Genomics of Breast Cancer Brain Metastases: A Meta-Analysis and Therapeutic Implications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Search Strategy and Selection Criteria
2.2. Eligibility Criteria
2.2.1. Inclusion Criteria
2.2.2. Exclusion Criteria
2.2.3. Search Strategy
2.2.4. Study Selection
2.2.5. Protocol and Registration
2.2.6. Quality Assessment
2.2.7. Statistical Analysis
3. Results
3.1. Study Selection, Characteristics and Quality Assessment
3.2. Gene Mutation Profiles in Breast Cancer Brain Metastases
3.3. Heterogeneity of Gene Mutation Prevalence between Studies Was Less Marked for Brain Metastasis Samples
3.4. Copy-Number Alterations and Loss of Heterozygosity in Breast Cancer Brain Metastases
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnholtz-Sloan, J.S.; Sloan, A.E.; Davis, F.G.; Vigneau, F.D.; Lai, P.; Sawaya, R.E. Incidence Proportions of Brain Metastases in Patients Diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2004, 22, 2865–2872. [Google Scholar] [CrossRef]
- Kuksis, M.; Gao, Y.; Tran, W.; Hoey, C.; Kiss, A.; Komorowski, A.S.; Dhaliwal, A.J.; Sahgal, A.; Das, S.; Chan, K.K.; et al. The Incidence of Brain Metastases among Patients with Metastatic Breast Cancer: A Systematic Review and Meta-Analysis. Neuro-Oncol. 2021, 23, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Cagney, D.N.; Martin, A.M.; Catalano, P.J.; Redig, A.J.; Lin, N.U.; Lee, E.Q.; Wen, P.Y.; Dunn, I.F.; Bi, W.L.; Weiss, S.E.; et al. Incidence and Prognosis of Patients with Brain Metastases at Diagnosis of Systemic Malignancy: A Population-Based Study. Neuro-Oncol. 2017, 19, 1511–1521. [Google Scholar] [CrossRef] [Green Version]
- Aversa, C.; Rossi, V.; Geuna, E.; Martinello, R.; Milani, A.; Redana, S.; Valabrega, G.; Aglietta, M.; Montemurro, F. Metastatic Breast Cancer Subtypes and Central Nervous System Metastases. Breast Edinb. Scotl. 2014, 23, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Sperduto, P.W.; Mesko, S.; Li, J.; Cagney, D.; Aizer, A.; Lin, N.U.; Nesbit, E.; Kruser, T.J.; Chan, J.; Braunstein, S.; et al. Survival in Patients With Brain Metastases: Summary Report on the Updated Diagnosis-Specific Graded Prognostic Assessment and Definition of the Eligibility Quotient. J. Clin. Oncol. 2020, 38, 3773–3784. [Google Scholar] [CrossRef] [PubMed]
- Morris, V.L.; Koop, S.; MacDonald, I.C.; Schmidt, E.E.; Grattan, M.; Percy, D.; Chambers, A.F.; Groom, A.C. Mammary Carcinoma Cell Lines of High and Low Metastatic Potential Differ Not in Extravasation but in Subsequent Migration and Growth. Clin. Exp. Metastasis 1994, 12, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Bos, P.D.; Zhang, X.H.-F.; Nadal, C.; Shu, W.; Gomis, R.R.; Nguyen, D.X.; Minn, A.J.; van de Vijver, M.J.; Gerald, W.L.; Foekens, J.A.; et al. Genes That Mediate Breast Cancer Metastasis to the Brain. Nature 2009, 459, 1005–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramakrishna, N.; Temin, S.; Chandarlapaty, S.; Crews, J.R.; Davidson, N.E.; Esteva, F.J.; Giordano, S.H.; Gonzalez-Angulo, A.M.; Kirshner, J.J.; Krop, I.; et al. Recommendations on Disease Management for Patients with Advanced Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer and Brain Metastases: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2014, 32, 2100–2108. [Google Scholar] [CrossRef] [PubMed]
- Angeli, E.; Nguyen, T.T.; Janin, A.; Bousquet, G. How to Make Anticancer Drugs Cross the Blood–Brain Barrier to Treat Brain Metastases. Int. J. Mol. Sci. 2019, 21, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Lin, N.U.; Borges, V.; Anders, C.; Murthy, R.K.; Paplomata, E.; Hamilton, E.; Hurvitz, S.; Loi, S.; Okines, A.; Abramson, V.; et al. Intracranial Efficacy and Survival With Tucatinib Plus Trastuzumab and Capecitabine for Previously Treated HER2-Positive Breast Cancer With Brain Metastases in the HER2CLIMB Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 2610–2619. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.O.; Dao, V.T.; Nguyen, V.T.; Feugeas, J.-P.; Pamoukdjian, F.; Bousquet, G. Genomics of Clear-Cell Renal Cell Carcinoma: A Systematic Review and Meta-Analysis. Eur. Urol. 2022, 81, 349–361. [Google Scholar] [CrossRef]
- Yu, K.K.H.; Patel, A.R.; Moss, N.S. The Role of Stereotactic Biopsy in Brain Metastases. Neurosurg. Clin. N. Am. 2020, 31, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, G.; Bouchtaoui, M.E.; Leboeuf, C.; Battistella, M.; Varna, M.; Ferreira, I.; Plassa, L.-F.; Hamdan, D.; Bertheau, P.; Feugeas, J.-P.; et al. Tracking Sub-Clonal TP53 Mutated Tumor Cells in Human Metastatic Renal Cell Carcinoma. Oncotarget 2015, 6, 19279–19289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, L.A.; Clarke, M.; Rovers, M.; Riley, R.D.; Simmonds, M.; Stewart, G.; Tierney, J.F.; for the PRISMA-IPD Development Group. Preferred Reporting Items for a Systematic Review and Meta-Analysis of Individual Participant Data: The PRISMA-IPD Statement. JAMA 2015, 313, 1657–1665. [Google Scholar] [CrossRef]
- Sohani, Z.N.; Meyre, D.; de Souza, R.J.; Joseph, P.G.; Gandhi, M.; Dennis, B.B.; Norman, G.; Anand, S.S. Assessing the Quality of Published Genetic Association Studies in Meta-Analyses: The Quality of Genetic Studies (Q-Genie) Tool. BMC Genet. 2015, 16, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marín-Martínez, F.; Botella, J. Assessing Heterogeneity in Meta-Analysis: Q Statistic or I2 Index? Psychol. Methods 2006, 11, 193–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaffney, E.F.; Riegman, P.H.; Grizzle, W.E.; Watson, P.H. Factors That Drive the Increasing Use of FFPE Tissue in Basic and Translational Cancer Research. Biotech. Histochem. Off. Publ. Biol. Stain Comm. 2018, 93, 373–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinger, L.; Merenbakh-Lamin, K.; Klein, A.; Elazar, A.; Journo, S.; Boldes, T.; Pasmanik-Chor, M.; Spitzer, A.; Rubinek, T.; Wolf, I. Ligand-Binding Domain–Activating Mutations of ESR1 Rewire Cellular Metabolism of Breast Cancer Cells. Clin. Cancer Res. 2019, 25, 2900–2914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toy, W.; Weir, H.; Razavi, P.; Lawson, M.; Goeppert, A.U.; Mazzola, A.M.; Smith, A.; Wilson, J.; Morrow, C.; Wong, W.L.; et al. Activating ESR1 Mutations Differentially Affect the Efficacy of ER Antagonists. Cancer Discov. 2017, 7, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Jeselsohn, R.; Yelensky, R.; Buchwalter, G.; Frampton, G.; Meric-Bernstam, F.; Gonzalez-Angulo, A.M.; Ferrer-Lozano, J.; Perez-Fidalgo, J.A.; Cristofanilli, M.; Gómez, H.; et al. Emergence of Constitutively Active Estrogen Receptor-α Mutations in Pretreated Advanced Estrogen Receptor Positive Breast Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 1757–1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Bahreini, A.; Gyanchandani, R.; Lucas, P.C.; Hartmaier, R.J.; Watters, R.J.; Jonnalagadda, A.R.; Trejo Bittar, H.E.; Berg, A.; Hamilton, R.L.; et al. FSensitive Detection of Mono- and Polyclonal ESR1 Mutations in Primary Tumors, Metastatic Lesions and Cell Free DNA of Breast Cancer Patients. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 1130–1137. [Google Scholar] [CrossRef] [Green Version]
- Hartman, Z.; Zhao, H.; Agazie, Y.M. HER2 Stabilizes EGFR and Itself by Altering Autophosphorylation Patterns in a Manner That Overcomes Regulatory Mechanisms and Promotes Proliferative and Transformation Signaling. Oncogene 2013, 32, 4169–4180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gotoh, N.; Tojo, A.; Muroya, K.; Hashimoto, Y.; Hattori, S.; Nakamura, S.; Takenawa, T.; Yazaki, Y.; Shibuya, M. Epidermal Growth Factor-Receptor Mutant Lacking the Autophosphorylation Sites Induces Phosphorylation of Shc Protein and Shc-Grb2/ASH Association and Retains Mitogenic Activity. Proc. Natl. Acad. Sci. USA 1994, 91, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Gazdar, A.F. Activating and Resistance Mutations of EGFR in Non-Small-Cell Lung Cancer: Role in Clinical Response to EGFR Tyrosine Kinase Inhibitors. Oncogene 2009, 28 (Suppl. 1), S24–S31. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Lee, S.Y.; Kim, D.; Sim, Y.S.; Ryu, J.-S.; Choi, J.; Lee, S.H.; Ryu, Y.J.; Lee, J.H.; Chang, J.H. Comparison of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Patients with Lung Adenocarcinoma Harboring Different Epidermal Growth Factor Receptor Mutation Types. BMC Cancer 2021, 21, 52. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.C.; Vivanco, I.; Beroukhim, R.; Huang, J.H.Y.; Feng, W.L.; DeBiasi, R.M.; Yoshimoto, K.; King, J.C.; Nghiemphu, P.; Yuza, Y.; et al. Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain. PLoS Med. 2006, 3, e485. [Google Scholar] [CrossRef] [PubMed]
- Membrane-Binding and Activation Mechanism of PTEN | PNAS. Available online: https://www.pnas.org/doi/10.1073/pnas.0932835100 (accessed on 23 April 2022).
- Crystal Structure of the PTEN Tumor Suppressor: Cell. Available online: https://www.cell.com/fulltext/S0092-8674(00)81663-3 (accessed on 23 April 2022).
- Garrido, J.A.M.G.; Alcantara, K.M.M.; Danac, J.M.C.; Serrano, F.E.C.; Cutiongco-de la Paz, E.M.; Garcia, R.L. The Novel Phosphatase Domain Mutations Q171R and Y65S Switch PTEN from Tumor Suppressor to Oncogene. Cells 2021, 10, 3423. [Google Scholar] [CrossRef] [PubMed]
- Liaw, D.; Marsh, D.J.; Li, J.; Dahia, P.L.M.; Wang, S.I.; Zheng, Z.; Bose, S.; Call, K.M.; Tsou, H.C.; Peacoke, M.; et al. Germline Mutations of the PTEN Gene in Cowden Disease, an Inherited Breast and Thyroid Cancer Syndrome. Nat. Genet. 1997, 16, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Raftopoulou, M.; Etienne-Manneville, S.; Self, A.; Nicholls, S.; Hall, A. Regulation of Cell Migration by the C2 Domain of the Tumor Suppressor PTEN. Science 2004, 303, 1179–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreassen, P.R.; Seo, J.; Wiek, C.; Hanenberg, H. Understanding BRCA2 Function as a Tumor Suppressor Based on Domain-Specific Activities in DNA Damage Responses. Genes 2021, 12, 1034. [Google Scholar] [CrossRef] [PubMed]
- Guidugli, L.; Pankratz, V.S.; Singh, N.; Thompson, J.; Erding, C.A.; Engel, C.; Schmutzler, R.; Domchek, S.; Nathanson, K.; Radice, P.; et al. A Classification Model for BRCA2 DNA Binding Domain Missense Variants Based on Homology Directed Repair Activity. Cancer Res. 2013, 73, 265–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, C.N.; Babic, M.; Schreiber, A.W.; Kutyna, M.M.; Wee, L.A.; Brown, A.L.; Perugini, M.; Singhal, D.; Hiwase, S.; Feng, J.; et al. Rare and Common Germline Variants Contribute to Occurrence of Myelodysplastic Syndrome. Blood 2015, 126, 1644. [Google Scholar] [CrossRef]
- Mosavi, L.K.; Cammett, T.J.; Desrosiers, D.C.; Peng, Z.-Y. The Ankyrin Repeat as Molecular Architecture for Protein Recognition. Protein Sci. Publ. Protein Soc. 2004, 13, 1435–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, A.J.; Giannoudis, A.; Palmieri, C. The Genomic Landscape of Breast Cancer Brain Metastases: A Systematic Review. Lancet Oncol. 2021, 22, e7–e17. [Google Scholar] [CrossRef] [PubMed]
- Mamanova, L.; Coffey, A.J.; Scott, C.E.; Kozarewa, I.; Turner, E.H.; Kumar, A.; Howard, E.; Shendure, J.; Turner, D.J. Target-Enrichment Strategies for next-Generation Sequencing. Nat. Methods 2010, 7, 111–118. [Google Scholar] [CrossRef]
- Urosevic, J.; Garcia-Albéniz, X.; Planet, E.; Real, S.; Céspedes, M.V.; Guiu, M.; Fernandez, E.; Bellmunt, A.; Gawrzak, S.; Pavlovic, M.; et al. Colon Cancer Cells Colonize the Lung from Established Liver Metastases through P38 MAPK Signalling and PTHLH. Nat. Cell Biol. 2014, 16, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-F.; Chang, T.-H.; Wu, S.-G.; Yang, H.-Y.; Hsu, Y.-C.; Yang, P.-C.; Shih, J.-Y. EGFR-L858R Mutant Enhances Lung Adenocarcinoma Cell Invasive Ability and Promotes Malignant Pleural Effusion Formation through Activation of the CXCL12-CXCR4 Pathway. Sci. Rep. 2015, 5, 13574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarvaiya, P.J.; Guo, D.; Ulasov, I.; Gabikian, P.; Lesniak, M.S. Chemokines in Tumor Progression and Metastasis. Oncotarget 2013, 4, 2171–2185. [Google Scholar] [CrossRef] [Green Version]
- Duchnowska, R.; Jassem, J.; Goswami, C.P.; Dundar, M.; Gökmen-Polar, Y.; Li, L.; Woditschka, S.; Biernat, W.; Sosińska-Mielcarek, K.; Czartoryska-Arłukowicz, B.; et al. Predicting Early Brain Metastases Based on Clinicopathological Factors and Gene Expression Analysis in Advanced HER2-Positive Breast Cancer Patients. J. Neurooncol. 2015, 122, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Zheng, S.; Xie, X.; Li, X.; Zhang, L.; Yang, A.; Wang, J.; Tang, H.; Xie, X. SOX2 Promotes Brain Metastasis of Breast Cancer by Upregulating the Expression of FSCN1 and HBEGF. Mol. Ther. Oncolytics 2020, 17, 118–129. [Google Scholar] [CrossRef] [PubMed]
- Furet, E.; Bouchtaoui, M.E.; Feugeas, J.-P.; Miquel, C.; Leboeuf, C.; Beytout, C.; Bertheau, P.; Le Rhun, E.; Bonneterre, J.; Janin, A.; et al. Increased Risk of Brain Metastases in Women with Breast Cancer and P16 Expression in Metastatic Lymph-Nodes. Oncotarget 2017, 8, 37332–37341. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Gapihan, G.; Tetu, P.; Pamoukdjian, F.; El Bouchtaoui, M.; Lebœuf, C.; Feugeas, J.; Paris, J.; Baroudjian, B.; Delyon, J.; et al. Increased Risk of Brain Metastases among Patients with Melanoma and PROM2 Expression in Metastatic Lymph Nodes. Clin. Transl. Med. 2020, 10, e198. [Google Scholar] [CrossRef] [PubMed]
- Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Hartman, J.; Tujague, M.; Ström, A.; Treuter, E.; Warner, M.; et al. Estrogen Receptors: How Do They Signal and What Are Their Targets. Physiol. Rev. 2007, 87, 905–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toy, W.; Shen, Y.; Won, H.; Green, B.; Sakr, R.A.; Will, M.; Li, Z.; Gala, K.; Fanning, S.; King, T.A.; et al. ESR1 Ligand-Binding Domain Mutations in Hormone-Resistant Breast Cancer. Nat. Genet. 2013, 45, 1439–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burstein, H.J. The Distinctive Nature of HER2-Positive Breast Cancers. N. Engl. J. Med. 2005, 353, 1652–1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef]
- Fan, J.; Cai, B.; Zeng, M.; Hao, Y.; Giancotti, F.G.; Fu, B.M. Integrin Β4 Signaling Promotes Mammary Tumor Cell Adhesion to Brain Microvascular Endothelium by Inducing ErbB2-Mediated Secretion of VEGF. Ann. Biomed. Eng. 2011, 39, 2223–2241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmieri, D.; Bronder, J.L.; Herring, J.M.; Yoneda, T.; Weil, R.J.; Stark, A.M.; Kurek, R.; Vega-Valle, E.; Feigenbaum, L.; Halverson, D.; et al. Her-2 Overexpression Increases the Metastatic Outgrowth of Breast Cancer Cells in the Brain. Cancer Res. 2007, 67, 4190–4198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagano, M.; Kohsaka, S.; Ueno, T.; Kojima, S.; Saka, K.; Iwase, H.; Kawazu, M.; Mano, H. High-Throughput Functional Evaluation of Variants of Unknown Significance in ERBB2. Clin. Cancer Res. 2018, 24, 5112–5122. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, J.; Katta, A.; Masood, A.; Vudem, D.R.; Kancha, R.K. Emergence of ERBB2 Mutation as a Biomarker and an Actionable Target in Solid Cancers. Oncologist 2019, 24, e1303–e1314. [Google Scholar] [CrossRef] [Green Version]
- Comprehensive Molecular Portraits of Human Breast Tumors. Nature 2012, 490, 61–70. [CrossRef] [Green Version]
- Bose, R.; Kavuri, S.M.; Searleman, A.C.; Shen, W.; Shen, D.; Koboldt, D.C.; Monsey, J.; Goel, N.; Aronson, A.B.; Li, S.; et al. Activating HER2 Mutations in HER2 Gene Amplification Negative Breast Cancer. Cancer Discov. 2013, 3, 224–237. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Wang, Y.; Zhao, C.; Li, X.; Liu, Q.; Mao, S.; Liu, Y.; Yu, X.; Wang, W.; Tian, Q.; et al. Exon 20 YVMA Insertion Is Associated with High Incidence of Brain Metastasis and Inferior Outcome of Chemotherapy in Advanced Non-Small Cell Lung Cancer Patients with HER2 Kinase Domain Mutations. Transl. Lung Cancer Res. 2021, 10, 753–765. [Google Scholar] [CrossRef] [PubMed]
- Yarden, Y.; Pines, G. The ERBB Network: At Last, Cancer Therapy Meets Systems Biology. Nat. Rev. Cancer 2012, 12, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Nie, F.; Yang, J.; Wen, S.; An, Y.-L.; Ding, J.; Ju, S.-H.; Zhao, Z.; Chen, H.-J.; Peng, X.-G.; Wong, S.T.C.; et al. Involvement of Epidermal Growth Factor Receptor Overexpression in the Promotion of Breast Cancer Brain Metastasis. Cancer 2012, 118, 5198–5209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greulich, H.; Chen, T.-H.; Feng, W.; Jänne, P.A.; Alvarez, J.V.; Zappaterra, M.; Bulmer, S.E.; Frank, D.A.; Hahn, W.C.; Sellers, W.R.; et al. Oncogenic Transformation by Inhibitor-Sensitive and -Resistant EGFR Mutants. PLOS Med. 2005, 2, e313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, S.-H.; Chou, Y.-T.; Lin, S.-E.; Hsu, R.-C.; Chung, C.-L.; Kao, Y.-R.; Liu, H.E.; Wu, C.-W. Brain Metastases in Patients with Non-Small Cell Lung Cancer: The Role of Mutated-EGFRs with an Exon 19 Deletion or L858R Point Mutation in Cancer Cell Dissemination. Oncotarget 2017, 8, 53405–53418. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S.I.; Puc, J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; et al. PTEN, a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain, Breast, and Prostate Cancer. Science 1997, 275, 1943–1947. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, D.; Longy, M. Mutations of the Human PTEN Gene. Hum. Mutat. 2000, 16, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Hahn, M.; Wieland, I.; Koufaki, O.N.; Görgens, H.; Sobottka, S.B.; Schackert, G.; Schackert, H.K. Genetic Alterations of the Tumor Suppressor Gene PTEN/MMAC1 in Human Brain Metastases. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 1999, 5, 2431–2437. [Google Scholar]
- Nagata, Y.; Lan, K.-H.; Zhou, X.; Tan, M.; Esteva, F.J.; Sahin, A.A.; Klos, K.S.; Li, P.; Monia, B.P.; Nguyen, N.T.; et al. PTEN Activation Contributes to Tumor Inhibition by Trastuzumab, and Loss of PTEN Predicts Trastuzumab Resistance in Patients. Cancer Cell 2004, 6, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.-A.; Mooij, T.M.; Roos-Blom, M.-J.; Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, A.; O’Hara, C.; Khan, S.; Shack, L.; Woodward, E.; Maher, E.R.; Lalloo, F.; Evans, D.G.R. Risk of Cancer Other than Breast or Ovarian in Individuals with BRCA1 and BRCA2 Mutations. Fam. Cancer 2012, 11, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Barry, W.T.; Seah, D.S.; Tung, N.M.; Garber, J.E.; Lin, N.U. Patterns of Recurrence and Metastasis in BRCA1/BRCA2-associated Breast Cancers. Cancer 2020, 126, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Lin, W.; Long, Y.; Yang, Y.; Zhang, H.; Wu, K.; Chu, Q. Notch Signaling Pathway: Architecture, Disease, and Therapeutics. Signal Transduct. Target. Ther. 2022, 7, 95. [Google Scholar] [CrossRef]
- Nam, D.-H.; Jeon, H.-M.; Kim, S.; Kim, M.H.; Lee, Y.-J.; Lee, M.S.; Kim, H.; Joo, K.M.; Lee, D.-S.; Price, J.E.; et al. Activation of Notch Signaling in a Xenograft Model of Brain Metastasis. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 4059–4066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGowan, P.M.; Simedrea, C.; Ribot, E.J.; Foster, P.J.; Palmieri, D.; Steeg, P.S.; Allan, A.L.; Chambers, A.F. Notch1 Inhibition Alters the CD44hi/CD24lo Population and Reduces the Formation of Brain Metastases from Breast Cancer. Mol. Cancer Res. MCR 2011, 9, 834–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ladd, B.; Mazzola, A.M.; Bihani, T.; Lai, Z.; Bradford, J.; Collins, M.; Barry, E.; Goeppert, A.U.; Weir, H.M.; Hearne, K.; et al. Effective Combination Therapies in Preclinical Endocrine Resistant Breast Cancer Models Harboring ER Mutations. OncoTarget 2016, 7, 54120–54136. [Google Scholar] [CrossRef] [Green Version]
- Turner, N.C.; Slamon, D.J.; Ro, J.; Bondarenko, I.; Im, S.-A.; Masuda, N.; Colleoni, M.; DeMichele, A.; Loi, S.; Verma, S.; et al. Overall Survival with Palbociclib and Fulvestrant in Advanced Breast Cancer. N. Engl. J. Med. 2018, 379, 1926–1936. [Google Scholar] [CrossRef]
- Lainé, M.; Fanning, S.W.; Chang, Y.-F.; Green, B.; Greene, M.E.; Komm, B.; Kurleto, J.D.; Phung, L.; Greene, G.L. Lasofoxifene as a Potential Treatment for Therapy-Resistant ER-Positive Metastatic Breast Cancer. Breast Cancer Res. BCR 2021, 23, 54. [Google Scholar] [CrossRef]
- Puyang, X.; Furman, C.; Zheng, G.Z.; Wu, Z.J.; Banka, D.; Aithal, K.; Agoulnik, S.; Bolduc, D.M.; Buonamici, S.; Caleb, B.; et al. Discovery of Selective Estrogen Receptor Covalent Antagonists for the Treatment of ERαWT and ERαMUT Breast Cancer. Cancer Discov. 2018, 8, 1176–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sermonix Pharmaceuticals Inc. An Open-Label, Randomized, Multicenter Study Evaluating the Activity of Lasofoxifene Relative to Fulvestrant for the Treatment of Pre- and Postmenopausal Women With Locally Advanced or Metastatic ER+/HER2- Breast Cancer With an ESR1 Mutation. clinicaltrials.gov; 2022. Available online: https://www.medifind.com/conditions/HER2%20Negative%20Breast%20Cancer/6547/clinical-trial/4684954 (accessed on 23 April 2022).
- H3 Biomedicine Inc. A Phase 1-2 Multicenter, Open Label Trial of H3B-6545, a Covalent Antagonist of Estrogen Receptor Alpha. In Women With Locally Advanced or Metastatic Estrogen Receptor-Positive, HER2 Negative Breast Cancer. clinicaltrials.gov; 2022. Available online: https://ichgcp.net/clinical-trials-registry/NCT03250676 (accessed on 23 April 2022).
- Hyman, D.M.; Piha-Paul, S.A.; Won, H.; Rodon, J.; Saura, C.; Shapiro, G.I.; Juric, D.; Quinn, D.I.; Moreno, V.; Doger, B.; et al. HER Kinase Inhibition in Patients with HER2- and HER3-Mutant Cancers. Nature 2018, 554, 189–194. [Google Scholar] [CrossRef]
- Oaknin, A.; Friedman, C.F.; Roman, L.D.; D’Souza, A.; Brana, I.; Bidard, F.-C.; Goldman, J.; Alvarez, E.A.; Boni, V.; ElNaggar, A.C.; et al. Neratinib in Patients with HER2-Mutant, Metastatic Cervical Cancer: Findings from the Phase 2 SUMMIT Basket Trial. Gynecol. Oncol. 2020, 159, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Xiong, L.; Han, B. The Effectiveness of EGFR-TKIs against Brain Metastases in EGFR Mutation-Positive Non-Small-Cell Lung Cancer. OncoTargets Ther. 2017, 10, 2335–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reungwetwattana, T.; Nakagawa, K.; Cho, B.C.; Cobo, M.; Cho, E.K.; Bertolini, A.; Bohnet, S.; Zhou, C.; Lee, K.H.; Nogami, N.; et al. CNS Response to Osimertinib Versus Standard Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients With Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 3290–3297. [Google Scholar] [CrossRef] [PubMed]
- Chagoya, G.; Kwatra, S.G.; Nanni, C.W.; Roberts, C.M.; Phillips, S.M.; Nullmeyergh, S.; Gilmore, S.P.; Spasojevic, I.; Corcoran, D.L.; Young, C.C.; et al. Efficacy of Osimertinib against EGFRvIII+ Glioblastoma. Oncotarget 2020, 11, 2074–2082. [Google Scholar] [CrossRef]
- Singh, G.K.; Bajpai, J.; Joshi, S.; Prabhash, K.; Choughule, A.; Patil, A.; Gupta, S.; Badwe, R.A. Excellent Response to Erlotinib in Breast Carcinoma with Rare EGFR Mutation—A Case Report. Ecancermedicalscience 2020, 14, 1092. [Google Scholar] [CrossRef]
- Ni, J.; Ramkissoon, S.H.; Xie, S.; Goel, S.; Stover, D.G.; Guo, H.; Luu, V.; Marco, E.; Ramkissoon, L.A.; Kang, Y.J.; et al. Combination Inhibition of PI3K and MTORC1 Yields Durable Remissions in Orthotopic Patient-Derived Xenografts of HER2-Positive Breast Cancer Brain Metastases. Nat. Med. 2016, 22, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Philip, C.-A.; Laskov, I.; Beauchamp, M.-C.; Marques, M.; Amin, O.; Bitharas, J.; Kessous, R.; Kogan, L.; Baloch, T.; Gotlieb, W.H.; et al. Inhibition of PI3K-AKT-MTOR Pathway Sensitizes Endometrial Cancer Cell Lines to PARP Inhibitors. BMC Cancer 2017, 17, 638. [Google Scholar] [CrossRef] [PubMed]
- Gelmon, K.A.; Tischkowitz, M.; Mackay, H.; Swenerton, K.; Robidoux, A.; Tonkin, K.; Hirte, H.; Huntsman, D.; Clemons, M.; Gilks, B.; et al. Olaparib in Patients with Recurrent High-Grade Serous or Poorly Differentiated Ovarian Carcinoma or Triple-Negative Breast Cancer: A Phase 2, Multicentre, Open-Label, Non-Randomised Study. Lancet Oncol. 2011, 12, 852–861. [Google Scholar] [CrossRef] [PubMed]
- Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.-O.; Hochhauser, D.; Arnold, D.; Oh, D.-Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef] [PubMed]
- de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Gao, H.; Xu, Y. Successful Treatment of a Patient with Brain Metastases from Endometrial Cancer Using Niraparib: A Case Report. Ann. Palliat. Med. 2021, 10, 818–827. [Google Scholar] [CrossRef]
- Karginova, O.; Siegel, M.B.; Van Swearingen, A.E.D.; Deal, A.M.; Adamo, B.; Sambade, M.J.; Bazyar, S.; Nikolaishvili-Feinberg, N.; Bash, R.; O’Neal, S.; et al. Efficacy of Carboplatin Alone and in Combination with ABT888 in Intracranial Murine Models of BRCA-Mutated and BRCA-Wild-Type Triple Negative Breast Cancer. Mol. Cancer Ther. 2015, 14, 920–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodler, E.; Sharma, P.; Barlow, W.E.; Gralow, J.R.; Puhalla, S.L.; Anders, C.K.; Goldstein, L.; Tripathy, D.; Brown-Glaberman, U.A.; Huynh, T.-T.; et al. Cisplatin with Veliparib or Placebo in Metastatic Triple-Negative Breast Cancer and BRCA Mutation-Associated Breast Cancer (S1416): A Randomised, Double-Blind, Placebo-Controlled, Phase 2 Trial. Lancet Oncol. 2023, 24, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Morgensztern, D.; Besse, B.; Greillier, L.; Santana-Davila, R.; Ready, N.; Hann, C.L.; Glisson, B.S.; Farago, A.F.; Dowlati, A.; Rudin, C.M.; et al. Efficacy and Safety of Rovalpituzumab Tesirine in Third-Line and Beyond Patients with DLL3-Expressing, Relapsed/Refractory Small-Cell Lung Cancer: Results From the Phase II TRINITY Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019, 25, 6958–6966. [Google Scholar] [CrossRef] [Green Version]
- Coleman, R.L.; Handley, K.F.; Burger, R.; Molin, G.Z.D.; Stagg, R.; Sood, A.K.; Moore, K.N. Demcizumab Combined with Paclitaxel for Platinum-Resistant Ovarian, Primary Peritoneal, and Fallopian Tube Cancer: The SIERRA Open-Label Phase Ib Trial. Gynecol. Oncol. 2020, 157, 386–391. [Google Scholar] [CrossRef]
- Haffner, M.C.; Mosbruger, T.; Esopi, D.M.; Fedor, H.; Heaphy, C.M.; Walker, D.A.; Adejola, N.; Gürel, M.; Hicks, J.; Meeker, A.K.; et al. Tracking the Clonal Origin of Lethal Prostate Cancer. J. Clin. Investig. 2013, 123, 4918–4922. [Google Scholar] [CrossRef] [Green Version]
- Brasó-Maristany, F.; Paré, L.; Chic, N.; Martínez-Sáez, O.; Pascual, T.; Mallafré-Larrosa, M.; Schettini, F.; González-Farré, B.; Sanfeliu, E.; Martínez, D.; et al. Gene Expression Profiles of Breast Cancer Metastasis According to Organ Site. Mol. Oncol. 2022, 16, 69–87. [Google Scholar] [CrossRef] [PubMed]
p-Value for Pairwise Comparisons of Mutation Prevalence | |||
---|---|---|---|
Gene | Primary Tumors vs. Extracerebral Metastases | Primary Tumors vs. Brain Metastases | Extracerebral Metastases vs. Brain Metastases |
TP53 | <0.0001 | <0.0001 | <0.0001 |
PIK3CA | 0.06 | 0.04 | 0.33 |
BRCA2 | 0.002 | <0.0001 | 0.002 |
PTEN | 0.008 | <0.0001 | <0.0001 |
CDKN2B | NA | 0.95 | NA |
BRCA1 | <0.0001 | 0.002 | 0.72 |
KDM6A | 0.06 | 0.02 | 0.34 |
NRAS | <0.0001 | 0.35 | <0.0001 |
NF1 | <0.0001 | <0.0001 | 0.8 |
ERBB3 | 0.65 | <0.0001 | 0.8 |
NOTCH1 | <0.0001 | <0.0001 | <0.0001 |
MTOR | NA | 0.001 | NA |
FOXA1 | <0.0001 | <0.0001 | <0.0001 |
PIK3R1 | 0.68 | <0.0001 | 0.06 |
ARID2 | 0.02 | 0.004 | 0.77 |
ASXL1 | <0.0001 | <0.0001 | 0.05 |
EGFR | <0.0001 | <0.0001 | <0.0001 |
MLH1 | 0.001 | <0.0001 | <0.0001 |
BRAF | 0.0001 | <0.0001 | <0.0001 |
FGFR2 | 0.29 | <0.0001 | <0.0001 |
FGFR4 | NA | <0.0001 | NA |
Gene | Samples | Univariate Meta-Regression | Multivariate Meta-Regression | ||||
---|---|---|---|---|---|---|---|
Estimate | Standard Error | p | Estimate | Standard Error | p | ||
TP53 | Tumor site: Primary tumors | 1 (ref) | - | ||||
Extracerebral metastases | −0.42 | 0.27 | 0.11 | ||||
Brain metastases | 0.44 | 0.27 | 0.1 | ||||
Quality of studies (good) | −0.29 | 0.24 | 0.22 | ||||
Method analysis: NGS | 1 (ref) | - | - | ||||
Targeted NGS | 0.24 | 0.25 | 0.33 | ||||
Other | −0.5 | 0.47 | 0.28 | ||||
Preservation (Frozen) | −0.25 | 0.29 | 0.39 | ||||
BRCA2 | Tumor site: Primary tumors | 1 (ref) | - | - | 1 (ref) | - | - |
Extracerebral metastases | −0.24 | 0.35 | 0.49 | −0.12 | 0.41 | 0.77 | |
Brain metastases | 0.94 | 0.35 | 0.008 | 0.92 | 0.37 | 0.01 | |
Quality of studies (good) | −0.79 | 0.44 | 0.07 | ||||
Method analysis: NGS | 1 (ref) | - | - | ||||
Targeted NGS | −0.29 | 0.4 | 0.48 | ||||
Other | - | - | - | ||||
Preservation (Frozen) | −0.87 | 0.66 | 0.19 | −0.59 | 0.58 | 0.31 | |
PTEN | Tumor site: Primary tumors | 1 (ref) | - | - | 1 (ref) | - | - |
Extracerebral metastases | 0.46 | 0.32 | 0.15 | 0.47 | 0.29 | 0.1 | |
Brain metastases | 0.84 | 0.35 | 0.01 | 0.32 | 0.35 | 0.36 | |
Quality of studies (good) | −1.26 | 0.32 | <0.0001 | −1.21 | 0.37 | 0.01 | |
Method analysis: NGS | 1 (ref) | - | - | ||||
Targeted NGS | −0.41 | 0.38 | 0.27 | ||||
Other | −0.58 | 0.78 | 0.45 | ||||
Preservation (Frozen) | 0.88 | 0.37 | 0.01 | 0.23 | 0.36 | 0.52 | |
NRAS | Tumor site: Primary tumors | 1 (ref) | - | - | 1 (ref) | - | - |
Extracerebral metastases | −3.81 | 1.12 | 0.0007 | −3.05 | 0.88 | 0.0005 | |
Brain metastases | 0.88 | 0.89 | 0.32 | 0.65 | 0.71 | 0.35 | |
Quality of studies (good) | −3.42 | 1.11 | 0.002 | −1.95 | 0.64 | 0.002 | |
Method analysis: NGS | 1 (ref) | - | - | ||||
Targeted NGS | - | - | - | ||||
Other | −1.62 | 2.38 | 0.49 | ||||
Preservation (Frozen) | - | - | - | ||||
NOTCH1 | Tumor site: Primary tumors | 1 (ref) | - | - | 1 (ref) | - | - |
Extracerebral metastases | −3.55 | 1.18 | 0.002 | −2.97 | 1.1 | 0.006 | |
Brain metastases | 1.46 | 0.87 | 0.09 | 1.5 | 0.76 | 0.04 | |
Quality of studies (good) | −1.52 | 1.09 | 0.16 | −0.39 | 0.81 | 0.62 | |
Method analysis: NGS | 1 (ref) | - | - | 1 (ref) | - | - | |
Targeted NGS | 1.8 | 0.99 | 0.07 | 1.04 | 0.75 | 0.16 | |
Other | - | - | - | - | - | - | |
Preservation (Frozen) | 1.12 | 1.21 | 0.35 | ||||
EGFR | Tumor site: Primary tumors | 1 (ref) | - | - | 1 (ref) | - | - |
Extracerebral metastases | −1.89 | 0.78 | 0.01 | −1.42 | 0.39 | 0.0003 | |
Brain metastases | 1.38 | 0.61 | 0.02 | 1.46 | 0.44 | 0.001 | |
Quality of studies (good) | −1.83 | 0.77 | 0.01 | −1.49 | 0.46 | 0.001 | |
Method analysis: NGS | 1 (ref) | - | - | ||||
Targeted NGS | 0.33 | 0.79 | 0.67 | ||||
Other | - | - | - | ||||
Preservation (Frozen) | −0.99 | 1.67 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.T.; Hamdan, D.; Angeli, E.; Feugeas, J.-P.; Le, Q.V.; Pamoukdjian, F.; Bousquet, G. Genomics of Breast Cancer Brain Metastases: A Meta-Analysis and Therapeutic Implications. Cancers 2023, 15, 1728. https://doi.org/10.3390/cancers15061728
Nguyen TT, Hamdan D, Angeli E, Feugeas J-P, Le QV, Pamoukdjian F, Bousquet G. Genomics of Breast Cancer Brain Metastases: A Meta-Analysis and Therapeutic Implications. Cancers. 2023; 15(6):1728. https://doi.org/10.3390/cancers15061728
Chicago/Turabian StyleNguyen, Thuy Thi, Diaddin Hamdan, Eurydice Angeli, Jean-Paul Feugeas, Quang Van Le, Frédéric Pamoukdjian, and Guilhem Bousquet. 2023. "Genomics of Breast Cancer Brain Metastases: A Meta-Analysis and Therapeutic Implications" Cancers 15, no. 6: 1728. https://doi.org/10.3390/cancers15061728
APA StyleNguyen, T. T., Hamdan, D., Angeli, E., Feugeas, J. -P., Le, Q. V., Pamoukdjian, F., & Bousquet, G. (2023). Genomics of Breast Cancer Brain Metastases: A Meta-Analysis and Therapeutic Implications. Cancers, 15(6), 1728. https://doi.org/10.3390/cancers15061728