NEK Family Review and Correlations with Patient Survival Outcomes in Various Cancer Types
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Kaplan–Meier Plotter (KMPlot) Analysis
2.2. PubMed and Novelty Score Analysis
2.3. Catalogue of Somatic Mutations in Cancer (COSMIC) Analysis
2.4. Gene Expression Profiling Interactive Analysis (GEPIA)
2.5. Kinase 3D Structure
3. NEK1
4. NEK2
5. NEK3
6. NEK4
7. NEK5
8. NEK6
9. NEK7
10. NEK8
11. NEK9
12. NEK10
13. NEK11
14. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oliveira, A.P.D.; Issayama, L.K.; Pavan, I.; Silva, F.R.; Melo-Hanchuk, T.D.; Simabuco, F.M.; Kobarg, J. Checking NEKs: Overcoming a Bottleneck in Human Diseases. Molecules 2020, 25, 1778. [Google Scholar] [CrossRef] [PubMed]
- Kenna, K.P.; Consortium, S.; van Doormaal, P.T.C.; Dekker, A.M.; Ticozzi, N.; Kenna, B.J.; Diekstra, F.P.; van Rheenen, W.; van Eijk, K.R.; Jones, A.R.; et al. NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat. Genet. 2016, 48, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Song, J.; Chen, J.; Xiao, J.; Ni, J.; Wu, C. Overexpression of NEK3 is associated with poor prognosis in patients with gastric cancer. Medicine 2018, 97, e9630. [Google Scholar] [CrossRef]
- Lánczky, A.; Győrffy, B. Web-Based Survival Analysis Tool Tailored for Medical Research (KMplot): Development and Implementation. J. Med. Internet Res. 2021, 23, e27633. [Google Scholar] [CrossRef]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef]
- Wu, L.; Osmani, S.; Mirabito, P. A Role for NIMA in the Nuclear Localization of Cyclin B in Aspergillus nidulans. J. Cell Biol. 1998, 141, 1575–1587. [Google Scholar] [CrossRef]
- O’Connell, M.J.; Krien, M.J.; Hunter, T. Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol. 2003, 13, 221–228. [Google Scholar] [CrossRef]
- Meirelles, G.V.; Perez, A.M.; De Souza, E.E.; Basei, F.L.; Papa, P.F.; Hanchuk, T.D.M.; Cardoso, V.B.; Kobarg, J. “Stop Ne(c)king around”: How interactomics contributes to functionally characterize Nek family kinases. World J. Biol. Chem. 2014, 5, 141–160. [Google Scholar] [CrossRef]
- Greenman, C.; Stephens, P.; Smith, R.; Dalgliesh, G.L.; Hunter, C.; Bignell, G.; Davies, H.; Teague, J.; Butler, A.; Stevens, C.; et al. Patterns of somatic mutation in human cancer genomes. Nature 2007, 446, 153–158. [Google Scholar] [CrossRef]
- Davies, H.; Hunter, C.; Smith, R.; Stephens, P.; Greenman, C.; Bignell, G.; Teague, J.; Butler, A.; Edkins, S.; Stevens, C.; et al. Somatic Mutations of the Protein Kinase Gene Family in Human Lung Cancer. Cancer Res. 2005, 65, 7591–7595. [Google Scholar] [CrossRef]
- Doles, J.; Hemann, M.T. Nek4 Status Differentially Alters Sensitivity to Distinct Microtubule Poisons. Cancer Res. 2010, 70, 1033–1041. [Google Scholar] [CrossRef]
- Holloway, K.; Roberson, E.C.; Corbett, K.L.; Kolas, N.K.; Nieves, E.; Cohen, P.E. NEK1 Facilitates Cohesin Removal during Mammalian Spermatogenesis. Genes 2011, 2, 260–279. [Google Scholar] [CrossRef] [PubMed]
- Brieño-Enríquez, M.A.; Moak, S.L.; Holloway, C.J.; Cohen, P.E. NIMA-related kinase 1 (NEK1) regulates meiosis I spindle assembly by altering the balance between α-Adducin and Myosin X. PLoS ONE 2017, 12, e0185780. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Ho, C.K.; Ouyang, J.; Zou, L. Nek1 kinase associates with ATR–ATRIP and primes ATR for efficient DNA damage signaling. Proc. Natl. Acad. Sci. USA 2013, 110, 2175–2180. [Google Scholar] [CrossRef] [PubMed]
- Melo-Hanchuk, T.D.; Slepicka, P.F.; Meirelles, G.V.; Basei, F.L.; Lovato, D.V.; Granato, D.C.; Pauletti, B.A.; Domingues, R.R.; Leme, A.F.P.; Pelegrini, A.L.; et al. NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, Y.; Xia, J.; Wang, H.; Salama, M.E.; Xiong, W.; Xu, H.; Shetty, S.; Chen, T.; Zeng, Z.; et al. NEK2 Induces Drug Resistance Mainly through Activation of Efflux Drug Pumps and Is Associated with Poor Prognosis in Myeloma and Other Cancers. Cancer Cell 2013, 23, 48–62. [Google Scholar] [CrossRef]
- Wu, W.; Baxter, J.E.; Wattam, S.L.; Hayward, D.G.; Fardilha, M.; Knebel, A.; Ford, E.M.; da Cruz e Silva, E.F.; Fry, A.M. Alternative Splicing Controls Nuclear Translocation of the Cell Cycle-regulated Nek2 Kinase. J. Biol. Chem. 2007, 282, 26431–26440. [Google Scholar] [CrossRef]
- Naro, C.; Barbagallo, F.; Chieffi, P.; Bourgeois, C.F.; Paronetto, M.P.; Sette, C. The centrosomal kinase NEK2 is a novel splicing factor kinase involved in cell survival. Nucleic Acids Res. 2013, 42, 3218–3227. [Google Scholar] [CrossRef]
- Alfieri, C.; Tischer, T.; Barford, D. A unique binding mode of Nek2A to the APC /C allows its ubiquitination during prometaphase. EMBO Rep. 2020, 21, e49831. [Google Scholar] [CrossRef]
- Jeong, A.L.; Ka, H.I.; Han, S.; Lee, S.; Lee, E.; Soh, S.J.; Joo, H.J.; Sumiyasuren, B.; Park, J.Y.; Lim, J.; et al. Oncoprotein CIP 2A promotes the disassembly of primary cilia and inhibits glycolytic metabolism. EMBO Rep. 2018, 19, e45144. [Google Scholar] [CrossRef]
- Uddin, H.; Kim, B.; Cho, U.; Azmi, A.S.; Song, Y.S. Association of ALDH1A1-NEK-2 axis in cisplatin resistance in ovarian cancer cells. Heliyon 2020, 6, e05442. [Google Scholar] [CrossRef]
- Kimura, M.; Okano, Y. Molecular cloning and characterization of the human NIMA-related protein kinase 3 gene (NEK3). Cytogenet. Genome Res. 2001, 95, 177–182. [Google Scholar] [CrossRef]
- View of Identification of NEK3 Interacting Proteins and Functional Characterization of Its Signaling Mechanisms. Available online: https://www.jiomics.com/index.php/jiomics/article/view/123/117 (accessed on 1 December 2021).
- Miller, S.L.; Antico, G.; Raghunath, P.N.; E Tomaszewski, J.; Clevenger, C.V. Nek3 kinase regulates prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells. Oncogene 2007, 26, 4668–4678. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.; Almeida, T.A. Is There Any Association between Nek3 and Cancers with Frequent 13q14 Deletion? Cancer Investig. 2006, 24, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.L.; Possemato, R.; Bauerlein, E.L.; Xie, A.; Scully, R.; Hahn, W.C. Nek4 Regulates Entry into Replicative Senescence and the Response to DNA Damage in Human Fibroblasts. Mol. Cell. Biol. 2012, 32, 3963–3977. [Google Scholar] [CrossRef]
- Coene, K.L.; Mans, D.A.; Boldt, K.; Gloeckner, C.J.; van Reeuwijk, J.; Bolat, E.; Roosing, S.; Letteboer, S.J.; Peters, T.A.; Cremers, F.P.; et al. The ciliopathy-associated protein homologs RPGRIP1 and RPGRIP1L are linked to cilium integrity through interaction with Nek4 serine/threonine kinase. Hum. Mol. Genet. 2011, 20, 3592–3605. [Google Scholar] [CrossRef]
- Basei, F.L.; Meirelles, G.V.; Righetto, G.L.; Migueleti, D.L.D.S.; Smetana, J.H.C.; Kobarg, J. New interaction partners for Nek4.1 and Nek4.2 isoforms: From the DNA damage response to RNA splicing. Proteome Sci. 2015, 13, 11. [Google Scholar] [CrossRef]
- Li, M.; Shen, L.; Chen, L.; Huai, C.; Huang, H.; Wu, X.; Yang, C.; Ma, J.; Zhou, W.; Du, H.; et al. Novel genetic susceptibility loci identified by family based whole exome sequencing in Han Chinese schizophrenia patients. Transl. Psychiatry 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Al-Mubarak, B.R.; Omar, A.; Baz, B.; Al-Abdulaziz, B.; Magrashi, A.I.; Al-Yemni, E.; Jabaan, A.; Monies, D.; Abouelhoda, M.; Abebe, D.; et al. Whole exome sequencing in ADHD trios from single and multi-incident families implicates new candidate genes and highlights polygenic transmission. Eur. J. Hum. Genet. 2020, 28, 1098–1110. [Google Scholar] [CrossRef]
- Gcbd Psychiatric GWAS Consortium Bipolar Disorder Working Group; Sklar, P.; Ripke, S.; Scott, L.J.; Andreassen, O.A.; Cichon, S.; Craddock, N.; Edenberg, H.J.; Nurnberger, J.I.; Rietschel, M.; et al. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 2011, 43, 977–983. [Google Scholar] [CrossRef]
- Park, S.J.; Jo, D.S.; Jo, S.-Y.; Shin, D.W.; Shim, S.; Jo, Y.K.; Shin, J.H.; Ha, Y.J.; Jeong, S.-Y.; Hwang, J.J.; et al. Inhibition of never in mitosis A (NIMA)-related kinase-4 reduces survivin expression and sensitizes cancer cells to TRAIL-induced cell death. Oncotarget 2016, 7, 65957–65967. [Google Scholar] [CrossRef]
- Hanchuk, T.D.M.; Papa, P.F.; La Guardia, P.G.; Vercesi, A.E.; Kobarg, J. Nek5 interacts with mitochondrial proteins and interferes negatively in mitochondrial mediated cell death and respiration. Cell. Signal. 2015, 27, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Prosser, S.L.; Sahota, N.K.; Pelletier, L.; Morrison, C.; Fry, A. Nek5 promotes centrosome integrity in interphase and loss of centrosome cohesion in mitosis. J. Cell Biol. 2015, 209, 339–348. [Google Scholar] [CrossRef]
- Matossian, M.D.; Elliott, S.; Van Hoang, T.; Burks, H.E.; Wright, M.K.; Alzoubi, M.S.; Yan, T.; Chang, T.; Wathieu, H.; Windsor, G.O.; et al. NEK5 activity regulates the mesenchymal and migratory phenotype in breast cancer cells. Breast Cancer Res. Treat. 2021, 189, 49–61. [Google Scholar] [CrossRef]
- Matossian, M.D.; Wells, C.I.; Zuercher, W.J.; Collins-Burow, B.M.; Drewry, D.H.; Burow, M.E. Targeting Never-In-Mitosis-A Related Kinase 5 in Cancer: A Review. Curr. Med. Chem. 2021, 28, 6096–6109. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Zhang, J.; Yang, X.; Wu, Z.; Sun, C.; Wang, Z.; Wang, B. NEK5 promotes breast cancer cell proliferation through up-Regulation of Cyclin A2. Mol. Carcinog. 2019, 58, 933–943. [Google Scholar] [CrossRef]
- O’Regan, L.; Sampson, J.; Richards, M.W.; Knebel, A.; Roth, D.; Hood, F.E.; Straube, A.; Royle, S.J.; Bayliss, R.; Fry, A.M. Hsp72 is targeted to the mitotic spindle by Nek6 to promote K-fiber assembly and mitotic progression. J. Cell Biol. 2015, 209, 349–358. [Google Scholar] [CrossRef]
- Meirelles, G.V.; Silva, J.C.; de A Mendonça, Y.; Ramos, C.H.; Torriani, I.L.; Kobarg, J. Human Nek6 is a monomeric mostly globular kinase with an unfolded short N-terminal domain. BMC Struct. Biol. 2011, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Belham, C.; Roig, J.; Caldwell, J.A.; Aoyama, Y.; Kemp, B.; Comb, M.; Avruch, J. A Mitotic Cascade of NIMA Family Kinases. J. Biol. Chem. 2003, 278, 34897–34909. [Google Scholar] [CrossRef]
- Gerçeker, E.; Boyacioglu, S.O.; Kasap, E.; Baykan, A.; Yuceyar, H.; Yildirim, H.; Ayhan, S.; Ellidokuz, E.; Korkmaz, M. Never in mitosis gene A-related kinase 6 and aurora kinase A: New gene biomarkers in the conversion from ulcerative colitis to colorectal cancer. Oncol. Rep. 2015, 34, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, A.D.; Schinzel, A.C.; Cotter, M.B.; Lis, R.T.; Labella, K.; Lock, Y.J.; Izzo, F.; Guney, I.; Bowden, M.; Li, Y.Y.; et al. Castration Resistance in Prostate Cancer Is Mediated by the Kinase NEK6. Cancer Res. 2016, 77, 753–765. [Google Scholar] [CrossRef]
- Orenay-Boyacioglu, S.; Kasap, E.; Gerceker, E.; Yuceyar, H.; Demirci, U.; Bilgic, F.; Korkmaz, M. Expression profiles of histone modification genes in gastric cancer progression. Mol. Biol. Rep. 2018, 45, 2275–2282. [Google Scholar] [CrossRef] [PubMed]
- Ting, G.; Li, X.; Kwon, H.Y.; Ding, T.; Zhang, Z.; Chen, Z.; Li, C.; Liu, Y.; Yang, Y. microRNA-219-5p targets NEK6 to inhibit hepatocellular carcinoma progression. Am. J. Transl. Res. 2020, 12, 7528–7541. [Google Scholar] [PubMed]
- De Donato, M.; Fanelli, M.; Mariani, M.; Raspaglio, G.; Pandya, D.; He, S.; Fiedler, P.; Petrillo, M.; Scambia, G.; Ferlini, C. Nek6 and Hif-1α cooperate with the cytoskeletal gateway of drug resistance to drive outcome in serous ovarian cancer. Am. J. Cancer Res. 2015, 75, 4327. [Google Scholar] [CrossRef]
- Tan, R.; Nakajima, S.; Wang, Q.; Sun, H.; Xue, J.; Wu, J.; Hellwig, S.; Zeng, X.; Yates, N.A.; Smithgall, T.E.; et al. Nek7 Protects Telomeres from Oxidative DNA Damage by Phosphorylation and Stabilization of TRF1. Mol. Cell 2017, 65, 818–831.e5. [Google Scholar] [CrossRef]
- Niu, T.; De Rosny, C.; Chautard, S.; Rey, A.; Patoli, D.; Groslambert, M.; Cosson, C.; Lagrange, B.; Zhang, Z.; Visvikis, O.; et al. NLRP3 phosphorylation in its LRR domain critically regulates inflammasome assembly. Nat. Commun. 2021, 12, 5862. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y.; Liu, C.; Gao, A.; Wang, L.; Tang, H.; Wu, Q.; Wang, X.; Tian, D.; Qi, Z.; et al. NEK7-Mediated Activation of NLRP3 Inflammasome Is Coordinated by Potassium Efflux/Syk/JNK Signaling During Staphylococcus aureus Infection. Front. Immunol. 2021, 12, 747370. [Google Scholar] [CrossRef] [PubMed]
- Eisa, N.H.; El-Sherbiny, M.; El-Magd, N.F.A. Betulin alleviates cisplatin-induced hepatic injury in rats: Targeting apoptosis and Nek7-independent NLRP3 inflammasome pathways. Int. Immunopharmacol. 2021, 99, 107925. [Google Scholar] [CrossRef]
- Liu, C.; Cai, B.; Li, D.; Yao, Y. Wolf–Hirschhorn syndrome candidate 1 facilitates alveolar macrophage pyroptosis in sepsis-induced acute lung injury through NEK7-mediated NLRP3 inflammasome activation. J. Endotoxin Res. 2021, 27, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Luo, T.; Weng, A.; Huang, X.; Yao, Y.; Fu, Z.; Li, Y.; Liu, A.; Li, X.; Chen, D.; et al. Gallic Acid Alleviates Gouty Arthritis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis Through Enhancing Nrf2 Signaling. Front. Immunol. 2020, 11, 580593. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Q.; Nie, L.; Zhang, P.; Zhao, P.; Yuan, Q.; Ji, N.; Ding, Y.; Wang, Q. Metformin ameliorates the NLPP3 inflammasome mediated pyroptosis by inhibiting the expression of NEK7 in diabetic periodontitis. Arch. Oral Biol. 2020, 116, 104763. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, G.; Yuan, Y.; Wu, G.; Wang, S.; Yuan, L. NEK7 interacts with NLRP3 to modulate the pyroptosis in inflammatory bowel disease via NF-κB signaling. Cell Death Dis. 2019, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Wang, P.; Zhang, B.; Dong, X. Expression of the NEK7/NLRP3 inflammasome pathway in patients with diabetic lower extremity arterial disease. BMJ Open Diabetes Res. Care 2020, 8, e001808. [Google Scholar] [CrossRef]
- Liu, G.; Chen, X.; Wang, Q.; Yuan, L. NEK7: A potential therapy target for NLRP3-related diseases. Biosci. Trends 2020, 14, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Song, Y.; Xu, X.; Wu, Q.; Liu, C. The expression of Nek7, FoxM1, and Plk1 in gallbladder cancer and their relationships to clinicopathologic features and survival. Clin. Transl. Oncol. 2013, 15, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Qu, J.; Li, Z.; Yi, J.; Su, Y.; Lin, Q.; Yu, G.; Lin, Z.; Yin, W.; Lu, F.; et al. NEK7 Promotes Pancreatic Cancer Progression And Its Expression Is Correlated With Poor Prognosis. Front. Oncol. 2021, 11, 705797. [Google Scholar] [CrossRef]
- Li, Y.-K.; Zhu, X.-R.; Zhan, Y.; Yuan, W.-Z.; Jin, W.-L. NEK7 promotes gastric cancer progression as a cell proliferation regulator. Cancer Cell Int. 2021, 21, 1–14. [Google Scholar] [CrossRef]
- O’Regan, L.; Barone, G.; Adib, R.; Woo, C.G.; Jeong, H.J.; Richardson, E.L.; Richards, M.W.; Muller, P.A.; Collis, S.; Fennell, D.A.; et al. EML4-ALK V3 oncogenic fusion proteins promote microtubule stabilization and accelerated migration through NEK9 and NEK7. J. Cell Sci. 2020, 133, jcs241505. [Google Scholar] [CrossRef]
- Manning, D.K.; Sergeev, M.; van Heesbeen, R.G.; Wong, M.D.; Oh, J.-H.; Liu, Y.; Henkelman, R.M.; Drummond, I.; Shah, J.V.; Beier, D.R. Loss of the Ciliary Kinase Nek8 Causes Left-Right Asymmetry Defects. J. Am. Soc. Nephrol. 2012, 24, 100–112. [Google Scholar] [CrossRef]
- Choi, H.J.C.; Lin, J.-R.; Vannier, J.-B.; Slaats, G.G.; Kile, A.C.; Paulsen, R.D.; Manning, D.K.; Beier, D.R.; Giles, R.H.; Boulton, S.J.; et al. NEK8 Links the ATR-Regulated Replication Stress Response and S Phase CDK Activity to Renal Ciliopathies. Mol. Cell 2013, 51, 423–439. [Google Scholar] [CrossRef]
- Ding, X.; Chen, J.; Zhou, J.; Chen, G.; Wu, Y. Never-in-mitosis A-related kinase 8, a novel target of von-Hippel-Lindau tumor suppressor protein, promotes gastric cancer cell proliferation. Oncol. Lett. 2018, 16, 5900–5906. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Du, C.; Zhang, C.; Zhang, X.; Li, S.; Zhang, D.; Jia, W. Bioinformatics analysis of the prognostic value of NEK8 and its effects on immune cell infiltration in glioma. J. Cell. Mol. Med. 2021, 25, 8748–8763. [Google Scholar] [CrossRef]
- Bowers, A.; Boylan, J.F. Nek8, a NIMA family kinase member, is overexpressed in primary human breast tumors. Gene 2004, 328, 135–142. [Google Scholar] [CrossRef]
- Sdelci, S.; Schütz, M.; Pinyol, R.; Bertran, M.T.; Regué, L.; Caelles, C.; Vernos, I.; Roig, J. Nek9 Phosphorylation of NEDD1/GCP-WD Contributes to Plk1 Control of γ-Tubulin Recruitment to the Mitotic Centrosome. Curr. Biol. 2012, 22, 1516–1523. [Google Scholar] [CrossRef]
- Roig, J.; Groen, A.; Caldwell, J.; Avruch, J. Active Nercc1 Protein Kinase Concentrates at Centrosomes Early in Mitosis and Is Necessary for Proper Spindle Assembly. Mol. Biol. Cell 2005, 16, 4827–4840. [Google Scholar] [CrossRef]
- Casey, J.P.; Brennan, K.; Scheidel, N.; McGettigan, P.; Lavin, P.T.; Carter, S.; Ennis, S.; Dorkins, H.; Ghali, N.; Blacque, O.E.; et al. Recessive NEK9 mutation causes a lethal skeletal dysplasia with evidence of cell cycle and ciliary defects. Hum. Mol. Genet. 2016, 25, 1824–1835. [Google Scholar] [CrossRef]
- Levinsohn, J.L.; Sugarman, J.L.; McNiff, J.M.; Antaya, R.J.; Choate, K.A. Somatic Mutations in NEK9 Cause Nevus Comedonicus. Am. J. Hum. Genet. 2016, 98, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shen, W.; Pan, A.; Sun, F.; Zhang, J.; Gao, P.; Li, L. Decreased Nek9 expression correlates with aggressive behaviour and predicts unfavourable prognosis in breast cancer. Pathology 2020, 52, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Varghese, R.T.; Liang, Y.; Guan, T.; Franck, C.T.; Kelly, D.F.; Sheng, Z. Survival kinase genes present prognostic significance in glioblastoma. Oncotarget 2016, 7, 20140–20151. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Tian, S.; Sun, Y.; Dong, J.; Wang, N.; Zeng, J.; Nie, Y.; Wu, K.; Han, Y.; Feng, B.; et al. NEK9, a novel effector of IL-6/STAT3, regulates metastasis of gastric cancer by targeting ARHGEF2 phosphorylation. Theranostics 2021, 11, 2460–2474. [Google Scholar] [CrossRef]
- Moniz, L.S.; Stambolic, V. Nek10 Mediates G 2 /M Cell Cycle Arrest and MEK Autoactivation in Response to UV Irradiation. Mol. Cell. Biol. 2011, 31, 30–42. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, A.P.; Basei, F.L.; Slepicka, P.F.; Ferezin, C.D.C.; Melo-Hanchuk, T.D.; de Souza, E.E.; Lima, T.I.; dos Santos, V.T.; Mendes, D.; Silveira, L.R.; et al. NEK10 interactome and depletion reveal new roles in mitochondria. Proteome Sci. 2020, 18, 1–17. [Google Scholar] [CrossRef]
- Chivukula, R.R.; Montoro, D.; Leung, H.M.; Yang, J.; Shamseldin, H.E.; Taylor, M.S.; Dougherty, G.W.; Zariwala, M.A.; Carson, J.; Daniels, M.L.A.; et al. Author Correction: A human ciliopathy reveals essential functions for NEK10 in airway mucociliary clearance. Nat. Med. 2020, 26, 300. [Google Scholar] [CrossRef]
- Haider, N.; Dutt, P.; van de Kooij, B.; Ho, J.; Palomero, L.; Pujana, M.A.; Yaffe, M.; Stambolic, V. NEK10 tyrosine phosphorylates p53 and controls its transcriptional activity. Oncogene 2020, 39, 5252–5266. [Google Scholar] [CrossRef] [PubMed]
- Bryan, M.S.; Argos, M.; Andrulis, I.L.; Hopper, J.L.; Chang-Claude, J.; Malone, K.E.; John, E.M.; Gammon, M.D.; Daly, M.B.; Terry, M.B.; et al. Germline Variation and Breast Cancer Incidence: A Gene-Based Association Study and Whole-Genome Prediction of Early-Onset Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2018, 27, 1057–1064. [Google Scholar] [CrossRef]
- Al Mutairi, F.; Alkhalaf, R.; Alkhorayyef, A.; Alroqi, F.; Yusra, A.; Umair, M.; Nouf, F.; Khan, A.; Meshael, A.; Hamad, A.; et al. Homozygous truncating NEK10 mutation, associated with primary ciliary dyskinesia: A case report. BMC Pulm. Med. 2020, 20, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Decker, B.; Allen, J.; Luccarini, C.; Pooley, K.A.; Shah, M.; Bolla, M.K.; Wang, Q.; Ahmed, S.; Baynes, C.; Conroy, D.M.; et al. Targeted Resequencing of the Coding Sequence of 38 Genes Near Breast Cancer GWAS Loci in a Large Case–Control Study. Cancer Epidemiol. Biomark. Prev. 2019, 28, 822–825. [Google Scholar] [CrossRef]
- Noguchi, K.; Fukazawa, H.; Murakami, Y.; Uehara, Y. Nek11, a New Member of the NIMA Family of Kinases, Involved in DNA Replication and Genotoxic Stress Responses. J. Biol. Chem. 2002, 277, 39655–39665. [Google Scholar] [CrossRef]
- Sørensen, C.S.; Melixetian, M.; Klein, D.K.; Helin, K. NEK11?Linking CHK1 and CDC25A in DNA damage checkpoint signaling. Cell Cycle 2010, 9, 450–455. [Google Scholar] [CrossRef] [PubMed]
- Alhaidan, Y.; Larsen, M.J.; Schou, A.J.; Stenlid, M.H.; Al Balwi, M.A.; Christesen, H.T.; Brusgaard, K. Exome sequencing revealed DNA variants in NCOR1, IGF2BP1, SGLT2 and NEK11 as potential novel causes of ketotic hypoglycemia in children. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Christodoulou, E.; van Doorn, R.; Visser, M.; Teunisse, A.; Versluis, M.; van der Velden, P.; Hayward, N.K.; Jochemsen, A.; Gruis, N. NEK11 as a candidate high-penetrance melanoma susceptibility gene. J. Med. Genet. 2019, 57, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Sheils, T.K.; Mathias, S.L.; Kelleher, K.J.; Siramshetty, V.B.; Nguyen, D.-T.; Bologa, C.G.; Jensen, L.J.; Vidović, D.; Koleti, A.; Schürer, S.C.; et al. TCRD and Pharos 2021: Mining the human proteome for disease biology. Nucleic Acids Res. 2020, 49, D1334–D1346. [Google Scholar] [CrossRef]
- Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The Protein Kinase Complement of the Human Genome. Science 2002, 298, 1912–1934. [Google Scholar] [CrossRef] [PubMed]
- Kantarjian, H.; O’Brien, S.; Jabbour, E.; Garcia-Manero, G.; Quintas-Cardama, A.; Shan, J.; Rios, M.B.; Ravandi, F.; Faderl, S.; Kadia, T.; et al. Improved survival in chronic myeloid leukemia since the introduction of imatinib therapy: A single-Institution historical experience. Blood 2012, 119, 1981–1987. [Google Scholar] [CrossRef]
- Hochhaus, A.; Larson, R.A.; Guilhot, F.; Radich, J.P.; Branford, S.; Hughes, T.P.; Baccarani, M.; Deininger, M.W.; Cervantes, F.; Fujihara, S.; et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N. Engl. J. Med. 2017, 376, 917–927. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-C.; Taujale, R.; Gravel, N.; Venkat, A.; Yeung, W.; Byrne, D.P.; Eyers, P.A.; Kannan, N. KinOrtho: A method for mapping human kinase orthologs across the tree of life and illuminating understudied kinases. BMC Bioinform. 2021, 22, 1–25. [Google Scholar] [CrossRef] [PubMed]
Tumor Type | NEK1 HR | NEK2 HR | NEK3 HR | NEK4 HR | NEK5 HR | NEK6 HR | NEK7 HR | NEK8 HR | NEK9 HR | NEK10 HR | NEK11 HR |
---|---|---|---|---|---|---|---|---|---|---|---|
Bladder Carcinoma | 1.17 (0.86–1.59) | 0.83 (0.59–1.18) | 0.75 (0.56–1.01) | 0.78 (0.58–1.04) | 0.69 (0.52–0.93) | 1.73 (1.16–2.57) | 1.23 ( 0.91–1.66) | 0.66 (0.49–0.89) | 1.45 (1.08–1.94) | 0.86 (0.62–1.18) | 0.86 (0.62–1.18) |
Breast Cancer | 0.72 ( 0.52–1) | 1.28 ( 0.91–1.8) | 1.19 (0.82–1.74) | 0.82 (0.59–1.13) | 0.74 (0.54–1.02) | 1.35 (0.98–1.87) | 0.82 (0.59–1.13) | 0.83 (0.6–1.14) | 0.75 (0.53–1.06) | 0.46 (0.29–0.72) | 0.46 (0.29–0.72) |
Cervical SCC | 1.37 (0.76–2.47) | 1.33 (0.83–2.13) | 1.49 (0.92–2.43) | 1.42 (0.8–2.51) | 0.75 (0.47–1.19) | 1.87 (1.15–3.05) | 1.33 (0.82–2.16) | 0.58 (0.34–1) | 1.58 (0.99–2.52) | 1.35 (0.84–2.17) | 1.35 (0.84–2.17) |
Esophageal Adenocarcinoma | 0.5 (0.24–1.02) | 2.76 (1.07–7.15) | 2.87 (1.12–7.38) | 0.56 (0.26–1.23) | 2.28 (1.15–4.55) | 0.4 (0.21–0.76) | 1.8 (0.88–3.71) | 0.52 (0.26–1.05) | 0.58 (0.3–1.11) | 1.81 (0.76–4.35) | 1.81 (0.76–4.35) |
Esophageal SCC | 0.06 (0.01–0.43) | 0.4 (0.18–0.92) | 0.44 (0.2–0.99) | 0.55 (0.22–1.38) | 1.64 (0.74–3.65) | 0.5 (0.21–1.17) | 1.38 (0.55–3.48) | 0.57 (0.23–1.39) | 0.3 (0.13–0.7) | 0.54 (0.23–1.27) | 0.54 (0.23–1.27) |
Head and neck SCC | 0.86 (0.65–1.15) | 1.44 (1.08–1.92) | 0.82 (0.61–1.11) | 0.76 (0.57–1.02) | 0.9 (0.68–1.18) | 1.46 (1.05–2.03) | 0.74 (0.57–0.97) | 0.67 (0.51–0.89) | 1.16 (0.89–1.53) | 1.19 (0.89–1.59) | 1.19 (0.89–1.59) |
Kidney RCC | 0.52 (0.4–0.72) | 2.46 (1.81–3.34) | 1.7 (1.25–2.3) | 0.6 (0.45–0.81) | 0.73 (0.53–1) | 0.41 (0.28–0.62) | 0.58 (0.42–0.79) | 1.65 (1.21–2.25) | 0.67 (0.5–0.91) | 1.69 (1.25–2.29) | 1.69 (1.25–2.29) |
Kidney Renal Papillary Carcinoma | 0.46 (0.24–0.86) | 4.71 (2.59–8.56) | 0.64 (0.36–1.17) | 1.6 (0.76–3.35) | 1.5 (0.81–2.75) | 0.64 (0.36–1.17) | 2.07 (1.14–3.78) | 0.49 (0.27–0.91) | 0.76 (0.39–1.45) | 0.45 (0.25–0.81) | 0.45 (0.25–0.81) |
Liver Hepatocellular Carcinoma | 0.89 (0.63–1.26) | 2.14 (1.52–3.03) | 0.82 (0.57–1.18) | 1.66 (1.13–2.44) | 0.61 (0.42–0.86) | 1.75 (1.2–2.54) | 1.55 (1.06–2.25) | 1.38 (0.97–1.96) | 1.29 (0.88–1.9) | 1.33 (0.91–1.95) | 1.33 (0.91–1.95) |
Lung Adenocarcinoma | 1.24 (0.88–1.74) | 1.84 (1.36–2.49) | 0.77 (0.57–1.05) | 1.22 (0.88–1.69) | 0.77 ( 0.57–1.05) | 1.3 ( 0.96–1.77) | 0.79 (0.58–1.06) | 0.64 (0.48–0.87) | 0.79 (0.58–1.09) | 0.83 (0.62–1.11) | 0.83 (0.62–1.11) |
Lung SCC | 1.18 ( 0.89–1.56) | 0.8 (0.6–1.07) | 1.36 (1.03–1.79) | 0.8 (0.6–1.05) | 1.29 (0.94–1.77) | 1.55 (1.18–2.04) | 0.79 (0.6–1.04) | 1.24 (0.93–1.67) | 0.66 (0.48–0.9) | 1.19 (0.88–1.61) | 1.19 (0.88–1.61) |
Ovarian Cancer | 0.85 (0.62–1.14) | 0.74 (0.55–0.98) | 1.46 (1.12–1.91) | 0.76 (0.57–1.01) | 1.22 (0.94–1.58) | 1.34 (1–1.79) | 1.15 (0.87–1.51) | 1.19 (0.92–1.54) | 1.25 (0.94–1.66) | 1.33 (1–1.77) | 1.33 (1–1.77) |
Pancreatic Ductal Carcinoma | 0.55 (0.36–0.83) | 1.99 (1.31–3.03) | 0.51 (0.34–0.78) | 1.26 (0.84–1.9) | 0.59 (0.38–0.9) | 2.57 (1.43–4.63) | 1.97 (1.29–3.01) | 0.43 ( 0.25–0.72) | 0.42 (0.25–0.72) | 0.54 (0.36–0.82) | 0.54 (0.36–0.82) |
Pheochromocytoma & Paraganglioma | 2.7 (0.49–14.95) | 3.91 (0.7–22) | 5.33 (0.97–29.43) | 4.46 (0.75–26.7) | 0.24 ( 0.04–1.36) | 0.39 (0.07–2.18) | 4.76 (0.87–26.22) | 0.07 (0.01–0.57) | 4.5 (0.75–26.98) | 587,911,007.09 (0–inf) | 587,911,007.09 (0–inf) |
Rectum Adenocarcinoma | 0.39 (0.18–0.86) | 0.75 (0.34–1.7) | 0.5 (0.22–1.12) | 0.26 (0.12–0.57) | 1.75 (0.81–3.79) | 0.31 (0.09–1.05) | 2.17 (1–4.71) | 2.1 (0.84–5.26) | 2.18 (0.65–7.29) | 0.45 (0.17–1.19) | 0.45 (0.17–1.19) |
Sarcoma | 0.7 (0.46–1.05) | 1.85 (1.2–2.86) | 0.55 (0.35–0.86) | 1.88 (1.15–3.08) | 0.57 (0.37–0.89) | 2.03 (1.34–3.09) | 0.64 (0.41–1) | 0.72 (0.48–1.07) | 0.77 (0.48–1.22) | 0.72 (0.48–1.07) | 0.72 (0.48–1.07) |
Stomach Adenocarcinoma | 1.23 (0.88–1.7) | 0.73 (0.52–1.01) | 0.65 (0.43–0.98) | 0.77 (0.54–1.11) | 0.56 (0.38–0.82) | 1.24 (0.84–1.82) | 1.61 (1.14–2.27) | 0.76 (0.53–1.09) | 1.42 (1.02–1.97) | 1.69 (1.14–2.51) | 1.69 (1.14–2.51) |
Testicular Germ Cell tumor | 0.18 (0.02–1.18) | 0.14 (0.01–1.58) | 0.17 (0.02–1.9) | 2.93 (0.3–28.18) | 0.18 (0.02–1.83) | 2,023,412,437.18 (0-inf) | 22,623,872.43 (0-inf) | 2.44 (0.34–17.39) | 0.17 (0.02–1.17) | 0.14 (0.01–1.39) | 0.14 (0.01–1.39) |
Thymoma | 1.98 (0.52–7.55) | 0.1 (0.02–0.49) | 3.06 (0.75–12.43) | 0.33 (0.09–1.26) | 0.2 (0.05–0.79) | 2.55 ( 0.67–9.73) | 2.56 (0.68–9.63) | 815,958,421.87 (0- inf ) | 1.73 (0.46–6.47) | 0.15 (0.03–0.73) | 0.15 (0.03–0.73) |
Thyroid Carcinoma | 3.26 (1.05–10.13) | 3.55 (1.14–11.03) | 0.35 (0.12–1.01) | 2.32 (0.87–6.24) | 3.21 (1.2–8.56) | 5.84 (0.77–44.24) | 3.33 (1.15–9.58) | 0.67 (0.24–1.85) | 2.08 (0.59–7.32) | 3.51 (1.31–9.4) | 3.51 (1.31–9.4) |
Uterine corpus endometrial carcinoma | 0.74 (0.47–1.17) | 1.43 (0.95–2.17) | 1.32 (0.87–2) | 0.54 (0.33–0.87) | 0.5 (0.3–0.83) | 0.58 (0.37–0.91) | 1.49 (0.99–2.26) | 1.42 (0.93–2.18) | 0.6 ( 0.4–0.92) | 0.63 (0.41–0.96) | 0.63 (0.41–0.96) |
Kinase | PubMed Score | Novelty Score (Log) | Antibody Count | Chromosome | Localization | Biological Processes | Associated Pathologies | Highest Tumor: Normal Tissue Expression Ratio by GEPIA | Lowest Tumor: Normal Tissue Expression Ratio by GEPIA |
---|---|---|---|---|---|---|---|---|---|
EGFR | 15,684.43 | −9.53 | 8544 | 7 | Cytoplasm, plasma membrane | Cell division and survival | Fibrosis, atherosclerosis, adenocarcinoma of the lung, glioblastoma, head and neck tumors | Thymoma, 124.33-fold | Skin Cutaneous Melanoma, 0.10-fold |
AKT1 | 29,775.56 | −10.35 | 4668 | 14 | Cytoplasm, nucleus | Cell growth, proliferation, and apoptosis | Proteus syndrome, diabetes, cancer | Thymoma, 1.36-fold | Adrenocortical carcinoma, 0.90-fold |
MAPK1 | 1421.81 | −7.4 | 1683 | 16 | Cytoplasm, nucleus | Proliferation, differentiation, and transcription regulation | Alzheimer’s disease, Parkinson’s disease, ALS, cancer | Cholangio carcinoma, 1.72-fold | Adrenocortical carcinoma, 0.73-fold |
NEK1 * | 63.71 | −4.1 | 125 | 4 | Cytoplasm, nucleus | DNA damage repair | ALS, PKD, Wilm’s tumor, prostate cancer, thyroid cancer | Thymoma, 7.13-fold | Uterine Corpus Endometrial Carcinoma, 0.60-fold |
NEK2 | 182.71 | −5.12 | 423 | 1 | Cytoplasm, nucleus | Cell cycling, cilia activity, DNA splicing | Lung cancer, hepatocellular carcinoma, multiple myeloma, pancreatic cancer | Cervical squamous cell carcinoma and endocervial adenocarcinoma, 38.58-fold | Acute Myeloid Leukemia, 0.46-fold |
NEK3 * | 10.99 | −2.35 | 223 | 13 | Cytoplasm, nucleus | DNA damage repair, cell cycling | Gastric cancer, breast cancer, prostate cancer | Thymoma, 2.74-fold | Kidney Chromophobe, 0.54-fold |
NEK4 * | 17.05 | −2.85 | 192 | 3 | Cytoplasm, nucleus | Cell Cycling, mitosis, DNA damage response | ADHD, schizophrenia, bipolar disorder, lung cancer, colon cancer | Thymoma, 2.88-fold | Testicular Germ Cell Tumors, 0.66-fold |
NEK5 * | 8.91 | −1.7 | 145 | 13 | Cytoplasm, nucleus | DNA damage response, mitochondria function | Breast cancer | Cholangio carcinoma, 4.64-fold | Lung squamous cell carcinoma, 0.30-fold |
NEK6 * | 44.06 | −3.73 | 269 | 9 | Cytoplasm, nucleus | DNA damage repair, cell cycling | Hepatocellular carcinoma, gastric cancer, prostate cancer, colorectal cancer | Skin Cutaneous Melanoma, 2.16-fold | Kidney Chromophobe, 0.41-fold |
NEK7 * | 41.34 | −3.62 | 332 | 1 | Cytoplasm, nucleus | Telomere integrity, NLRP3 inflammasome activation, inflammation, apoptosis | Gouty arthritis, diabetes, arterial disease, inflammatory bowel disease, gastric cancer, pancreatic cancer, non-small cell lung cancer, gallbladder carcinoma | Pancreatic adenocarcinoma, 1.74-fold | Uterine Corpus Endometrial Carcinoma, 0.69-fold |
NEK8 | 137.44 | −4.95 | 271 | 17 | Cytoplasm, nucleus | Ciliary biogenesis and DNA damage response | Renal ciliopathies, polycystic kidney disease, nephronophthisis, left-right assymetry, gliomas, gastric cancer, breast cancer | Lymphoid Neoplasm Diffuse Large B-Cell Lymphoma, 3.12-fold | Kidney Chromophobe, 0.61-fold |
NEK9 * | 46.5 | −3.74 | 446 | 14 | Cytoplasm, nucleus | Centrosome organization and mitosis | Nevus comedonicus, lethal skeletal dysplasia, gastric cancer, breast cancer, glioblastoma | Thymoma, 1.59-fold | Uterine Corpus Endometrial Carcinoma, 0.69-fold |
NEK10 * | 9.38 | −2.11 | 60 | 3 | Cytoplasm, nucleus | Mitochondrial metabolism and DNA damage response | Ciliary dysfunction and breast cancer | Pancreatic adenocarcinoma, 3.21-fold. Acute Myeloid Leukemia may also be of interest due to 0 expression in normal tissues vs 0.53 in tumor | Testicular Germ Cell Tumors, 0.13-fold |
NEK11 * | 7.48 | −2.08 | 244 | 3 | Nucleus | DNA replication and DNA damage response | Ketotic hypoglycemia and melanoma | Cholangio carcinoma, 6.72-fold | Kidney Chromophobe, 0.15-fold |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, K.; Boehling, J.; Tran, M.N.; Cheng, T.; Rivera, A.; Collins-Burow, B.M.; Lee, S.B.; Drewry, D.H.; Burow, M.E. NEK Family Review and Correlations with Patient Survival Outcomes in Various Cancer Types. Cancers 2023, 15, 2067. https://doi.org/10.3390/cancers15072067
Nguyen K, Boehling J, Tran MN, Cheng T, Rivera A, Collins-Burow BM, Lee SB, Drewry DH, Burow ME. NEK Family Review and Correlations with Patient Survival Outcomes in Various Cancer Types. Cancers. 2023; 15(7):2067. https://doi.org/10.3390/cancers15072067
Chicago/Turabian StyleNguyen, Khoa, Julia Boehling, Minh N. Tran, Thomas Cheng, Andrew Rivera, Bridgette M. Collins-Burow, Sean B. Lee, David H. Drewry, and Matthew E. Burow. 2023. "NEK Family Review and Correlations with Patient Survival Outcomes in Various Cancer Types" Cancers 15, no. 7: 2067. https://doi.org/10.3390/cancers15072067
APA StyleNguyen, K., Boehling, J., Tran, M. N., Cheng, T., Rivera, A., Collins-Burow, B. M., Lee, S. B., Drewry, D. H., & Burow, M. E. (2023). NEK Family Review and Correlations with Patient Survival Outcomes in Various Cancer Types. Cancers, 15(7), 2067. https://doi.org/10.3390/cancers15072067