. Cancer 2010, 20, 1326–1330. [Google Scholar] [PubMed]
- Roman, H.; Pura, I.; Tarta, O.; Mokdad, C.; Auber, M.; Bourdel, N.; Marpeau, L.; Sabourin, J.C. Vaporization of ovarian endometrioma using plasma energy: Histologic findings of a pilot study. Fertil. Steril. 2011, 95, 1853–1856.e4. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuyzen-de Boer, G.M.; van de Berg, N.J.; Gao, X.S.; Ewing-Graham, P.C.; van Beekhuizen, H.J. The effects of neutral argon plasma versus electrocoagulation on tissue in advanced-stage ovarian cancer: A case series. J. Ovarian Res. 2022, 15, 140. [Google Scholar] [CrossRef] [PubMed]
- Holl, M.; Rasch, M.L.; Becker, L.; Keller, A.L.; Schultze-Rhonhof, L.; Ruoff, F.; Templin, M.; Keller, S.; Neis, F.; Kessler, F.; et al. Cell Type-Specific Anti-Adhesion Properties of Peritoneal Cell Treatment with Plasma-Activated Media (PAM). Biomedicines 2022, 10, 927. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Lu, X.; He, G. On the penetration depth of reactive oxygen and nitrogen species generated by a plasma jet through real biological tissue. Phys. Plasmas 2017, 24, 073506. [Google Scholar] [CrossRef]
- Partecke, L.I.; Evert, K.; Haugk, J.; Doering, F.; Normann, L.; Diedrich, S.; Weiss, F.U.; Evert, M.; Huebner, N.O.; Guenther, C.; et al. Tissue Tolerable Plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer 2012, 12, 473. [Google Scholar] [CrossRef]
- Wenzel, T.; Berrio, D.A.C.; Daum, R.; Reisenauer, C.; Weltmann, K.D.; Wallwiener, D.; Brucker, S.Y.; Schenke-Layland, K.; Brauchle, E.M.; Weiss, M. Molecular Effects and Tissue Penetration Depth of Physical Plasma in Human Mucosa Analyzed by Contact- and Marker-Independent Raman Microspectroscopy. Acs Appl. Mater. Interfaces 2019, 11, 42885–42895. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, T.; Berrio, D.A.C.; Reisenauer, C.; Layland, S.; Koch, A.; Wallwiener, D.; Brucker, S.Y.; Schenke-Layland, K.; Brauchle, E.M.; Weiss, M. Trans-mucosal efficacy of non-thermal plasma treatment on cervical cancer tissue and human cervix uteri by a next generation electrosurgical argon plasma device. Cancers 2020, 12, 267. [Google Scholar] [CrossRef]
- Dai, X.F.; Bazaka, K.; Richard, D.J.; Thompson, E.W.; Ostrikov, K. The Emerging Role of Gas Plasma in Oncotherapy. Trends Biotechnol. 2018, 36, 1183–1198. [Google Scholar] [CrossRef]
- Ranieri, P.; Shrivastav, R.; Wang, M.; Lin, A.; Fridman, G.; Fridman, A.A.; Han, L.H.; Miller, V. Nanosecond-Pulsed Dielectric Barrier Discharge–Induced Antitumor Effects Propagate through Depth of Tissue via Intracellular Signaling. Plasma Med. 2017, 7, 283–297. [Google Scholar] [CrossRef]
- Laroussi, M. From Killing Bacteria to Destroying Cancer Cells: 20 Years of Plasma Medicine. Plasma Process. Polym. 2014, 11, 1138–1141. [Google Scholar] [CrossRef]
- Szili, E.J.; Hong, S.H.; Oh, J.S.; Gaur, N.; Short, R.D. Tracking the Penetration of Plasma Reactive Species in Tissue Models. Trends Biotechnol. 2018, 36, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Stope, M.B. Physical plasma: A new treatment option in gynecological oncology. Arch. Gynecol. Obstet. 2018, 298, 853–855. [Google Scholar] [CrossRef]
- Ruidiaz, M.E.; Cortes-Mateos, M.J.; Sandoval, S.; Martin, D.T.; Wang-Rodriguez, J.; Hasteh, F.; Wallace, A.; Vose, J.G.; Kummel, A.C.; Blair, S.L. Quantitative Comparison of Surgical Margin Histology Following Excision With Traditional Electrosurgery and a Low-Thermal-Injury Dissection Device. J. Surg. Oncol. 2011, 104, 746–754. [Google Scholar] [CrossRef]
- Ekin, M.; Dagdeviren, H.; Caypinar, S.S.; Erdogan, B.; Ayag, M.E.; Cengiz, H.; Yasar, L.; Helvacioglu, C. Comparative cosmetic outcome of surgical incisions created by the PEAK Plasma Blade and a scalpel after cesarean section by Patient and Observer Assessment Scale (POSAS): A randomized double blind study. Taiwan. J. Obstet. Gyne 2018, 57, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Peprah, K.; Spry, C. Pulsed Electron Avalanche Knife (PEAK) PlasmaBlade versus Traditional Electrocautery for Surgery: A Review of Clinical Effectiveness and Cost-Effectiveness; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2019. [Google Scholar]
- Abu-Rustum, N.R.; Chi, D.S.; Sonoda, Y.; DiClemente, M.J.; Bekker, G.; Gemignani, M.; Poynor, E.; Brown, C.; Barakat, R.R. Transperitoneal laparoscopic pelvic and para-aortic lymph node dissection using the argon-beam coagulator and monopolar instruments: An 8-year study and description of technique. Gynecol. Oncol. 2003, 89, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Madhuri, T.K.; Papatheodorou, D.; Tailor, A.; Sutton, C.; Butler-Manuel, S. First clinical experience of argon neutral plasma energy in gynaecological surgery in the UK. Gynecol. Surg. 2010, 7, 423–425. [Google Scholar] [CrossRef]
- Paquette, I.M.; Vogel, J.D.; Abbas, M.A.; Feingold, D.L.; Steele, S.R. The American society of colon and rectal surgeons clinical practice guidelines for the treatment of chronic radiation proctitis. Dis. Colon. Rectum 2018, 61, 1135–1140. [Google Scholar] [CrossRef]
- Siow, S.L.; Mahendran, H.A.; Seo, C.J. Complication and remission rates after endoscopic argon plasma coagulation in the treatment of haemorrhagic radiation proctitis. Int. J. Color. Dis. 2017, 32, 131–134. [Google Scholar] [CrossRef]
- Swan, M.P.; Moore, G.T.C.; Sievert, W.; Devonshire, D.A. Efficacy and safety of single-session argon plasma coagulation in the management of chronic radiation proctitis. Gastrointest. Endosc. 2010, 72, 150–154. [Google Scholar] [CrossRef]
- Sultania, S.; Sarkar, R.; Das, K.; Dhali, G.K. Argon plasma coagulation is an effective treatment for chronic radiation proctitis in gynaecological malignancy: An observational study. Color. Dis. 2019, 21, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Agrawal, D.; Thosani, N.; Al-Haddad, M.; Buxbaum, J.L.; Calderwood, A.H.; Fishman, D.S.; Fujii-Lau, L.L.; Jamil, L.H.; Jue, T.L.; et al. ASGE guideline on the role of endoscopy for bleeding from chronic radiation proctopathy. Gastrointest. Endosc. 2019, 90, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, K.; Gkolfakis, P.; Gralnek, I.M.; Oakland, K.; Manes, G.; Radaelli, F.; Awadie, H.; Duboc, M.C.; Christodoulou, D.; Fedorov, E.; et al. Diagnosis and management of acute lower gastrointestinal bleeding: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2021, 53, C10. [Google Scholar] [PubMed]
- Panos, M.Z.; Koumi, A. Argon plasma coagulation in the right and left colon: Safety-risk profile of the 60W-1.2 l/min setting. Scand. J. Gastroenterol. 2014, 49, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Olmos, J.A.; Marcolongo, M.; Pogorelsky, V.; Herrera, L.; Tobal, F.; Davolos, J.R. Long-term outcome of argon plasma ablation therapy for bleeding in 100 consecutive patients with colonic angiodysplasia. Dis. Colon. Rectum 2006, 49, 1507–1516. [Google Scholar] [CrossRef] [PubMed]
- Eickhoff, A.; Enderle, M.D.; Hartmann, D.; Eickhoff, J.C.; Riemann, J.F.; Jakobs, R. Effectiveness and Safety of PRECISE APC for the Treatment of Bleeding Gastrointestinal Angiodysplasia-A Retrospective Evaluation. Z. Gastroenterol. 2011, 49, 195–200. [Google Scholar] [CrossRef]
- Hill, N.; McQueen, J.; Morey, R.; Hanna, L.; Chandakas, S.; El-Toukhy, T.; Erian, J. Over one thousand patients with early stage endometriosis treated with the Helica Thermal Coagulator (HELICA): Safety aspects. Arch. Gynecol. Obstet. 2006, 274, 203–205. [Google Scholar] [CrossRef]
- Ai-Inizi, S.; Bamigboye, V. Laparoscopic Helica Thermal Coagulation for the Treatment of Early Endometriosis. J. Gynecol. Surg. 2007, 23, 45–51. [Google Scholar] [CrossRef]
- Hill, N.C.; El-Toukhy, T.; Chandakas, S.; Grigoriades, T.; Erian, J. Safety of the Helica Thermal Coagulator in treatment of early stage endometriosis. J. Obstet. Gynaecol. 2005, 25, 52–54. [Google Scholar] [CrossRef]
- Misra, G.; Sim, J.; El-Gizawy, Z.; Watts, K.; Jerreat, S.; Coia, T.; Ritchie, J.; O′Brien, S. Laparoscopic ablation or excision with helium thermal coagulator versus electrodiathermy for the treatment of mild-to-moderate endometriosis: Randomised controlled trial. BJOG 2020, 127, 1528–1535. [Google Scholar] [CrossRef]
- Al-Inizi, S. Re: Laparoscopic ablation or excision with helium thermal coagulator versus electrodiathermy for the treatment of mild-to-moderate endometriosis: Randomised controlled trial. BJOG 2020, 127, 1715–1716. [Google Scholar] [CrossRef]
- Nezhat, C.; Kho, K.A.; Morozov, V. Use of neutral argon plasma in the laparoscopic treatment of endometriosis. J. Soc. Laparoendosc. Surg. 2009, 13, 479–483. [Google Scholar] [CrossRef]
- Fuchs, P.; Czech, I.; Fuchs, A.; Sikora, J. Use of neutral argon plasma in the treatment of endometriosis initial findings. Clin. Exp. Obstet. Gynecol. 2019, 46, 434–436. [Google Scholar] [CrossRef]
- Roman, H.; Auber, M.; Mokdad, C.; Martin, C.; Diguet, A.; Marpeau, L.; Bourdel, N. Ovarian endometrioma ablation using plasma energy versus cystectomy: A step toward better preservation of the ovarian parenchyma in women wishing to conceive. Fertil. Steril. 2011, 96, 1396–1400. [Google Scholar] [CrossRef]
- Mircea, O.; Puscasiu, L.; Resch, B.; Lucas, J.; Collinet, P.; von Theobald, P.; Merviel, P.; Roman, H. Fertility Outcomes After Ablation Using Plasma Energy Versus Cystectomy in Infertile Women with Ovarian Endometrioma: A Multicentric Comparative Study. J. Minim. Invasive Gynecol. 2016, 23, 1138–1145. [Google Scholar] [CrossRef]
- Delbos, L.; Bouet, P.E.; Catala, L.; Lefebvre, C.; Teyssedou, C.; Descamps, P.; Legendre, G. Surgery using plasma energy for deep endometriosis: A quality of life assessment. J. Gynecol. Obstet. Hum. Reprod. 2018, 47, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Bristow, R.E.; Montz, F.J. Complete surgical cytoreduction of advanced ovarian carcinoma using the argon beam coagulator. Gynecol. Oncol. 2001, 83, 39–48. [Google Scholar] [CrossRef]
- Trinh, H.; Ott, C.; Fanning, J. FeasibiLity of laparoscopic debulking with electrosurgical loop excision procedure and argon beam coagulator at recurrence in patients with previous laparotomy debulking. Am. J. Obstet. Gynecol. 2004, 190, 1394–1397. [Google Scholar] [CrossRef] [PubMed]
- Panuccio, E.; Leunen, K.; Van Nieuwenhuysen, E.; Neven, P.; Lambrechts, S.; Vergote, I. Use of PlasmaJet for Peritoneal Carcinomatosis in Ovarian Cancer. Int. J. Gynecol. Cancer 2016, 26, 1521–1524. [Google Scholar] [CrossRef] [PubMed]
- Vidal, G.C.; Babin, G.; Querleu, D.; Guyon, F. Primary debulking surgery of the upper abdomen and the diaphragm, with a plasma device surgery system, for advanced ovarian cancer. Gynecol. Oncol. 2017, 144, 223–224. [Google Scholar] [CrossRef] [PubMed]
- Volcke, A.; Van Nieuwenhuysen, E.; Han, S.; Salihi, R.; Van Gorp, T.; Vergote, I. Experience with PlasmaJet™ in debulking surgery in 87 patients with advanced-stage ovarian cancer. J. Surg. Oncol. 2021, 123, 1109–1114. [Google Scholar] [CrossRef] [PubMed]
- Kushnir, C.L.; Fleury, A.C.; Hill, M.C.; Silver, D.F.; Spirtos, N.M. The use of argon beam coagulation in treating vulvar intraepithelial neoplasia III: A retrospective review. Gynecol. Oncol. 2013, 131, 386–388. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.; Jeevananthan, P.; Sayasneh, A.; Saso, S.; Chatterjee, J.; Boyle, D.; Smith, J.R. The novel application of plasma energy as a tissue preserving treatment modality for vulval and perianal intraepithelial neoplasia. BJOG Int. J. Obstet. Gynaecol. 2016, 123, 81. [Google Scholar] [CrossRef]
- Henes, M.; Bosmuller, H.; Neis, F.; Wallwiener, D.; Brucker, S.; Weiss, M. Non-invasive-physical-plasma treatment of low- and high-grade cervical intraepithelial neoplasia: A non-invasive and anaesthesia-independent treatment procedure evaluated in a prospective, monocentric clinical trial. Geburtsh Frauenheilk 2020, 80, E211. [Google Scholar]
- Marzi, J.; Stope, M.B.; Henes, M.; Koch, A.; Wenzel, T.; Holl, M.; Layland, S.L.; Neis, F.; Bosmuller, H.; Ruoff, F.; et al. Noninvasive Physical Plasma as Innovative and Tissue-Preserving Therapy for Women Positive for Cervical Intraepithelial Neoplasia. Cancers 2022, 14, 1933. [Google Scholar] [CrossRef]
- Polat, G.; Erni, B.; Navarini, A.; Kind, A.; Mueller, S.M. Three patients with chronic vulvar pruritus successfully treated with cold atmospheric pressure plasma. J. Dtsch. Dermatol. Ges. 2021, 19, 1346–1349. [Google Scholar] [CrossRef]
- Zubor, P.; Wang, Y.; Liskova, A.; Samec, M.; Koklesova, L.; Dankova, Z.; Dorum, A.; Kajo, K.; Dvorska, D.; Lucansky, V.; et al. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int. J. Mol. Sci. 2020, 21, 7988. [Google Scholar] [CrossRef]
- Ahn, H.J.; Kim, K.I.; Kim, G.; Moon, E.; Yang, S.S.; Lee, J.S. Atmospheric-Pressure Plasma Jet Induces Apoptosis Involving Mitochondria via Generation of Free Radicals. PLoS ONE 2011, 6, e28154. [Google Scholar] [CrossRef]
- Li, Y.; Kang, M.H.; Uhm, H.S.; Lee, G.J.; Choi, E.H.; Han, I. Effects of atmospheric-pressure non-thermal bio-compatible plasma and plasma activated nitric oxide water on cervical cancer cells. Sci. Rep. 2017, 7, 45781. [Google Scholar] [CrossRef]
- Jezeh, M.A.; Tayebi, T.; Khani, M.R.; Niknejad, H.; Shokri, B. Direct cold atmospheric plasma and plasma-activated medium effects on breast and cervix cancer cells. Plasma Process. Polym. 2020, 17, 1900241. [Google Scholar] [CrossRef]
- Kenari, A.J.; Siadati, S.N.; Abedian, Z.; Sohbatzadeh, F.; Amiri, M.; Gorji, K.E.; Babapour, H.; Zabihi, E.; Ghoreishi, S.M.; Mehraeen, R.; et al. Therapeutic effect of cold atmospheric plasma and its combination with radiation as a novel approach on inhibiting cervical cancer cell growth (HeLa cells). Bioorg. Chem. 2021, 111, 104892. [Google Scholar] [CrossRef] [PubMed]
- Iseki, S.; Nakamura, K.; Hayashi, M.; Tanaka, H.; Kondo, H.; Kajiyama, H.; Kano, H.; Kikkawa, F.; Hori, M. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 2012, 100, 113702. [Google Scholar] [CrossRef]
- Utsumi, F.; Kajiyama, H.; Nakamura, K.; Tanaka, H.; Mizuno, M.; Ishikawa, K.; Kondo, H.; Kano, H.; Hori, M.; Kikkawa, F. Effect of Indirect Nonequilibrium Atmospheric Pressure Plasma on Anti-Proliferative Activity against Chronic Chemo-Resistant Ovarian Cancer Cells In Vitro and In Vivo. PLoS ONE 2013, 8, e81576. [Google Scholar] [CrossRef] [PubMed]
- Utsumi, F.; Kajiyama, H.; Nakamura, K.; Tanaka, H.; Hori, M.; Kikkawa, F. Selective cytotoxicity of indirect nonequilibrium atmospheric pressure plasma against ovarian clear-cell carcinoma. Springerplus 2014, 3, 1–9. [Google Scholar] [CrossRef]
- Bekeschus, S.; Wulf, C.P.; Freund, E.; Koensgen, D.; Mustea, A.; Weltmann, K.D.; Stope, M.B. Plasma Treatment of Ovarian Cancer Cells Mitigates Their Immuno-Modulatory Products Active on THP-1 Monocytes. Plasma 2018, 1, 201–217. [Google Scholar] [CrossRef]
- Bisag, A.; Bucci, C.; Coluccelli, S.; Girolimetti, G.; Laurita, R.; De Iaco, P.; Perrone, A.M.; Gherardi, M.; Marchio, L.; Porcelli, A.M.; et al. Plasma-activated Ringer’s Lactate Solution Displays a Selective Cytotoxic Effect on Ovarian Cancer Cells. Cancers 2020, 12, 476. [Google Scholar] [CrossRef]
- Rasouli, M.; Mehdian, H.; Hajisharifi, K.; Amini, E.; Ostrikov, K.; Robert, E. Plasma-activated medium induces apoptosis in chemotherapy-resistant ovarian cancer cells: High selectivity and synergy with carboplatin. Plasma Process. Polym. 2021, 18, e2100074. [Google Scholar] [CrossRef]
- Tuhvatulin, A.I.; Sysolyatina, E.V.; Scheblyakov, D.V.; Logunov, D.Y.; Vasiliev, M.M.; Yurova, M.A.; Danilova, M.A.; Petrov, O.F.; Naroditsky, B.S.; Morfill, G.E.; et al. Non-thermal Plasma Causes p53-Dependent Apoptosis in Human Colon Carcinoma Cells. Acta Nat. 2012, 4, 82–87. [Google Scholar] [CrossRef]
- Kumara, M.H.S.R.; Piao, M.J.; Kang, K.A.; Ryu, Y.S.; Park, J.E.; Shilnikova, K.; Jo, J.O.; Mok, Y.S.; Shin, J.H.; Park, Y.; et al. Non-thermal gas plasma-induced endoplasmic reticulum stress mediates apoptosis in human colon cancer cells. Oncol. Rep. 2016, 36, 2268–2274. [Google Scholar] [CrossRef]
- Choi, J.S.; Kim, J.; Hong, Y.J.; Bae, W.Y.; Choi, E.H.; Jeong, J.W.; Park, H.K. Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells. Biomed. Opt. Express 2017, 8, 2649–2659. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.S.; Xu, S.D.; Wang, Z.F.; Xu, D.H.; Guo, L.; Liu, D.X.; Kong, M.G.; Rong, M.Z. Antitumor effects of hyperthermia with plasma-treated solutions on 3D bladder tumor spheroids. Plasma Process. Polym. 2021, 18, 2100070. [Google Scholar] [CrossRef]
- Ha, J.H.; Kim, Y.J. Photodynamic and Cold Atmospheric Plasma Combination Therapy Using Polymeric Nanoparticles for the Synergistic Treatment of Cervical Cancer. Int. J. Mol. Sci. 2021, 22, 1172. [Google Scholar] [CrossRef] [PubMed]
- Feil, L.; Koch, A.; Utz, R.; Ackermann, M.; Barz, J.; Stope, M.; Kramer, B.; Wallwiener, D.; Brucker, S.Y.; Weiss, M. Cancer-Selective Treatment of Cancerous and Non-Cancerous Human Cervical Cell Models by a Non-Thermally Operated Electrosurgical Argon Plasma Device. Cancers 2020, 12, 1037. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yu, K.N.; Bao, L.Z.; Shen, J.; Cheng, C.; Han, W. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression. Sci. Rep. 2016, 6, 19720. [Google Scholar] [CrossRef] [PubMed]
- Koensgen, D.; Besic, I.; Gumbel, D.; Kaul, A.; Weiss, M.; Diesing, K.; Kramer, A.; Bekeschus, S.; Mustea, A.; Stope, M.B. Cold Atmospheric Plasma (CAP) and CAP-Stimulated Cell Culture Media Suppress Ovarian Cancer Cell Growth-A Putative Treatment Option in Ovarian Cancer Therapy. Anticancer. Res. 2017, 37, 6739–6744. [Google Scholar]
- Nakamura, K.; Peng, Y.; Utsumi, F.; Tanaka, H.; Mizuno, M.; Toyokuni, S.; Hori, M.; Kikkawa, F.; Kajiyama, H. Novel Intraperitoneal Treatment With Non-Thermal Plasma-Activated Medium Inhibits Metastatic Potential of Ovarian Cancer Cells. Sci. Rep. 2017, 7, 6085. [Google Scholar] [CrossRef]
- Nakamura, K.; Yoshikawa, N.; Mizuno, Y.; Ito, M.; Tanaka, H.; Mizuno, M.; Toyokuni, S.; Hori, M.; Kikkawa, F.; Kajiyama, H. Preclinical Verification of the Efficacy and Safety of Aqueous Plasma for Ovarian Cancer Therapy. Cancers 2021, 13, 1141. [Google Scholar] [CrossRef]
- Biscop, E.; Lin, A.; Van Boxem, W.; Van Loenhout, J.; De Backer, J.; Deben, C.; Dewilde, S.; Smits, E.; Bogaerts, A. The Influence of Cell Type and Culture Medium on Determining Cancer Selectivity of Cold Atmospheric Plasma Treatment. Cancers 2019, 11, 1287. [Google Scholar] [CrossRef]
- Ruoff, F.; Henes, M.; Templin, M.; Enderle, M.; Boesmueller, H.; Wallwiener, D.; Brucker, S.Y.; Schenke-Layland, K.; Weiss, M. Targeted Protein Profiling of In Vivo NIPP-Treated Tissues Using DigiWest Technology. Appl. Sci. 2021, 11, 11238. [Google Scholar] [CrossRef]
- Garrido, T.; Baba, E.R.; Wodak, S.; Sakai, P.; Cecconello, I.; Maluf-Filho, F. Histology assessment of bipolar coagulation and argon plasma coagulation on digestive tract. World J. Gastrointest. Endosc. 2014, 6, 304–311. [Google Scholar] [CrossRef]
- Whitfield, A.M.; Burgess, N.G.; Bahin, F.F.; Kabir, S.; Pellisé, M.; Sonson, R.; Subramanian, V.; Mahajan, H.; McLeod, D.; Byth, K.; et al. Histopathological effects of electrosurgical interventions in an in vivo porcine model of colonic endoscopic mucosal resection. Gut 2021, 71, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Ridings, P.; Bailey, C.; Bucknall, T.E. Argon beam coagulation as an adjunct in breast-conserving surgery. Ann. R. Coll. Surg. Engl. 1998, 80, 61–62. [Google Scholar] [PubMed]
- Friebel, T.R.; Narayan, N.; Ramakrishnan, V.; Morgan, M.; Cellek, S.; Griffiths, M. Comparison of PEAK PlasmaBlade (TM) to conventional diathermy in abdominal-based free-flap breast reconstruction surgery-A single-centre double-blinded randomised controlled trial. J. Plast. Reconstr. Aes. 2021, 74, 1731–1742. [Google Scholar] [CrossRef] [PubMed]
- Chupradit, S.; Widjaja, G.; Majeed, B.R.; Kuznetsova, M.; Ansari, M.J.; Suksatan, W.; Jalil, A.T.; Esfahani, B.G. Recent advances in cold atmospheric plasma (CAP) for breast cancer therapy. Cell Biol. Int. 2023, 47, 327–340. [Google Scholar] [CrossRef]
- Tarricone, R.; Torbica, A.; Drummond, M. Challenges in the Assessment of Medical Devices: The MedtecHTA Project. Health Econ. 2017, 26 (Suppl. 1), 5–12. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuyzen-de Boer, G.M.; Geraerds, A.J.L.M.; van der Linden, M.H.; van Doorn, H.C.; Polinder, S.; van Beekhuizen, H.J. Cost Study of the PlasmaJet Surgical Device Versus Conventional Cytoreductive Surgery in Patients With Advanced-Stage Ovarian Cancer. JCO Clin. Cancer Inform. 2022, 6, e2200076. [Google Scholar] [CrossRef] [PubMed]
Type | Form | Brand |
---|---|---|
Electrosurgery (plasma-assisted) | Beam | ABC, ConMed, Largo, FL, USA. APC, ARCO series, Söring GmbH, Quickborn, DE. APC, ERBE GmbH, Tübingen, DE. HTC, Helica Instruments Ltd., Currie, UK. HybridAPC, ERBE GmbH, Tübingen, DE. J-Plasma, Apyx Medical, Clearwater, FL, USA. MABS, KLS Martin Group, Tuttlingen, DE. |
Rim | PlasmaBlade (PEAK), Medtronic, Dublin, IE. | |
NAP Neutral argon plasma | Beam | PlasmaJet, Plasma Surgical, Atlanta, GA, USA. |
CAP 1 Cold atmospheric plasma | Beam (APPJ) | kINPen, Neoplas med GmbH, Greifswald, DE. |
Surface (DBD) | PlasmaDerm, CINOGY System GmbH, Duderstadt, DE. | |
Medium (PAM/PAL) | All non-commercial or not clinically (gyn.) tested |
Author, Year [Ref.] | Experimental Setting | Device Type | |
---|---|---|---|
Tissue Models | Pelvic Organ (Cancer) Cell Lines | ||
Reduced viability/apoptosis | |||
Ahn, 2011 [69] Li, 2017 [70] Wenzel, 2020 [28] Jezeh, 2020 [71] Kenari, 2021 [72] | C2-Ce | HeLa HeLa, HFB SiHa HeLa, HFB HeLa | Custom APPJ (N2/air) Custom DBD (N2) and PAL (NO) Custom APPJ VIO3 APC ERBE (Ar) Custom APPJ (He) and PAM (He/He + O2) Custom APPJ and DBD (Ar + air) |
Iseki, 2012 [73] Utsumi, 2013 [74] Utsumi, 2014 [75] Bekeschus, 2018 [76] Bisag, 2020 [77] Rasouli, 2021 [78] | C2-O | SKOV-3, HRA, WI-38, MRC-5 NOS2, NOS3 TOV21G, SKOV-3, ES-2, NOS2, OHFC, HPMC SKOV-3, OVCAR-3 SKOV-3, OV-90, HOSE, F1, F2 SKOV-3, A2780 CP, GC | Custom APPJ (Ar) Custom PAM (Ar) Custom PAM (Ar) kINPen MED, APPJ (Ar) Custom/AlmaPlasma PAL (air) Custom APPJ (He) and PAM (He) |
Tuhvatulin, 2012 [79] Kumara, 2016 [80] Choi, 2017 [81] | C2-Co | HCT116 SNUC5 HCT116 | MicroPlaSter β, APPJ (Ar) Custom DBD (O2 + Ar) Custom DBD (N2) |
Reduced proliferation/growth | |||
Feil, 2020 [84] Li, 2016 [85] | C2-Ce | SiHa, CaSki, C-33-A, DoTc2 4510, NCCT HeLa | MABS, APPJ (Ar) Custom DBD (He) |
Koensgen, 2017 [86] Nakamura, 2017 [87] Nakamura, 2021 [88] | C2-O | SKOV-3, OVCAR-3, TOV-21G, TOV-112D ES2, SKOV3, HPMC ES2, SKOV3, OV90, OVCAR3, CAOV3 | kINPen MED, APPJ (Ar) Custom PAM (Ar) Custom/Tough Plasma PAM/PAL (Ar) |
Utsumi, 2013 [74] Nakamura, 2017 [87] Nakamura, 2021 [88] | R1-O | NOS2 ES2 ES2 | Custom PAM (Ar) Custom PAM (Ar) Custom PAM (Ar) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van de Berg, N.J.; Nieuwenhuyzen-de Boer, G.M.; Gao, X.S.; Rijstenberg, L.L.; van Beekhuizen, H.J. Plasma Device Functions and Tissue Effects in the Female Pelvis—A Systematic Review. Cancers 2023, 15, 2386. https://doi.org/10.3390/cancers15082386
van de Berg NJ, Nieuwenhuyzen-de Boer GM, Gao XS, Rijstenberg LL, van Beekhuizen HJ. Plasma Device Functions and Tissue Effects in the Female Pelvis—A Systematic Review. Cancers. 2023; 15(8):2386. https://doi.org/10.3390/cancers15082386
Chicago/Turabian Stylevan de Berg, Nick J., Gatske M. Nieuwenhuyzen-de Boer, Xu Shan Gao, L. Lucia Rijstenberg, and Heleen J. van Beekhuizen. 2023. "Plasma Device Functions and Tissue Effects in the Female Pelvis—A Systematic Review" Cancers 15, no. 8: 2386. https://doi.org/10.3390/cancers15082386
APA Stylevan de Berg, N. J., Nieuwenhuyzen-de Boer, G. M., Gao, X. S., Rijstenberg, L. L., & van Beekhuizen, H. J. (2023). Plasma Device Functions and Tissue Effects in the Female Pelvis—A Systematic Review. Cancers, 15(8), 2386. https://doi.org/10.3390/cancers15082386