Efficiency and Safety of CyberKnife Robotic Radiosurgery in the Multimodal Management of Patients with Acromegaly
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Treatment Parameters
2.2. Hormonal Measurements
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Endocrine Outcomes
3.3. Radiosurgery Safety Profile
3.4. Bivariate Analysis between Active and Biochemical Control Groups
3.5. Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, A.R.; Gill, J.R. The Pituitary Gland: An Infrequent but Multifaceted Contributor to Death. Acad. Forensic Pathol. 2016, 6, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.F.; Beckers, A. The Epidemiology of Pituitary Adenomas. Endocrinol. Metab. Clin. North Am. 2020, 49, 347–355. [Google Scholar] [CrossRef]
- Melmed, S. Pituitary-Tumor Endocrinopathies. N. Engl. J. Med. 2020, 382, 937–950. [Google Scholar] [CrossRef]
- Mercado, M.; Gonzalez, B.; Vargas-Ortega, G.; Ramirez-Renteria, C.; Monteros, A.L.E.D.L.; Sosa, E.; Jervis, P.; Roldan, P.; Mendoza, V.; López-Félix, B.; et al. Successful mortality reduction and control of comorbidities in patients with acromegaly followed at a highly specialized multidisciplinary clinic. J. Clin. Endocrinol. Metab. 2014, 99, 4438–4446. [Google Scholar] [CrossRef] [Green Version]
- Ayuk, J.; Sheppard, M.C. Does acromegaly enhance mortality? Rev. Endocr. Metab. Disord. 2008, 9, 33–39. [Google Scholar] [CrossRef]
- Esposito, D.; Ragnarsson, O.; Granfeldt, D.; Marlow, T.; Johannsson, G.; Olsson, D.S. Decreasing mortality and changes in treatment patterns in patients with acromegaly from a nationwide study. Eur. J. Endocrinol. 2018, 178, 459–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donegan, D.M.; Iñiguez-Ariza, N.; Sharma, A.; Nippoldt, T.; Young, W.; Van Gompel, J.; Atkinson, J.; Meyer, F.; Pollock, B.; Natt, N.; et al. Necessity of multimodal treatment of acromegaly and outcomes. Endocr. Pr. 2018, 24, 668–676. [Google Scholar] [CrossRef]
- Giustina, A.; Barkhoudarian, G.; Beckers, A.; Ben-Shlomo, A.; Biermasz, N.; Biller, B.; Boguszewski, C.; Bolanowski, M.; Bollerslev, J.; Bonert, V.; et al. Multidisciplinary management of acromegaly: A consensus. Rev. Endocr. Metab. Disord. 2020, 21, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Chiloiro, S.; Bianchi, A.; Giampietro, A.; Pontecorvi, A.; Raverot, G.; De Marinis, L. Second line treatment of acromegaly: Pasireotide or Pegvisomant? Best Pr. Res. Clin. Endocrinol. Metab. 2022, 36, 101684. [Google Scholar] [CrossRef]
- Sandret, L.; Maison, P.; Chanson, P. Place of cabergoline in acromegaly: A meta-analysis. J. Clin. Endocrinol. Metab. 2011, 96, 1327–1335. [Google Scholar] [CrossRef] [Green Version]
- Gheorghiu, M.L.; Fleseriu, M. Stereotactic radiation therapy in pituitary adenomas, is it better than conventional radiation therapy? Acta Endocrinol. 2017, 13, 476–490. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-de-los-Monteros, A.L.; González, B.; Vargas, G.; Sosa, E.; Mercado, M. Clinical and biochemical characteristics of acromegalic patients with different abnormalities in glucose metabolism. Pituitary 2011, 14, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Barkan, A.; Beckers, A.; Biermasz, N.; Biller, B.M.K.; Boguszewski, C.; Bolanowski, M.; Bonert, V.; Bronstein, M.D.; Casanueva, F.F.; et al. A Consensus on the Diagnosis and Treatment of Acromegaly Comorbidities: An Update. J. Clin. Endocrinol. Metab. 2020, 105, e937–e946. [Google Scholar] [CrossRef] [PubMed]
- Landolt, A.M.; Haller, D.; Lomax, N.; Scheib, S.; Schubiger, O.; Siegfried, J.; Wellis, G. Stereotactic radiosurgery for recurrent surgically treated acromegaly: Comparison with fractionated radiotherapy. J. Neurosurg. 1998, 88, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- Loeffler, J.S.; Shih, H.A. Radiation Therapy in the Management of Pituitary Adenomas. J. Clin. Endocrinol. Metab. 2011, 96, 1992–2003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercado, M.; Espinosa de los Monteros, A.L.; Sosa, E.; Cheng, S.; Mendoza, V.; Hernández, I.; Sandoval, C.; Guinto, G.; Molina, M. Clinical-biochemical correlations in acromegaly at diagnosis and the real prevalence of biochemically discordant disease. Horm. Res. 2004, 62, 293–299. [Google Scholar] [CrossRef]
- Di Chiro, G.; Nelson, K.B. The volume of the sella turcica. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1962, 87, 989–1008. [Google Scholar]
- American Diabetes Association. Standards of Medical Care for Patients With Diabetes Mellitus. Diabetes Care 2003, 1, S33–S50. [Google Scholar] [CrossRef] [Green Version]
- Pollock, B.E.; Jacob, J.T.; Brown, P.D.; Nippoldt, T.B. Radiosurgery of growth hormone-producing pituitary adenomas: Factors associated with biochemical remission. J. Neurosurg. 2007, 106, 833–838. [Google Scholar] [CrossRef]
- Landolt, A.M.; Haller, D.; Lomax, N.; Scheib, S.; Schubiger, O.; Siegfried, J.; Wellis, G. Octreotide may act as a radioprotective agent in acromegaly. J. Clin. Endocrinol. Metab. 2000, 85, 1287–1289. [Google Scholar] [CrossRef]
- Coopmans, E.C.; van der Lely, A.J.; Neggers, S.J.C.M.M. Approach to the Patient With Treatment-resistant Acromegaly. J. Clin. Endocrinol. Metab. 2022, 107, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Mercado, M.; Abreu, C.; Vergara-López, A.; González-Virla, B.; Espinosa-De-Los-Monteros, A.-L.; Sosa-Eroza, E.; Cadena-Obando, D.; Cuevas-Ramos, D.; A Portocarrero-Ortiz, L.; Pérez-Reyes, S.-P.; et al. Surgical and Pharmacological Outcomes in Acromegaly: Real-Life Data From the Mexican Acromegaly Registry. J. Clin. Endocrinol. Metab. 2020, 105, e4567–e4576. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Didwania, P.; Lehrer, E.J.; Sheehan, D.; Sheehan, K.; Trifiletti, D.M.; Sheehan, J.P. Stereotactic radiosurgery for acromegaly: An international systematic review and meta-analysis of clinical outcomes. J. Neurooncol. 2020, 148, 401–418. [Google Scholar] [CrossRef] [PubMed]
- Giustina, A.; Chanson, P.; Bronstein, M.D.; Klibanski, A.; Lamberts, S.; Casanueva, F.F.; Trainer, P.; Ghigo, E.; Ho, K.; Melmed, S. A Consensus on Criteria for Cure of Acromegaly. J. Clin. Endocrinol. Metab. 2010, 95, 3141–3148. [Google Scholar] [CrossRef] [Green Version]
- Ehret, F.; Kufeld, M.; Fürweger, C.; Haidenberger, A.; Windisch, P.; Fichte, S.; Lehrke, R.; Senger, C.; Kaul, D.; Rueß, D.; et al. Robotic Radiosurgery for Persistent Postoperative Acromegaly in Patients with Cavernous Sinus-Invading Pituitary Adenomas-A Multicenter Experience. Cancers 2021, 13, 537. [Google Scholar] [CrossRef]
- Iwata, H.; Sato, K.; Nomura, R.; Tabei, Y.; Suzuki, I.; Yokota, N.; Inoue, M.; Ohta, S.; Yamada, S.; Shibamoto, Y. Long-term results of hypofractionated stereotactic radiotherapy with CyberKnife for growth hormone-secreting pituitary adenoma: Evaluation by the Cortina consensus. J. Neurooncol. 2016, 128, 267–275. [Google Scholar] [CrossRef]
- Roberts, B.K.; Ouyang, D.L.; Lad, S.P.; Chang, S.D.; Harsh, G.R.; Adler, J.R.; Soltys, S.G.; Gibbs, I.C.; Katznelson, L. Efficacy and safety of CyberKnife radiosurgery for acromegaly. Pituitary 2007, 10, 19–25. [Google Scholar] [CrossRef]
- Sala, E.; Moore, J.M.; Amorin, A.; Martinez, H.; Bhowmik, A.C.; Lamsam, L.; Chang, S.; Soltys, S.G.; Katznelson, L.; Harsh, G.R. CyberKnife robotic radiosurgery in the multimodal management of acromegaly patients with invasive macroadenoma: A single center’s experience. J. Neurooncol. 2018, 138, 291–298. [Google Scholar] [CrossRef]
- Tomasik, A.; Stelmachowska-Banaś, M.; Maksymowicz, M.; Czajka-Oraniec, I.; Raczkiewicz, D.; Zieliński, G.; Kunicki, J.; Zgliczyński, W. Clinical, hormonal and pathomorphological markers of somatotroph pituitary neuroendocrine tumors predicting the treatment outcome in acromegaly. Front. Endocrinol. 2022, 13, 957301. [Google Scholar] [CrossRef]
- Agrawal, N.; Ioachimescu, A.G. Prognostic factors of biochemical remission after transsphenoidal surgery for acromegaly: A structured review. Pituitary 2020, 23, 582–594. [Google Scholar] [CrossRef]
- Graffeo, C.S.; Donegan, D.; Erickson, D.; Brown, P.D.; Perry, A.; Link, M.J.; Young, W.F.; Pollock, B.E. The Impact of Insulin-Like Growth Factor Index and Biologically Effective Dose on Outcomes After Stereotactic Radiosurgery for Acromegaly: Cohort Study. Neurosurgery 2020, 87, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Minniti, G.; Flickinger, J. The risk/benefit ratio of radiotherapy in pituitary tumors. Best Pr. Res. Clin. Endocrinol. Metab. 2019, 33, 101269. [Google Scholar] [CrossRef] [PubMed]
Variable | n = 57 |
---|---|
Female gender, No. (%) | 32 (56.14) |
Age, mean ± SD, yrs | 47.1 ± 13.4 |
Macroadenoma, No. (%) | 42 (76.36) |
Age at which it was radiated, mean ± SD, yrs | 54.5 ± 12.3 |
Delay in diagnosis, median (IQR), yrs | 5 (4–8) |
Time from surgical treatment to radiotherapy, median (IQR), moths | 38 (21–61) |
Baseline IGF 1, mean ± SD, ng/mL | 595.32 ± 274.94 |
IGF 1 X ULN, mean ± SD | 2.96 ± 1.37 |
GH, median (IQR), ng/mL | 5.66 (2.5–18.3) |
Cavernous sinus invasion, No. (%) | 45 (78.95) |
Medical treatment of acromegaly | 56 (98.25) |
Hormone deficiencies, No. (%) | |
Hypothyroidism | 15 (26.32) |
Hypocortisolism | 8 (14.04) |
Hypogonadism | 12 (21.05) |
Comorbidities, no. (%) * | |
CNS tumor | 1 (1.75) |
Optic neuritis | 1 (1.75) |
Stroke | 2 (3.51) |
T2D | 19 (33.33) |
Carbohydrate intolerance | 19 (33.33) |
Hypertension | 22 (38.6) |
Dyslipidemia | 6 (10.53) |
Heart disease | 3 (5.26) |
Variable | Baseline (n = 57) | 1 Year (n = 57) | Last Follow Up (n = 57) | p |
---|---|---|---|---|
IGF-1, median (IQR), ng/mL | 605.87 (410.8–761.4) | 285.9 (208.9–416.4) | 181 (117.2–270) | <0.001 a |
IGF-1 x ULN, median (IQR) | 2.87 (1.98–3.85) | 1.39 (1.1–2.2) | 0.99 (0.72–1.3) | <0.001 a |
GH, median (IQR), ng/mL | 5.66 (2.5–18.3) | 1.69 (1.16–2.6) | 0.77 (0.47–1.59) | 0.001 a |
% reaching bGH < 2.5 ng/mL, No. (%) | 14 (24.56) | 41 (71.93) | 9 (10.23) | <0.001 b |
% reaching bGH < 1 ng/mL, No. (%) | 8 (14.04) | 12 (21.05) | 53 (60.23) | <0.001 b |
% reaching IGF-1 < 1.2 × ULN, No. (%) | 7 (12.28) | 19 (33.33) | 40 (70.18) | <0.001 b |
% reaching bGH < 1 ng/mL AND IGF-1 < 1.2 × ULN, No. (%) | 4 (7.02) | 6 (10.53) | 26 (45.61) | <0.001 b |
% requiring pharmacological therapy, No. (%) | 56 (98.25) | 53 (98.15) | 48 (84.21) | <0.001 b |
Hormone deficiencies, No. (%) | ||||
Hypothyroidism | 15 (26.32) | 20 (35.08) | 31 (54.34) | <0.001 b |
Hypocortisolism | 8 (14.04) | 10 (17.54) | 23 (40.35) | <0.001 b |
Hypogonadism | 12 (21.05) | 14 (24.56) | 27 (47.37) | <0.001 b |
Variable | Without Biochemical Remission (n = 31) | Biochemical Remission (n = 26) | p |
---|---|---|---|
Female gender, No. (%) | 15 (48.39) | 17 (65.38) | 0.19 a |
Age, mean ± SD, yrs | 52.45 ± 13.39 | 57 ± 10.61 | 0.16 b |
Time from surgical treatment to radiotherapy, median (IQR), moths | 5.56 (2.6–22.6) | 4.85 (2.1–15) | 0.18 d |
Baseline IGF 1, mean ± SD, ng/mL | 639.55 ± 292.01 | 542.59 ± 248.36 | 0.18 b |
Time from radiosurgery until last evaluation, median (IQR), years | 3.16 (2.09–6.5) | 5.9 (2.39–7.17) | 0.10 d |
IGF 1 X ULN, mean ± SD | 3.12 ± 1.41 | 2.78 ± 1.33 | 0.36 b |
GH, median (IQR), ng/mL | 5.66 (2.6–22.6) | 4.85 (2.1–15) | 0.18 d |
Cavernous sinus invasion, No. (%) | |||
Knosp grade 1 to 4 | 24 (77.42) | 21 (80.77) | 0.75 a |
Knosp grade 3 and 4 | 16 (51.61) | 10 (38.46) | 0.32 a |
Hormone deficiencies, No. (%) | |||
Hypothyroidism | 7 (22.58) | 8 (30.77) | 0.48 a |
Hypocortisolism | 2 (6.45) | 6 (23.08) | 0.12 c |
Hypogonadism | 7 (22.58) | 5 (19.23) | 0.75 a |
Variable | Crude HR | 95% CI | p | Adjusted HR ** | 95% CI | p |
---|---|---|---|---|---|---|
Female gender | 0.53 | 0.25–1.11 | 0.09 | 0.55 | 0.26–1.18 | 0.12 |
Age * | 0.98 | 0.95–1.00 | 0.17 | 0.97 | 0.93–1.00 | 0.07 |
Baseline IGF-1 x ULN * | 1.41 | 1.03–1.94 | 0.03 | 1.33 | 1.01–1.88 | 0.04 |
Baseline GH * | 0.99 | 0.99–1.00 | 0.62 | 0.99 | 0.98–1.01 | 0.81 |
Tumor volume prior to radiosurgery, mm3 * | 0.99 | 0.99–1.00 | 0.73 | 0.99 | 0.99–1.00 | 0.56 |
Knosp grade 1 to 4 | 2.24 | 0.89–5.62 | 0.083 | 2.53 | 0.92–6.97 | 0.07 |
Knosp grade 3 to 4 | 1.16 | 0.56–2.42 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Gameros, C.A.; González-Virla, B.; Vargas-Ortega, G.; Sosa-Eroza, E.; Rendón-Macías, M.E.; Balcázar-Hernández, L.J.; Mercado, M.; Velasco-Cortes, N.; Rodea-Ávila, C.A.; Flores-Robles, L.; et al. Efficiency and Safety of CyberKnife Robotic Radiosurgery in the Multimodal Management of Patients with Acromegaly. Cancers 2023, 15, 1438. https://doi.org/10.3390/cancers15051438
Romero-Gameros CA, González-Virla B, Vargas-Ortega G, Sosa-Eroza E, Rendón-Macías ME, Balcázar-Hernández LJ, Mercado M, Velasco-Cortes N, Rodea-Ávila CA, Flores-Robles L, et al. Efficiency and Safety of CyberKnife Robotic Radiosurgery in the Multimodal Management of Patients with Acromegaly. Cancers. 2023; 15(5):1438. https://doi.org/10.3390/cancers15051438
Chicago/Turabian StyleRomero-Gameros, Carlos Alfonso, Baldomero González-Virla, Guadalupe Vargas-Ortega, Ernesto Sosa-Eroza, Mario Enrique Rendón-Macías, Lourdes Josefina Balcázar-Hernández, Moises Mercado, Novelthys Velasco-Cortes, Carlos Aaron Rodea-Ávila, Luis Flores-Robles, and et al. 2023. "Efficiency and Safety of CyberKnife Robotic Radiosurgery in the Multimodal Management of Patients with Acromegaly" Cancers 15, no. 5: 1438. https://doi.org/10.3390/cancers15051438