Next Generation BTK Inhibitors in CLL: Evolving Challenges and New Opportunities
Abstract
:Simple Summary
Abstract
1. Introduction
2. Next-Generation Covalent BTKi: Efficacy and Tolerability
2.1. Acalabrutinib
2.2. Zanubrutinib
2.3. Safety Evaluation between Covalent BTKi: Direct and Indirect Comparisons
2.4. Other Covalent BTKi
3. Overcoming Resistance: Non-Covalent BTKi
3.1. Pirtobrutinib
3.2. Other Non-Covalent BTKi
4. Incorporating Next BTK Inhibitors in a Fixed Duration Schedule: Duplets and Triplets
5. Looking at the Future of BTK Inhibition: BTK Degraders
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wiestner, A. Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Blood 2012, 120, 4684–4691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satterthwaite, A.B.; Witte, O.N. The role of Bruton’s tyrosine kinase in B-cell development and function: A genetic perspective. Immunol. Rev. 2000, 175, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Woyach, J.A.; Bojnik, E.; Ruppert, A.S.; Stefanovski, M.R.; Goettl, V.M.; Smucker, K.A.; Smith, L.L.; Dubovsky, J.A.; Towns, W.T.H.; MacMurray, J.; et al. Bruton’s tyrosine kinase (BTK) function is important to the development and expansion of chronic lymphocytic leukemia (CLL). Blood 2014, 123, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Tambaro, F.P.; De Novellis, D.; Wierda, W.G. The Role of BTK Inhibition in the Treatment of Chronic Lymphocytic Leukemia: A Clinical View. J. Exp. Pharmacol. 2021, 13, 923–935. [Google Scholar] [CrossRef]
- Woyach, J.A.; Ruppert, A.S.; Heerema, N.A.; Zhao, W.; Booth, A.M.; Ding, W.; Bartlett, N.L.; Brander, D.M.; Barr, P.M.; Rogers, K.A.; et al. Ibrutinib Regimens versus Chemoimmunotherapy in Older Patients with Untreated CLL. N. Engl. J. Med. 2018, 379, 2517–2528. [Google Scholar] [CrossRef]
- Moreno, C.; Greil, R.; Demirkan, F.; Tedeschi, A.; Anz, B.; Larratt, L.; Simkovic, M.; Novak, J.; Strugov, V.; Gill, D.; et al. First-line treatment of chronic lymphocytic leukemia with ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab: Final analysis of the randomized, phase III illuminate trial. Haematologica 2022, 107, 2108–2120. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Wang, X.V.; Kay, N.E.; Hanson, C.A.; O’Brien, S.; Barrientos, B.; Jelinek, D.F.; Braggio, E.; Leis, J.F.; Zhanget, C.C.; et al. Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N. Engl. J. Med. 2019, 381, 432–443. [Google Scholar] [CrossRef]
- Munir, T.; Brown, J.R.; O’Brien, S.; Barrientos, J.C.; Barr, P.M.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; et al. Final analysis from RESONATE: Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am. J. Hematol. 2019, 94, 1353–1363. [Google Scholar] [CrossRef] [Green Version]
- Barr, P.M.; Owen, C.; Robak, T.; Tedeschi, A.; Bairey, O.; Burger, J.A.; Hillmen, P.; Coutre, S.E.; Dearden, C.; Grosicki, S.; et al. Up to 8-year follow-up from RESONATE-2: First-line ibrutinib treatment for patients with chronic lymphocytic leukemia. Blood Adv. 2022, 6, 3440–3450. [Google Scholar] [CrossRef]
- Christensen, B.W.; Zaha, V.G.; Awan, F.T. Cardiotoxicity of BTK inhibitors: Ibrutinib and beyond. Expert Rev. Hematol. 2022, 15, 321–331. [Google Scholar] [CrossRef]
- Cho, H.J.; Baek, D.W.; Kim, J.; Lee, J.M.; Moon, J.H.; Sohn, S.K. Keeping a balance in chronic lymphocytic leukemia (CLL) patients taking ibrutinib: Ibrutinib-associated adverse events and their management based on drug interactions. Expert Rev. Hematol. 2021, 14, 819–830. [Google Scholar] [CrossRef]
- Lama, T.G.; Kyung, D.; O’Brien, S. Mechanisms of ibrutinib resistance in chronic lymphocytic leukemia and alternative treatment strategies. Expert Rev. Hematol. 2020, 13, 871–883. [Google Scholar] [CrossRef]
- Calquence [Summary of Product Characteristics]; AstraZeneca UK Limited: Bedfordshire, UK, 2020.
- Podoll, T.; Pearson, P.G.; Kaptein, A.; Evarts, J.; de Bruin, G.; Hoek, M.E.-V.; de Jong, A.; van Lith, B.; Sun, H.; Byard, S.; et al. Identification and Characterization of ACP-5862, the Major Circulating Active Metabolite of Acalabrutinib: Both Are Potent and Selective Covalent Bruton Tyrosine Kinase Inhibitors. J. Pharmacol. Exp. Ther. 2022, 384, 173–186. [Google Scholar] [CrossRef]
- Zhou, D.; Podoll, T.; Xu, Y.; Moorthy, G.; Vishwanathan, K.; Ware, J.; Slatter, J.G.; Al-Huniti, N. Evaluation of the Drug-Drug Interaction Potential of Acalabrutinib and Its Active Metabolite, ACP-5862, Using a Physiologically-Based Pharmacokinetic Modeling Approach. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Zhou, D.; Wei, H.; Yotvat, M.; Zhou, L.; Cheung, J.; Sarvaria, N.; Lai, R.; Sharma, S.; Vishwanathan, K.; et al. Acalabrutinib CYP3A-mediated drug–drug interactions: Clinical evaluations and physiologically based pharmacokinetic modelling to inform dose adjustment strategy. Br. J. Clin. Pharmacol. 2022, 88, 3716–3729. [Google Scholar] [CrossRef]
- Edlund, H.; Lee, S.K.; Andrew, M.A.; Slatter, J.G.; Aksenov, S.; Al-Huniti, N. Population pharmacokinetics of the BTK inhibitor acalabrutinib and its active metabolite in healthy volunteers and patients with B-Cellmalignancies. Clin. Pharmacokinet. 2019, 58, 659–672. [Google Scholar] [CrossRef]
- Pepin, X.J.H.; Moir, A.J.; Mann, J.C.; Sanderson, N.J.; Barker, R.; Meehan, E.; Plumb, A.P.; Bailey, G.R.; Murphy, D.S.; Krejsaet, C.M.; et al. Bridging in vitro dissolution and in vivo exposure for acalabrutinib. Part II. A mechanistic PBPK model for IR formulation comparison, proton pump inhibitor drug interactions, and administration with acidic juices. Eur. J. Pharm. Biopharm. 2019, 142, 435–448. [Google Scholar] [CrossRef]
- Herman, S.E.M.; Montraveta, A.; Niemann, C.U.; Mora-Jensen, H.; Gulrajani, M.; Krantz, F.; Mantel, R.; Smith, L.L.; McClanahan, F.; Harrington, B.K.; et al. The Bruton’s tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia. Clin. Cancer Res. 2017, 23, 2831–2841. [Google Scholar] [CrossRef] [Green Version]
- Barf, T.; Covey, T.; Izumi, R.; Van De Kar, B.; Gulrajani, M.; Van Lith, B.; Van Hoek, M.; De Zwart, E.; Mittag, D.; Demont, D.; et al. Acalabrutinib (ACP-196): A Covalent Bruton Tyrosine Kinase Inhibitor with a Differentiated Selectivity and In Vivo Potency Profile. J. Pharmacol. Exp. Ther. 2017, 363, 240–252. [Google Scholar] [CrossRef]
- Patel, V.; Balakrishnan, K.; Bibikova, E.; Ayres, M.; Keating, M.J.; Wierda, W.G.; Gandhi, V. Comparison of Acalabrutinib, A Selective Bruton Tyrosine Kinase Inhibitor, with Ibrutinib in Chronic Lymphocytic Leukemia Cells. Clin. Cancer Res. 2017, 23, 3734–3743. [Google Scholar] [CrossRef] [Green Version]
- Byrd, J.C.; Wierda, W.G.; Schuh, A.; Devereux, S.; Chaves, J.M.; Brown, J.R.; Hillmen, P.; Martin, P.; Awan, F.T.; Stephens, D.M.; et al. Acalabrutinib monotherapy in patients with relapsed/refractory chronic lymphocytic leukemia: Updated phase 2 results. Blood 2020, 135, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Byrd, J.C.; Woyach, J.A.; Furman, R.R.; Martin, P.; O’Brien, S.; Brown, J.R.; Stephens, D.M.; Barrientos, J.C.; Devereux, S.; Hillmen, P.; et al. Acalabrutinib in treatment-naive chronic lymphocytic leukemia. Blood 2021, 137, 3327–3338. [Google Scholar] [CrossRef] [PubMed]
- Golay, J.; Ubiali, G.; Introna, M. The specific Bruton tyrosine kinase inhibitor acalabrutinib (ACP-196) shows favorable in vitro activity against chronic lymphocytic leukemia B cells with CD20 antibodies. Haematologica 2017, 102, e400–e403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woyach, J.A.; Blachly, J.S.; Rogers, K.A.; Bhat, S.A.; Jianfar, M.; Lozanski, G.; Weiss, D.M.; Andersen, B.L.; Gulrajani, M.; Frigault, M.M.; et al. Acalabrutinib plus Obinutuzumab in Treatment-Naïve and Relapsed/Refractory Chronic Lymphocytic Leukemia. Cancer Discov. 2020, 10, 394–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghia, P.; Pluta, A.; Wach, M.; Lysak, D.; Šimkovič, M.; Kriachok, I.; Illés, Á.; de la Serna, J.; Dolan, S.; Campbell, P.; et al. Acalabrutinib Versus Investigator’s Choice in Relapsed/Refractory Chronic Lymphocytic Leukemia: Final ASCEND Trial Results. Hemasphere 2022, 6, e801. [Google Scholar] [CrossRef]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Efficacy and safety in a 4-year follow-up of the ELEVATE-TN study comparing acalabrutinib with or without obinutuzumab versus obinutuzumab plus chlorambucil in treatment-naïve chronic lymphocytic leukemia. Leukemia 2022, 36, 1171–1175. [Google Scholar] [CrossRef]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Patel, K.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Fogliatto, L.M.; et al. Acalabrutinib ± Obinutuzumab vs. Obinutuzumab + Chlorambucil in Treatment-naive Chronic Lymphocytic Leukemia: 5-Year Follow-up of Elevate-tn. In Proceedings of the European Hematology Association Annual Meeting 2022, Vienna, Austria, 9–12 June 2022. [Google Scholar]
- Byrd, J.C.; Hillmen, P.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Yenerel, M.N.; Illés, A.; Kay, N.; et al. Acalabrutinib Versus Ibrutinib in Previously Treated Chronic Lymphocytic Leukemia: Results of the First Randomized Phase III Trial. J. Clin. Oncol. 2021, 39, 3441–3452. [Google Scholar] [CrossRef]
- Sheng, Z.; Song, S.; Yu, M.; Zhu, H.; Gao, A.; Gao, W.; Ran, X.; Huo, D. Comparison of acalabrutinib plus obinutuzumab, ibrutinib plus obinutuzumab and venetoclax plus obinutuzumab for untreated CLL: A network meta-analysis. Leuk. Lymphoma 2020, 61, 3432–3439. [Google Scholar] [CrossRef]
- Davids, M.S.; Telford, C.; Abhyankar, S.; Waweru, C.; Ringshausen, I. Matching-adjusted indirect comparisons of safety and efficacy of acalabrutinib versus other targeted therapies in patients with treatment-nave chronic lymphocytic leukemia. Leuk. Lymphoma 2021, 62, 2342–2351. [Google Scholar] [CrossRef]
- Molica, S.; Giannarelli, D.; Montserrat, E. Comparison between Venetoclax-based and Bruton Tyrosine Kinase Inhibitor-based Therapy as Upfront Treatment of Chronic Lymphocytic Leukemia (CLL): A Systematic Review and Network Meta-analysis. Clin. Lymphoma Myeloma Leuk. 2021, 21, 216–223. [Google Scholar] [CrossRef]
- Alrawashdh, N.; Persky, D.O.; McBride, A.; Sweasy, J.; Erstad, B.; Abraham, I. Comparative Efficacy of First-Line Treatments of Chronic Lymphocytic Leukemia: Network Meta-Analyses of Survival Curves. Clin. Lymphoma Myeloma Leuk. 2021, 21, e820–e831. [Google Scholar] [CrossRef]
- Tam, C.S.; Trotman, J.; Opat, S.; Burger, J.A.; Cull, G.; Gottlieb, D.; Harrup, R.; Johnston, P.B.; Marlton, P.; Munoz, J.; et al. Phase 1 study of the selective BTK inhibitor zanubrutinib in B-cell malignancies and safety and efficacy evaluation in CLL. Blood 2019, 134, 851–859. [Google Scholar] [CrossRef] [Green Version]
- Tam, C.S.; Ou, Y.C.; Trotman, J.; Opat, S. Clinical pharmacology and PK/PD translation of the second-generation Bruton’s tyrosine kinase inhibitor, zanubrutinib. Expert Rev. Clin. Pharmacol. 2021, 14, 1329–1344. [Google Scholar] [CrossRef]
- Cull, G.; Burger, J.A.; Opat, S.; Gottlieb, D.; Verner, E.; Trotman, J.; Marlton, P.; Munoz, J.; Johnston, P.; Simpson, D.; et al. Zanubrutinib for treatment-naïve and relapsed/refractory chronic lymphocytic leukaemia: Long-term follow-up of the phase I/II AU-003 study. Br. J. Haematol. 2022, 196, 1209–1218. [Google Scholar] [CrossRef]
- Advani, R.H.; Buggy, J.J.; Sharman, J.P.; Smith, S.M.; Boyd, T.E.; Grant, B.; Kolibaba, K.S.; Furman, R.R.; Rodriguez, S.; Chang, B.Y.; et al. Bruton Tyrosine Kinase Inhibitor Ibrutinib (PCI-32765) Has Significant Activity in Patients with Relapsed/Refractory B-Cell Malignancies. J. Clin. Oncol. 2013, 31, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Byrd, J.C.; Furman, R.R.; Coutre, S.E.; Flinn, I.W.; Burger, J.A.; Blum, K.; Sharman, J.P.; Wierda, W.; Zhao, W.; Heerema, N.A.; et al. Ibrutinib Treatment for First-Line and Relapsed/Refractory Chronic Lymphocytic Leukemia: Final Analysis of the Pivotal Phase Ib/II PCYC-1102 Study. Clin. Cancer Res. 2020, 26, 3918–3927. [Google Scholar] [CrossRef] [Green Version]
- Tam, C.S.; Brown, J.R.; Kahl, B.S.; Ghia, P.; Giannopoulos, K.; Jurczak, W.; Šimkovič, M.; Shadman, M.; Österborg, A.; Laurenti, L.; et al. Zanubrutinib versus bendamustine and rituximab in untreated chronic lymphocytic leukaemia and small lymphocytic lymphoma (SEQUOIA): A randomised, controlled, phase 3 trial. Lancet Oncol. 2022, 23, 1031–1043. [Google Scholar] [CrossRef]
- Brown, J.R.; Eichhorst, B.; Hillmen, P.; Jurczak, W.; Kaźmierczak, M.; Lamanna, N.; O’Brien, S.M.; Tam, C.S.; Qiu, L.; Zhou, K.; et al. Zanubrutinib or Ibrutinib in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2022, 388, 319–332. [Google Scholar] [CrossRef]
- Tam, C.S.; Robak, T.; Ghia, P.; Kahl, B.S.; Walker, P.; Janowski, W.; Simpson, D.; Shadman, M.; Ganly, P.S.; Laurenti, L.; et al. Zanubrutinib monotherapy for patients with treatment-naïve chronic lymphocytic leukemia and 17p deletion. Haematologica 2020, 106, 2354–2363. [Google Scholar] [CrossRef]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): A randomised, controlled, phase 3 trial. Lancet 2020, 395, 1278–1291. [Google Scholar] [CrossRef]
- Ahn, I.E.; Tian, X.; Wiestner, A. Ibrutinib for Chronic Lymphocytic Leukemia with TP53 Alterations. N. Engl. J. Med. 2020, 383, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Rogers, K.A.; Thompson, P.A.; Allan, J.N.; Coleman, M.; Sharman, J.P.; Cheson, B.D.; Jones, D.; Izumi, R.; Frigault, M.M.; Quah, C.; et al. Phase II study of acalabrutinib in ibrutinib-intolerant patients with relapsed/refractory chronic lymphocytic leukemia. Haematologica 2021, 106, 2364–2373. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; Barr, P.M.; Robak, T.; Owen, C.; Ghia, P.; Tedeschi, A.; Bairey, O.; Hillmen, P.; Coutre, S.E.; Devereux, S.; et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia 2020, 34, 787–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shadman, M.; Flinn, D.W.; Levy, M.Y.; Porter, R.F.; Burke, J.M.; Zafar, S.F.; Misleh, J.; Kingsley, E.C.; Yimer, H.A.; Freeman, B.; et al. Zanubrutinib in patients with previously treated B-cell malignancies intolerant of previous Bruton tyrosine kinase inhibitors in the USA: A phase 2, open-label, single-arm study. Lancet Haematol. 2023, 10, e35–e45. [Google Scholar] [CrossRef]
- Schafer, P.H.; Kivitz, A.J.; Ma, J.; Korish, S.; Sutherland, D.; Li, L.; Azaryan, A.; Kosek, J.; Adams, M.; Capone, L.; et al. Spebrutinib (CC-292) Affects Markers of B Cell Activation, Chemotaxis, and Osteoclasts in Patients with Rheumatoid Arthritis: Results from a Mechanistic Study. Rheumatol. Ther. 2019, 7, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.R.; Harb, W.A.; Hill, B.T.; Gabrilove, J.; Sharman, J.P.; Schreeder, M.T.; Barr, P.M.; Foran, J.M.; Miller, T.P.; Burger, J.A.; et al. Phase I study of single-agent CC-292, a highly selective Brutons tyrosine kinase inhibitor, in relapsed/refractory chronic lymphocytic leukemia. Haematologica 2016, 101, e295–e298. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, S. Orelabrutinib: First Approval. Drugs 2021, 81, 503–507. [Google Scholar] [CrossRef]
- Xu, W.; Song, Y.; Wang, T.; Yang, S.; Liu, L.; Hu, Y.; Zhang, W.; Zhou, J.; Gao, S.; Ding, K.; et al. Orelabrutinib monotherapy in patients with relapsed or refractory chronic lymphocytic leukemia/small lymphocytic lymphoma: Updated long term results of phase II study. In Proceedings of the American Society of Hematology Annual Meeting, Atlanta, GA, USA, 11–14 December 2021. [Google Scholar]
- Walter, H.S.; Rule, S.A.; Dyer, M.J.S.; Karlin, L.; Jones, C.; Cazin, B.; Quittet, P.; Shah, N.; Hutchinson, C.V.; Honda, H.; et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood 2016, 127, 411–419. [Google Scholar] [CrossRef] [Green Version]
- Danilov, A.V.; Herbaux, C.; Walter, H.S.; Hillmen, P.; Rule, S.A.; Kio, E.A.; Karlin, L.; Dyer, M.J.S.; Mitra, S.S.; Yi, P.C.; et al. Phase Ib Study of Tirabrutinib in Combination with Idelalisib or Entospletinib in Previously Treated Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2020, 26, 2810–2818. [Google Scholar] [CrossRef] [Green Version]
- Kutsch, N.; Pallasch, C.; Tausch, E.; Hebart, H.; Chow, K.U.; Graeven, U.; Kisro, J.; Kroeber, A.; Tausch, E.; Fischer, K.; et al. Efficacy and safety of the combination of tirabrutinib and entospletinib with or without obinutuzumab in relapsed chronic lymphocytic leukemia. HemaSphere 2022, 6, e692. [Google Scholar] [CrossRef]
- Hampel, P.J.; Rabe, K.G.; Call, T.G.; Ding, W.; Leis, J.F.; Chanan-Khan, A.A.; Kenderian, S.S.; Muchtar, E.; Wang, Y.; Ailawadhi, S.; et al. Clinical outcomes in patients with chronic lymphocytic leukemia with disease progression on ibrutinib. Blood Cancer J. 2022, 12, 124. [Google Scholar] [CrossRef]
- Mato, A.R.; Nabhan, C.; Thompson, M.C.; Lamanna, N.; Brander, D.M.; Hill, B.; Howlett, C.; Skarbnik, A.; Cheson, B.D.; Zent, C.; et al. Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: A real-world analysis. Haematologica 2018, 103, 874–879. [Google Scholar] [CrossRef]
- Woyach, J.A.; Furman, R.R.; Liu, T.-M.; Ozer, H.G.; Zapatka, M.; Ruppert, A.S.; Xue, L.; Li, D.H.-H.; Steggerda, S.M.; Versele, M.; et al. Resistance Mechanisms for the Bruton’s Tyrosine Kinase Inhibitor Ibrutinib. N. Engl. J. Med. 2014, 370, 2286–2294. [Google Scholar] [CrossRef] [Green Version]
- Burger, J.A.; Landau, D.A.; Taylor-Weiner, A.; Bozic, I.; Zhang, H.; Sarosiek, K.; Wang, L.; Stewart, C.; Fan, J.; Hoellenriegel, J.; et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat. Commun. 2016, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Woyach, J.; Huang, Y.; Rogers, K.; Bhat, S.A.; Grever, M.R.; Lozanski, A.; Doong, T.-J.; Blachly, J.S.; Lozanski, G.; Jones, D.; et al. Resistance to Acalabrutinib in CLL Is Mediated Primarily by BTK Mutations. In Proceedings of the American Society of Hematology Annual Meeting, Orlando, FL, USA, 7–10 December 2019. [Google Scholar]
- Blombery, P.; Thompson, E.R.; Lew, T.E.; Tiong, I.S.; Bennett, R.; Cheah, C.Y.; Lewis, K.L.; Handunnetti, S.M.; Tang, C.P.S.; Roberts, A.; et al. Enrichment of BTK Leu528Trp mutations in patients with CLL on zanubrutinib: Potential for pirtobrutinib cross-resistance. Blood Adv. 2022, 6, 5589–5592. [Google Scholar] [CrossRef]
- Ahn, I.E.; Underbayev, C.; Albitar, A.; Herman, S.E.M.; Tian, X.; Maric, I.; Arthur, D.C.; Wake, L.; Pittaluga, S.; Yuan, C.M.; et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 2017, 129, 1469–1479. [Google Scholar] [CrossRef] [Green Version]
- Mato, A.; Woyach, J.A.; Brown, J.R.; Ghia, P.; Patel, K.; Eyre, T.A.; Munir, T.; Lech-Marańda, E.; Lamanna, N.; Tam, C.; et al. Efficacy of Pirtobrutinib in Covalent BTK-Inhibitor Pre-Treated Relapsed/Refractory CLL/SLL: Additional Patients and Ex-tended Follow-up from the Phase 1/2 BRUIN Study. In Proceedings of the American Society of Hematology Annual Meeting, New Orleans, LO, USA, 10–13 December 2022. [Google Scholar]
- Woyach, J.A.; Flinn, I.W.; Awan, F.T.; Eradat, H.; Brander, D.; Tees, M.; Parikh, S.A.; Phillips, T.J.; Ghori, R.; Reddy, N.M.; et al. Efficacy and Safety of Nemtabrutinib, a Wild-Type and C481S-Mutated Bruton Tyrosine Kinase Inhibitor for B-Cell Malignancies: Updated Analysis of the Open-Label Phase 1/2 Dose-Expansion Bellwave-001 Study. In Proceedings of the American Society of Hematology Annual Meeting, New Orleans, LO, USA, 10–13 December 2022. [Google Scholar]
- Allan, J.N.; Pinilla-Ibarz, J.; Gladstone, D.E.; Patel, K.; Sharman, J.P.; Wierda, W.G.; Choi, M.Y.; O’Brien, S.M.; Shadman, M.; Davids, M.S.; et al. Phase 1b dose-escalation study of the selective, noncovalent, reversible Bruton’s tyrosine kinase inhibitor vecabrutinib in B-cell malignancies. Haematologica 2021, 107, 984–987. [Google Scholar] [CrossRef]
- Samaniego, F.; Burke, J.M.; Mahadevan, D.; Sadiq, A.A.; Roeker, L.E.; Burke, J.M.; Cherry, M.; Cobb, P.; Cosgrove, D.; Meleas, J.M.; et al. A Phase 1a/b dose escalation study of the mutation agnostic BTK/FLT3 inhibitor luxeptinib (CG-806) in patients with relapsed or refractory B-cell malignancies. In Proceedings of the American Society of Hematology Annual Meeting, Atlanta, GA, USA, 11–14 December 2021. [Google Scholar]
- Byrd, J.C.; Smith, S.; Wagner-Johnston, N.; Sharman, J.; Chen, A.I.; Advani, R.; Augustson, B.; Marlton, P.; Commerford, S.R.; Okrah, K.; et al. First-in-human phase 1 study of the BTK inhibitor GDC-0853 in relapsed or refractory B-cell NHL and CLL. Oncotarget 2018, 9, 13023–13035. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Isik, E.; Fernandes, S.M.; Brown, J.R.; Letai, A.; Davids, M.S. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia. Leukemia 2017, 31, 2075–2084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davids, M.S.; Lampson, B.L.; Tyekucheva, S.; Wang, Z.; Lowney, J.C.; Pazienza, S.; Montegaard, J.; Patterson, V.; Weinstock, M.; Crombie, J.L.; et al. Acalabrutinib, venetoclax, and obinutuzumab as frontline treatment for chronic lymphocytic leukaemia: A single-arm, open-label, phase 2 study. Lancet Oncol. 2021, 22, 1391–1402. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.E.; Lampson, B.L.; Tyekucheva, S.; Hacket, L.R.T.; Ren, Y.; Shupe, S.J.; Fernandes, S.M.; Crombie, J.L.; Ng, S.; Kim, A.I.; et al. Updated Results from a Multicenter, Phase 2 Study of Acalabrutinib, Venetoclax, Obinutuzumab (AVO) in a Population of Previously Untreated Patients with CLL Enriched for High-Risk Disease. In Proceedings of the American Society of Hematology Annual Meeting, New Orleans, LO, USA, 10–13 December 2022. [Google Scholar]
- Tedeschi, A.; Ferrant, E.; Flinn, I.W.; Tam, C.S.; Ghia, P.; Robak, T.; Brown, J.R.; Ramakrishnan, V.; Tian, T.; Kuwahara, S.B.; et al. Zanubrutinib in Combination with Venetoclax for Patients with Treatment-Naïve (TN) Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL) with del (17p): Early Results from Arm D of the SEQUOIA (BGB-3111-304) Trial. In Proceedings of the American Society of Hematology Annual Meeting, Atlanta, GA, USA, 11–14 December 2021. [Google Scholar]
- Soumerai, J.D.; Mato, A.R.; Dogan, A.; Seshan, V.E.; Joffe, E.; Flaherty, K.; Carter, J.; Hochberg, E.; Barnes, J.A.; Hamilton, A.M.; et al. Zanubrutinib, obinutuzumab, and venetoclax with minimal residual disease-driven discontinuation in previously untreated patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2021, 8, e879–e890. [Google Scholar] [CrossRef] [PubMed]
- Ciechanover, A.; Orian, A.; Schwartz, A.L. Ubiquitin-mediated proteolysis: Biological regulation via destruction. BioEssays 2000, 22, 442–451. [Google Scholar] [CrossRef]
- Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 2001, 70, 503–533. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, X.; Ding, N.; Gao, H.; Wu, Y.; Yang, Y.; Zhao, M.; Hwang, J.; Song, Y.; Liu, W.; et al. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res. 2018, 28, 779–781. [Google Scholar] [CrossRef]
- Robbins, D.W.; Kelly, A.; Tan, M.; McIntosh, J.; Wu, J.; Konst, Z.; Kato, D.; Peng, G.; Mihalic, J.; Weisset, D.; et al. Nx-2127, a degrader of BTK and IMiD neosubstrates, for the treatment of B-cell malignancies. In Proceedings of the American Society of Hematology Annual Meeting, Virtual, 5–8 December 2020. [Google Scholar]
- Mato, A.R.; Wierda, W.G.; Ai, W.Z.; Flinn, I.W.; Tees, M.; Patel, M.R.; Patel, K.; O’Brien, S.M.; Bond, D.A.; Roeker, L.; et al. NX-2127-001, a First-in-Human Trial of NX-2127, a Bruton’s Tyrosine Kinase-Targeted Protein Degrader, in Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia and B-Cell Malignancies. In Proceedings of the American Society of Hematology Annual Meeting, New Orleans, LO, USA, 10–13 December 2022. [Google Scholar]
Reference | Schedule | N of pts (Tx Status) | m Prior Lines | 17p−/TP53 Mut (%) | ORR (%) | Survival | FU (mo) |
---|---|---|---|---|---|---|---|
Byrd et al. 2020 [22] | Acala 100 to 400 mg/d | 134 (R/R) | 2 | 23 | 94 | NR Est 45 mo PFS 62% | 41 |
Byrd et al. 2021 [23] | Acala 100 mg bid or 200 mg/d | 99 (TN) | NA | 10 | 97 | NR Est 48 mo PFS 96% | 53 |
Woyach et al. 2020 [25] | Obi: C1: 100 mg D1, 900 mg D2, 1000 mg D8, D15; C2–6: 1000 mg D1 Acala: 100 mg bid | 19 (TN) | NA | 22(17p)/ 28(TP53)/ 21(17p+TP53) | 95 | NR 94.4% | 39 |
Woyach et al. 2020 [25] | Obi: C1: 100 mg D1, 900 mg D2, 1000 mg D8, D15; C2–6: 1000 mg D1 Acala: 100 mg bid | 26 (R/R) | 1 | 20(17p)/ 25(TP53)/ 12(17p+TP53) | 92 | NR 72.7% | 42 |
Sharman et al. 2022 [27,28] | Acala: 100 mg bid | 179 (TN) | NA | 12.81 | 89.9 | 60 mo PFS 72% | 58.2 |
Sharman et al. 2022 [27,28] | Obi: C1: 100 mg D1, 900 mg D2, 1000 mg D8, D15; C2–6: 1000 mg D1 Acala: 100 mg bid | 179 (TN) | NA | 14 | 96.1 | 60 mo PFS 84% | 58.2 |
Ghia et al. 2022 [26] | Acala: 100 mg bid | 155 (R/R) | 1 | 17.4 | 83 | NR 42 mo PFS 62% | 46.5 |
Byrd et al. 2021 [29] | Acala: 100 mg bid | 268 (R/R) | 37.3 | 78 | PFS: 38.4 mo | 40.9 | |
Rogers et al. 2021 [44] | Acala: 100 mg bid | 60 (R/R) | 2 | 28 | 64 | Est 36 mo PFS 58% | 34.6 |
Cull et al. 2021 [36] | Zanu 160 mg bid or 320 mg/d or 160 mg/d | 101 (R/R) | 2 | 16 | 95 | Est 61.4 mo | 43.7 |
Cull et al. 2021 [36] | Zanu 160 mg bid or 320 mg/d or 160 mg/d | 22 (TN) | NA | 16.7 | 100 | NR | 54.1 |
Tam et al. 2022 (Group A) [39] | Zanu 160 mg bid | 241 (TN) | NA | 1 | 94.6 | NR 24 mo PFS 85.5% | 26.2 |
Tam et al. 2022 (Group C) [39,41] | Zanu 160 mg bid | 111 (TN) | NA | 99 | 90 | NR 24 mo PFS 88.9% | 30.5 |
Brown et al. 2022 [40] | Zanu 160 mg bid | 327 (R/R) | 1 | 22.9 | 83.5 | NR 24 mo PFS 78.4% | 29.6 |
Reference | Schedule | N of pts (Tx Status) | G ≥ 3 AEs (%) | Tox-Related Discontinuations (%) | Tox-Related Reductions (%) | Any Grade AF %, (G ≥ 3) | Any Grade Bleeding (G ≥ 3) % | Any Grade Hypertension (G ≥ 3) % | m Time on tx |
---|---|---|---|---|---|---|---|---|---|
Byrd et al. 2020 [22] | Acala 100 to 400 mg/d | 134 (R/R) | 66 | 13 | 4 | 7 (3) | (5) | 17.9 (7.5) | 41 |
Byrd et al. 2021 [23] | Acala 100 mg bid or 200 mg/d | 99 (TN) | 35.4 (occurring in >15% of pts) | 6.1 | NR | 5 (2) | 66 (3) | 22 (11) | 41.5 |
Woyach et al. 2020 [25] | Obi: C1: 100 mg D1, 900 mg D2, 1000 mg D8, D15; C2–6: 1000 mg D1 Acala: 100 mg bid | 19 (TN) 26 (R/R) | 62 77 | 5.3 15.4 | 2 pts 1 pt | 2 (2) | 71 (4) | 40 (7) | NR |
Sharman et al. 2022 [27,28] | Acala: 100 mg bid | 179 (TN) | 25 events (occurring in ≥30%) + 86 events of special interest | 12.3 (at 45.7 mo) | NR | 7.3 (1.1) | 43.6 (3.6) | 8.9 (3.9) | 58.1 |
Sharman et al. 2022 [27,28] | Obi: C1: 100 mg D1, 900 mg D2, 1000 mg D8, D15; C2–6: 1000 mg D1 Acala: 100 mg bid | 179 (TN) | 76 events (occurring in ≥30%) + 98 events of special interest | 12.8 (at 46.6 mo) | NR | 6.2 (1.1) | 49.4 (4.5) | 9.6 (4.5) | 58 |
Ghia et al. 2022 [26] | Acala: 100 mg bid | 155 (R/R) | 68 | 23 | 6 | 8 (1) | 31 (3) | 8 (5) | 44.2 |
Byrd et al. 2021 [29] | Acala: 100 mg bid Ibrutinib:420 mg/d | 268 (R/R) 265 (R/R) | 68.8 74.9 | 14.7 21.3 | 13.2 15.2 | 9 (4.5) 15.6 (3.4) | 38 (3.8) 51.3 (4.6) | 8.6 (4.1) 22.8 (8.7) | 38.3 35.5 |
Rogers et al. 2021 [44] | Acala: 100 mg bid | 60 (R/R) | 129 events | 17 | 6.7 | 3.3 (0) | 8.3 | 13.3 (3.3) | 32 |
Cull et al. 2021 [36] | Zanu 160 mg bid or 320 mg/d or 160 mg/d | 22 (TN) 101 (R/R) | 73.2 | 9.8 | 8.9 (at least once) | 4.9 (3.3) | 38.2 (3.3) | 19.5 (8.9) | 43 |
Tam et al. 2022 (Group A) [39] | Zanu 160 mg bid | 241 (TN) | 53 | 8 | 14 | 3 | 41 (3.7) | 6 (6) | 26.4 (m safety FU) |
Tam et al. 2022 (Group C) [39,41] | Zanu 160 mg bid | 111(TN) | 55 | 5 | 10 | 46 (5) | 5 (5) | 30 (m safety FU) | |
Brown et al. 2022 [40] | Zanu 160 mg bid Ibrutinib:420 mg/d | 327 (R/R) 325 (R/R) | 67.3 70.4 | 16.2 22.2 | 12.3 17 | 6.2 (2.5) 13.3 (4) | 42.3 (3.4) 41.4 (3.7) | 23.5 (15.1) 22.8 (13.6) | 28.4 24.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frustaci, A.M.; Deodato, M.; Zamprogna, G.; Cairoli, R.; Montillo, M.; Tedeschi, A. Next Generation BTK Inhibitors in CLL: Evolving Challenges and New Opportunities. Cancers 2023, 15, 1504. https://doi.org/10.3390/cancers15051504
Frustaci AM, Deodato M, Zamprogna G, Cairoli R, Montillo M, Tedeschi A. Next Generation BTK Inhibitors in CLL: Evolving Challenges and New Opportunities. Cancers. 2023; 15(5):1504. https://doi.org/10.3390/cancers15051504
Chicago/Turabian StyleFrustaci, Anna Maria, Marina Deodato, Giulia Zamprogna, Roberto Cairoli, Marco Montillo, and Alessandra Tedeschi. 2023. "Next Generation BTK Inhibitors in CLL: Evolving Challenges and New Opportunities" Cancers 15, no. 5: 1504. https://doi.org/10.3390/cancers15051504
APA StyleFrustaci, A. M., Deodato, M., Zamprogna, G., Cairoli, R., Montillo, M., & Tedeschi, A. (2023). Next Generation BTK Inhibitors in CLL: Evolving Challenges and New Opportunities. Cancers, 15(5), 1504. https://doi.org/10.3390/cancers15051504