Recent Advances in Optimizing Radiation Therapy Decisions in Early Invasive Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. De-Intensification of Radiation in Early Breast Cancer: Hypofractionation and Accelerated Partial Breast Radiation
3. Ongoing Clinical Trials for Guiding Adjuvant Radiation Omission Decisions in Women with Hormone Receptor-Positive Early-Stage Breast Cancers
4. Evidence for Radiation De-Escalation in HER2-Positive and Triple-Negative Breast Cancers
4.1. HER2+ Early Breast Cancer
4.2. Node-Negative Early-Stage Triple-Negative Breast Cancers
5. De-Escalation of Adjuvant Locoregional Radiation in Clinically Node-Positive Breast Cancer following Neoadjuvant Chemotherapy
6. Immune Responses in Early Breast Cancer: Ongoing Clinical Trials of Preoperative Radiotherapy and Evidence from Prospective-Retrospective Translational Studies
Trial Identifier (n) | Study Description | Tumor Characteristics | Preoperative Radiation Regime +/− other Therapeutic Agents | Adjuvant Treatments | Endpoints | Prespecified/Exploratory Translational Studies | Estimated Study Completion Year |
---|---|---|---|---|---|---|---|
Preoperative Radiation (single fraction) | |||||||
NCT01717261 Single Pre-Operative Radiation Therapy (SPORT) for Low-Risk Breast Cancer (SPORT) Phase I (n = 13) [142,148] | To investigate the tolerability of a Single Pre-Operative Radiation Therapy (SPORT) | Age ≥ 60 years cT1N0M0 ER+, HER2− unifocal, invasive ductal cancers | Single fraction of preoperative partial breast radiation dose: 20 Gy | Surgery: Early group (within 24–72 h) Late group (11–13 weeks) | Primary: Acute toxicity Secondary: Chronic toxicity and cosmetic outcome, IBTR | Pre/post analysis for Ki-67 and TILs | 2020 |
NCT02482376 Phase II (n = 68) [149] | Preoperative single-fraction radiotherapy | Age ≥ 50 years T1N0M0 ER+/HER2− Invasive ductal histology, DCIS Oncotype RS < 18 (for invasive ductal carcinoma) | Stereotactic Body Radiotherapy: Single fraction of 21 Gy. | BCS | Primary: Physician reported cosmetic outcomes Secondary: Patient reported cosmetic outcomes, rates of local control compared to the historic controls | Analysis for pre/post Ki-67 and gene expression analysis. Analysis of cfDNA for assessment of radiation response | 2032 |
NCT03520894 Radiotherapy in Preoperative Setting with CyberKnife for Breast Cancer (ROCK) (n = 25) [150] | Preoperative radiotherapy with CyberKnife | Age ≥ 50 years T1N0M0, ER+/PR+ (≥10%)/HER2−, No LVI | Single fraction of 21 Gy | BCS | Primary: Acute skin toxicities Secondary: (3-years) pCR, rate of complete resection with <1 cm margin, LRR, metastasis progression- free survival, cause-specific survival OS, chronic cutaneous and extra-cutaneous toxicities | Radiogenomic analysis using validated signatures. Quantitative immunological analyses using fresh biopsies. IHC-based analysis for pericytes and assessment of vascularization. Serial biochemical analysis of peripheral blood and urine for biomarkers of oxidative stress | 2024 |
NCT02212860 Stereotactic Image-Guided Neoadjuvant Ablative Radiation Then Lumpectomy (SIGNAL 2) (n = 139) [151] | Randomized trial to investigate 1 vs. 3 doses of preoperative stereotactic radiation therapy. | Age ≥ 50 years T < 3 cm, node-negative ER+/HER2− | Volumetric modulated arc therapy will be used to deliver: Single fraction of 21 Gy versus 3 fractions of 10 Gy | Surgery after 3 weeks | Primary: Biomarker assessment for immune priming, angiogenesis, hypoxia, proliferation, apoptosis, and invasion. Secondary: Cosmesis, DFS, mastectomy-free survival, and OS | Specified as primary endpoints | 2023 |
Preoperative Radiotherapy (more than a single fraction) | |||||||
NCT04360330 Study for Selected Early-Stage Breast Cancer (SABER) Phase 1b (n = 18) [152] | To determine the most effective dose of preoperative radiation therapy that can be delivered in shorter duration before standard partial mastectomy/axillary surgery | Age ≥ 50 years Unifocal T1N0M0 ER+/PR+/HER2− (Oncotype MammaPrint required) | 4 prespecified levels: (35 Gy, 40 Gy, 45 Gy, 50 Gy) in 5 fractions given on non-consecutive days, spanning 2 weeks | Partial mastectomy/axillary surgery 4–6 weeks after preoperative SABER. Standard of care adjuvant systemic therapy | Primary: Establish the most effective preoperative SABER dose. Secondary: Toxicity, pCR, cosmesis, and quality of life | Blood and tissue-based biomarkers Multiparametric MRI studies for assessment of radiation response | 2025 |
NCT04234386 Phase Ib (n = 50) [153] | To determine safe and effective dose of pre-operative radiation delivered by FDA approved GammaPod device | Age ≥ 45 years T < 3 cm, N0, ER+/HER2− unifocal, ductal histology, no LVI | Delivery of focussed radiation using GammaPod: 4 prespecified doses: (21 Gy, 24 Gy, 27 Gy, 30 Gy) | BCS | Primary: Establish the most effective single-fraction radiation dose Dose-limiting toxicities Secondary: (5-years) Acute and late toxicities, surgical complications, cosmesis, quality of life, pCR and 5-year IBTR | Not stated | 2028 |
NCT03624478 Phase II (n = 25) [154] | Hypofractionated radiotherapy to the whole breast alone before surgery | T0–2, N0 ≥18 years | Hypofractionated radiation therapy daily for 5 days. | Breast-conserving surgery 4–16 weeks after preoperative radiation | Primary: pCR. Secondary: Acute and late toxicities, LRR, distant recurrence, cause-specific survival, DFS, OS | Pre/post-treatment tumor mutation signatures | 2022 |
NCT03043794 Phase II (n = 40) [155] | Single fraction Stereotactic Body Radiotherapy to the intact breast | Stereotactic Body Radiation: 21 Gy | Surgery | Primary endpoint: RCB 4–6 weeks after radiation prior to surgery Secondary: Toxicities, local recurrence, cosmesis, quality of life. | Not stated | 2026 | |
Preoperative Radiotherapy and Immune Check Point Inhibitors | |||||||
NCT04454528 Radiation Boost to Enhance Immune Checkpoint Blockade Therapy (BreastVAX) Phase 1b/2 (n = 27) [146,147] | To investigate feasibility and efficacy of preoperative pembrolizumab +/− tumor-directed radiotherapy fraction | Age ≥ 18 years T1–2, N0–1M0 TNBC, hormone receptor+/HER2−, Hormone receptor +/− and HER2+ | Single dose pembrolizumab +/− Hypofractionated (single fraction of radiation boost: 7 Gy) | Standard of care surgery | Primary: Feasibility of experimental treatment with no delay in surgery. Clinical response (physical exam, breast ultrasound, and histological evaluation) | Comparison of pre/post-treatment immune response on blood and tissue samples | 2024 |
NCT03366844 Phase I/II (n = 60) [156] | Preoperative pembrolizumab and radiation boost | First cohort: ER+/HER2− with high-risk features (T1) Second cohort: TNBC T1 | Pembrolizumab × single dose followed by second dose of pembrolizumab with radiation boost (24 Gy in 3 fractions) | Surgery and/or chemotherapy (within 8 weeks of enrollment) followed by standard radiation | Primary: Feasibility of experimental treatment with no delay in surgery Secondary: Treatment toxicities, iDFS, pCR | Change in TIL counts | 2023 |
NCT03875573 Neo-CheckRay Phase II (n = 147) [157] | Neo-adjuvant chemotherapy combined with stereotactic body radiotherapy +/− durvalumab, +/− oleclumab (Neo-CheckRay) in luminal B breast cancers | Luminal B breast cancer patients randomized to: 1. paclitaxel→ddAC+preoperative radiation boost 2. Arm 1 + durvalumab 3. Arm 2 + antiCD73 antibody | Surgery 2–6 weeks after completion ddAC | Primary: Toxicities, Feasibility of surgery, Pathological evaluation for RCB Secondary: iDFS and cosmetic outcomes | Not stated | 2026 |
7. Biomarkers to Guide Adjuvant Radiation Decisions
7.1. Disseminated Tumor Cells
7.2. Circulating Tumor Cells
8. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Fisher, B.; Anderson, S.; Bryant, J.; Margolese, R.G.; Deutsch, M.; Fisher, E.R.; Jeong, J.H.; Wolmark, N. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N. Engl. J. Med. 2002, 347, 1233–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veronesi, U.; Cascinelli, N.; Mariani, L.; Greco, M.; Saccozzi, R.; Luini, A.; Aguilar, M.; Marubini, E. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N. Engl. J. Med. 2002, 347, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E.; Committee, E.G. Early breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019, 30, 1674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K.H.; Anderson, B.; Burstein, H.J.; Chew, H.; Dang, C.; et al. Breast Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 691–722. [Google Scholar] [CrossRef] [PubMed]
- Early Breast Cancer Trialists’ Collaborative, G.; Darby, S.; McGale, P.; Correa, C.; Taylor, C.; Arriagada, R.; Clarke, M.; Cutter, D.; Davies, C.; Ewertz, M.; et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 2011, 378, 1707–1716. [Google Scholar] [CrossRef] [Green Version]
- Kindts, I.; Laenen, A.; Depuydt, T.; Weltens, C. Tumour bed boost radiotherapy for women after breast-conserving surgery. Cochrane Database Syst. Rev. 2017, 11, CD011987. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef]
- Marta, G.N.; Riera, R.; Pacheco, R.L.; Cabrera Martimbianco, A.L.; Meattini, I.; Kaidar-Person, O.; Poortmans, P. Moderately hypofractionated post-operative radiation therapy for breast cancer: Systematic review and meta-analysis of randomized clinical trials. Breast 2022, 62, 84–92. [Google Scholar] [CrossRef]
- Whelan, T.J.; Kim, D.H.; Sussman, J. Clinical experience using hypofractionated radiation schedules in breast cancer. Semin. Radiat. Oncol. 2008, 18, 257–264. [Google Scholar] [CrossRef]
- Palumbo, I.; Borghesi, S.; Gregucci, F.; Falivene, S.; Fontana, A.; Aristei, C.; Ciabattoni, A. Omission of adjuvant radiotherapy for older adults with early-stage breast cancer particularly in the COVID era: A literature review (on the behalf of Italian Association of Radiotherapy and Clinical Oncology). J. Geriatr. Oncol. 2021, 12, 1130–1135. [Google Scholar] [CrossRef]
- Herskovic, A.C.; Wu, X.; Christos, P.J.; Nagar, H. Omission of Adjuvant Radiotherapy in the Elderly Breast Cancer Patient: Missed Opportunity? Clin. Breast Cancer 2018, 18, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.; De Rose, F.; De Santis, M.C.; Pasinetti, N.; Lancellotta, V.; Meduri, B.; Meattini, I.; Clinical Oncology Breast Cancer Group, I. Omission of postoperative radiation after breast conserving surgery: A progressive paradigm shift towards precision medicine. Clin. Transl. Radiat. Oncol. 2020, 21, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K.S.; Schnaper, L.A.; Bellon, J.R.; Cirrincione, C.T.; Berry, D.A.; McCormick, B.; Muss, H.B.; Smith, B.L.; Hudis, C.A.; Winer, E.P.; et al. Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: Long-term follow-up of CALGB 9343. J. Clin. Oncol. 2013, 31, 2382–2387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunkler, I.H.; Williams, L.J.; Jack, W.; Cameron, D.A.; Dixon, M. Abstract GS2-03: Prime 2 randomised trial (postoperative radiotherapy in minimum-risk elderly): Wide local excision and adjuvant hormonal therapy +/− whole breast irradiation in women =/> 65 years with early invasive breast cancer: 10 year results. Cancer Res. 2021, 81, GS2-03. [Google Scholar] [CrossRef]
- Kunkler, I.H.; Williams, L.J.; Jack, W.J.; Cameron, D.A.; Dixon, J.M.; Investigators, P.I. Breast-conserving surgery with or without irradiation in women aged 65 years or older with early breast cancer (PRIME II): A randomised controlled trial. Lancet Oncol. 2015, 16, 266–273. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network, B.C.V. Breast Cancer Version 4. 2022. Available online: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf (accessed on 1 December 2022).
- Matar, R.; Sevilimedu, V.; Gemignani, M.L.; Morrow, M. Impact of Endocrine Therapy Adherence on Outcomes in Elderly Women with Early-Stage Breast Cancer Undergoing Lumpectomy Without Radiotherapy. Ann. Surg. Oncol. 2022, 29, 4753–4760. [Google Scholar] [CrossRef] [PubMed]
- Downs-Canner, S.; Zabor, E.C.; Wind, T.; Cobovic, A.; McCormick, B.; Morrow, M.; Heerdt, A. Radiation Therapy After Breast-Conserving Surgery in Women 70 Years of Age and Older: How Wisely Do We Choose? Ann. Surg. Oncol. 2019, 26, 969–975. [Google Scholar] [CrossRef]
- Squeo, G.; Malpass, J.K.; Meneveau, M.; Balkrishnan, R.; Desai, R.P.; Lattimore, C.; Anderson, R.T.; Showalter, S.L. Long-term Impact of CALGB 9343 on Radiation Utilization. J. Surg. Res. 2020, 256, 577–583. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Q.; Hu, T.; Chen, R.; Wang, J.; Chang, H.; Cheng, J. Risk Factors Related to Acute Radiation Dermatitis in Breast Cancer Patients After Radiotherapy: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 738851. [Google Scholar] [CrossRef]
- Ramseier, J.Y.; Ferreira, M.N.; Leventhal, J.S. Dermatologic toxicities associated with radiation therapy in women with breast cancer. Int. J. Women’s Dermatol. 2020, 6, 349–356. [Google Scholar] [CrossRef]
- Hickey, B.E.; Lehman, M. Partial breast irradiation versus whole breast radiotherapy for early breast cancer. Cochrane Database Syst. Rev. 2021, 8, CD007077. [Google Scholar] [CrossRef] [PubMed]
- DiSipio, T.; Rye, S.; Newman, B.; Hayes, S. Incidence of unilateral arm lymphoedema after breast cancer: A systematic review and meta-analysis. Lancet Oncol. 2013, 14, 500–515. [Google Scholar] [CrossRef] [PubMed]
- McDuff, S.G.R.; Mina, A.I.; Brunelle, C.L.; Salama, L.; Warren, L.E.G.; Abouegylah, M.; Swaroop, M.; Skolny, M.N.; Asdourian, M.; Gillespie, T.; et al. Timing of Lymphedema After Treatment for Breast Cancer: When Are Patients Most At Risk? Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Poortmans, P.M.; Struikmans, H.; De Brouwer, P.; Weltens, C.; Fortpied, C.; Kirkove, C.; Budach, V.; Peignaux-Casasnovas, K.; van der Leij, F.; Vonk, E.; et al. Side Effects 15 Years After Lymph Node Irradiation in Breast Cancer: Randomized EORTC Trial 22922/10925. J. Natl. Cancer Inst. 2021, 113, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Milo, M.L.H.; Thorsen, L.B.J.; Johnsen, S.P.; Nielsen, K.M.; Valentin, J.B.; Alsner, J.; Offersen, B.V. Risk of coronary artery disease after adjuvant radiotherapy in 29,662 early breast cancer patients: A population-based Danish Breast Cancer Group study. Radiother. Oncol. 2021, 157, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Yit, L.F.N.; Ng, C.T.; Wong, F.Y.; Master, Z.; Zhou, S.; Ng, W.L. Modern-era radiotherapy and ischaemic heart disease-related mortality outcomes in Asian breast-cancer patients. Contemp. Oncol. 2022, 26, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Mulliez, T.; Miedema, G.; Van Parijs, H.; Hottat, N.; Vassilieff, M.; Gillet, E.; Baeyens, L.; Voordeckers, M.; Coelmont, J.; Besse-Hammer, T.; et al. Pre-OPerative accelerated radiotherapy for early stage breast cancer patients (POPART): A feasibility study. Radiother. Oncol. 2022, 170, 118–121. [Google Scholar] [CrossRef]
- Smith, B.D.; Bellon, J.R.; Blitzblau, R.; Freedman, G.; Haffty, B.; Hahn, C.; Halberg, F.; Hoffman, K.; Horst, K.; Moran, J.; et al. Radiation therapy for the whole breast: Executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based guideline. Pract. Radiat. Oncol. 2018, 8, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, A.A.; Shirvani, S.M.; Lal, L.; Swint, J.M.; Cantor, S.B.; Smith, B.D.; Likhacheva, A. Cost-effectiveness Analysis Comparing Conventional, Hypofractionated, and Intraoperative Radiotherapy for Early-Stage Breast Cancer. J. Natl. Cancer Inst. 2017, 109, djx068. [Google Scholar] [CrossRef] [Green Version]
- Whelan, T.J.; Levine, M.; Julian, J.; Kirkbride, P.; Skingley, P. The effects of radiation therapy on quality of life of women with breast carcinoma: Results of a randomized trial. Ontario Clinical Oncology Group. Cancer 2000, 88, 2260–2266. [Google Scholar] [CrossRef]
- Lautner, M.; Lin, H.; Shen, Y.; Parker, C.; Kuerer, H.; Shaitelman, S.; Babiera, G.; Bedrosian, I. Disparities in the Use of Breast-Conserving Therapy Among Patients With Early-Stage Breast Cancer. JAMA Surg. 2015, 150, 778–786. [Google Scholar] [CrossRef] [Green Version]
- Parekh, A.; Fu, W.; Hu, C.; Shen, C.J.; Alcorn, S.; Rao, A.D.; Asrari, F.; Camp, M.S.; Wright, J.L. Impact of race, ethnicity, and socioeconomic factors on receipt of radiation after breast conservation surgery: Analysis of the national cancer database. Breast Cancer Res. Treat. 2018, 172, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Pan, I.W.; Smith, B.D.; Shih, Y.C. Factors contributing to underuse of radiation among younger women with breast cancer. J. Natl. Cancer Inst. 2014, 106, djt340. [Google Scholar] [CrossRef] [Green Version]
- Lam, J.; Cook, T.; Foster, S.; Poon, R.; Milross, C.; Sundaresan, P. Examining Determinants of Radiotherapy Access: Do Cost and Radiotherapy Inconvenience Affect Uptake of Breast-conserving Treatment for Early Breast Cancer? Clin. Oncol. 2015, 27, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Groot, G.; Boden, C.; Busch, A.; Holtslander, L.; Lim, H. Review of Factors Influencing Women’s Choice of Mastectomy Versus Breast Conserving Therapy in Early Stage Breast Cancer: A Systematic Review. Clin. Breast Cancer 2018, 18, e539–e554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarnold, J.; Bentzen, S.M.; Coles, C.; Haviland, J. Hypofractionated whole-breast radiotherapy for women with early breast cancer: Myths and realities. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Whelan, T.J.; Pignol, J.P.; Levine, M.N.; Julian, J.A.; MacKenzie, R.; Parpia, S.; Shelley, W.; Grimard, L.; Bowen, J.; Lukka, H.; et al. Long-term results of hypofractionated radiation therapy for breast cancer. N. Engl. J. Med. 2010, 362, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Offersen, B.V.; Alsner, J.; Nielsen, H.M.; Jakobsen, E.H.; Nielsen, M.H.; Krause, M.; Stenbygaard, L.; Mjaaland, I.; Schreiber, A.; Kasti, U.M.; et al. Hypofractionated Versus Standard Fractionated Radiotherapy in Patients With Early Breast Cancer or Ductal Carcinoma In Situ in a Randomized Phase III Trial: The DBCG HYPO Trial. J. Clin. Oncol. 2020, 38, 3615–3625. [Google Scholar] [CrossRef]
- Haviland, J.S.; Owen, J.R.; Dewar, J.A.; Agrawal, R.K.; Barrett, J.; Barrett-Lee, P.J.; Dobbs, H.J.; Hopwood, P.; Lawton, P.A.; Magee, B.J.; et al. The UK Standardisation of Breast Radiotherapy (START) trials of radiotherapy hypofractionation for treatment of early breast cancer: 10-year follow-up results of two randomised controlled trials. Lancet Oncol. 2013, 14, 1086–1094. [Google Scholar] [CrossRef]
- Brunt, A.M.; Haviland, J.S.; Sydenham, M.; Agrawal, R.K.; Algurafi, H.; Alhasso, A.; Barrett-Lee, P.; Bliss, P.; Bloomfield, D.; Bowen, J.; et al. Ten-Year Results of FAST: A Randomized Controlled Trial of 5-Fraction Whole-Breast Radiotherapy for Early Breast Cancer. J. Clin. Oncol. 2020, 38, 3261–3272. [Google Scholar] [CrossRef]
- Murray Brunt, A.; Haviland, J.S.; Wheatley, D.A.; Sydenham, M.A.; Alhasso, A.; Bloomfield, D.J.; Chan, C.; Churn, M.; Cleator, S.; Coles, C.E.; et al. Hypofractionated breast radiotherapy for 1 week versus 3 weeks (FAST-Forward): 5-year efficacy and late normal tissue effects results from a multicentre, non-inferiority, randomised, phase 3 trial. Lancet 2020, 395, 1613–1626. [Google Scholar] [CrossRef] [PubMed]
- Freedman, G.M.; Anderson, P.R.; Hanlon, A.L.; Eisenberg, D.F.; Nicolaou, N. Pattern of local recurrence after conservative surgery and whole-breast irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 1328–1336. [Google Scholar] [CrossRef] [PubMed]
- Strnad, V.; Ott, O.J.; Hildebrandt, G.; Kauer-Dorner, D.; Knauerhase, H.; Major, T.; Lyczek, J.; Guinot, J.L.; Dunst, J.; Gutierrez Miguelez, C.; et al. 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: A randomised, phase 3, non-inferiority trial. Lancet 2016, 387, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Polgar, C.; Ott, O.J.; Hildebrandt, G.; Kauer-Dorner, D.; Knauerhase, H.; Major, T.; Lyczek, J.; Guinot, J.L.; Dunst, J.; Miguelez, C.G.; et al. Late side-effects and cosmetic results of accelerated partial breast irradiation with interstitial brachytherapy versus whole-breast irradiation after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: 5-year results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2017, 18, 259–268. [Google Scholar] [CrossRef]
- Shah, C.; Badiyan, S.; Ben Wilkinson, J.; Vicini, F.; Beitsch, P.; Keisch, M.; Arthur, D.; Lyden, M. Treatment efficacy with accelerated partial breast irradiation (APBI): Final analysis of the American Society of Breast Surgeons MammoSite((R)) breast brachytherapy registry trial. Ann. Surg. Oncol. 2013, 20, 3279–3285. [Google Scholar] [CrossRef]
- Polgar, C.; Fodor, J.; Major, T.; Sulyok, Z.; Kasler, M. Breast-conserving therapy with partial or whole breast irradiation: Ten-year results of the Budapest randomized trial. Radiother. Oncol. 2013, 108, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Shah, C.; Khwaja, S.; Badiyan, S.; Wilkinson, J.B.; Vicini, F.A.; Beitsch, P.; Keisch, M.; Arthur, D.; Lyden, M. Brachytherapy-based partial breast irradiation is associated with low rates of complications and excellent cosmesis. Brachytherapy 2013, 12, 278–284. [Google Scholar] [CrossRef]
- Vaidya, J.S.; Wenz, F.; Bulsara, M.; Tobias, J.S.; Joseph, D.J.; Keshtgar, M.; Flyger, H.L.; Massarut, S.; Alvarado, M.; Saunders, C.; et al. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer: 5-year results for local control and overall survival from the TARGIT-A randomised trial. Lancet 2014, 383, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Veronesi, U.; Orecchia, R.; Maisonneuve, P.; Viale, G.; Rotmensz, N.; Sangalli, C.; Luini, A.; Veronesi, P.; Galimberti, V.; Zurrida, S.; et al. Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): A randomised controlled equivalence trial. Lancet Oncol. 2013, 14, 1269–1277. [Google Scholar] [CrossRef]
- Orecchia, R.; Veronesi, U.; Maisonneuve, P.; Galimberti, V.E.; Lazzari, R.; Veronesi, P.; Jereczek-Fossa, B.A.; Cattani, F.; Sangalli, C.; Luini, A.; et al. Intraoperative irradiation for early breast cancer (ELIOT): Long-term recurrence and survival outcomes from a single-centre, randomised, phase 3 equivalence trial. Lancet Oncol. 2021, 22, 597–608. [Google Scholar] [CrossRef]
- Coles, C.E.; Griffin, C.L.; Kirby, A.M.; Titley, J.; Agrawal, R.K.; Alhasso, A.; Bhattacharya, I.S.; Brunt, A.M.; Ciurlionis, L.; Chan, C.; et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet 2017, 390, 1048–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelan, T.J.; Julian, J.A.; Berrang, T.S.; Kim, D.H.; Germain, I.; Nichol, A.M.; Akra, M.; Lavertu, S.; Germain, F.; Fyles, A.; et al. External beam accelerated partial breast irradiation versus whole breast irradiation after breast conserving surgery in women with ductal carcinoma in situ and node-negative breast cancer (RAPID): A randomised controlled trial. Lancet 2019, 394, 2165–2172. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sanz, J.; Foro, P.; Martinez, A.; Zhao, M.; Reig, A.; Liu, F.; Huang, Y.; Membrive, I.; Algara, M.; et al. Long-term results of a randomized partial irradiation trial compared to whole breast irradiation in the early stage and low-risk breast cancer patients after conservative surgery. Clin. Transl. Oncol. 2021, 23, 2127–2132. [Google Scholar] [CrossRef] [PubMed]
- Livi, L.; Meattini, I.; Marrazzo, L.; Simontacchi, G.; Pallotta, S.; Saieva, C.; Paiar, F.; Scotti, V.; De Luca Cardillo, C.; Bastiani, P.; et al. Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomised controlled trial. Eur. J. Cancer 2015, 51, 451–463. [Google Scholar] [CrossRef]
- Meattini, I.; Marrazzo, L.; Saieva, C.; Desideri, I.; Scotti, V.; Simontacchi, G.; Bonomo, P.; Greto, D.; Mangoni, M.; Scoccianti, S.; et al. Accelerated Partial-Breast Irradiation Compared With Whole-Breast Irradiation for Early Breast Cancer: Long-Term Results of the Randomized Phase III APBI-IMRT-Florence Trial. J. Clin. Oncol. 2020, 38, 4175–4183. [Google Scholar] [CrossRef]
- Vicini, F.A.; Cecchini, R.S.; White, J.R.; Arthur, D.W.; Julian, T.B.; Rabinovitch, R.A.; Kuske, R.R.; Ganz, P.A.; Parda, D.S.; Scheier, M.F.; et al. Long-term primary results of accelerated partial breast irradiation after breast-conserving surgery for early-stage breast cancer: A randomised, phase 3, equivalence trial. Lancet 2019, 394, 2155–2164. [Google Scholar] [CrossRef]
- Polgar, C.; Major, T.; Takacsi-Nagy, Z.; Fodor, J. Breast-Conserving Surgery Followed by Partial or Whole Breast Irradiation: Twenty-Year Results of a Phase 3 Clinical Study. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 998–1006. [Google Scholar] [CrossRef]
- Schafer, R.; Strnad, V.; Polgar, C.; Uter, W.; Hildebrandt, G.; Ott, O.J.; Kauer-Dorner, D.; Knauerhase, H.; Major, T.; Lyczek, J.; et al. Quality-of-life results for accelerated partial breast irradiation with interstitial brachytherapy versus whole-breast irradiation in early breast cancer after breast-conserving surgery (GEC-ESTRO): 5-year results of a randomised, phase 3 trial. Lancet Oncol. 2018, 19, 834–844. [Google Scholar] [CrossRef]
- Bhattacharya, I.S.; Haviland, J.S.; Kirby, A.M.; Kirwan, C.C.; Hopwood, P.; Yarnold, J.R.; Bliss, J.M.; Coles, C.E.; Trialists, I. Patient-Reported Outcomes Over 5 Years After Whole- or Partial-Breast Radiotherapy: Longitudinal Analysis of the IMPORT LOW (CRUK/06/003) Phase III Randomized Controlled Trial. J. Clin. Oncol. 2019, 37, 305–317. [Google Scholar] [CrossRef]
- Meattini, I.; Saieva, C.; Miccinesi, G.; Desideri, I.; Francolini, G.; Scotti, V.; Marrazzo, L.; Pallotta, S.; Meacci, F.; Muntoni, C.; et al. Accelerated partial breast irradiation using intensity modulated radiotherapy versus whole breast irradiation: Health-related quality of life final analysis from the Florence phase 3 trial. Eur. J. Cancer 2017, 76, 17–26. [Google Scholar] [CrossRef]
- Vaidya, J.S.; Bulsara, M.; Baum, M.; Wenz, F.; Massarut, S.; Pigorsch, S.; Alvarado, M.; Douek, M.; Saunders, C.; Flyger, H.L.; et al. Long term survival and local control outcomes from single dose targeted intraoperative radiotherapy during lumpectomy (TARGIT-IORT) for early breast cancer: TARGIT-A randomised clinical trial. BMJ 2020, 370, m2836. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, J.S.; Bulsara, M.; Baum, M.; Wenz, F.; Massarut, S.; Pigorsch, S.; Alvarado, M.; Douek, M.; Saunders, C.; Flyger, H.; et al. New clinical and biological insights from the international TARGIT-A randomised trial of targeted intraoperative radiotherapy during lumpectomy for breast cancer. Br. J. Cancer 2021, 125, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, J.S.; Bulsara, M.; Saunders, C.; Flyger, H.; Tobias, J.S.; Corica, T.; Massarut, S.; Wenz, F.; Pigorsch, S.; Alvarado, M.; et al. Effect of Delayed Targeted Intraoperative Radiotherapy vs Whole-Breast Radiotherapy on Local Recurrence and Survival: Long-term Results From the TARGIT-A Randomized Clinical Trial in Early Breast Cancer. JAMA Oncol. 2020, 6, e200249. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, J.S.; Vaidya, U.J.; Baum, M.; Bulsara, M.K.; Joseph, D.; Tobias, J.S. Global adoption of single-shot targeted intraoperative radiotherapy (TARGIT-IORT) for breast cancer-better for patients, better for healthcare systems. Front. Oncol. 2022, 12, 786515. [Google Scholar] [CrossRef]
- Halima, A.; Parker, S.M.; Asha, W.; Mayo, Z.S.; Kilic, S.S.; Obi, E.; Kim, S.; Gentle, C.; Valente, S.; Cherian, S.; et al. Accelerated Partial Breast Irradiation vs. Intraoperative Radiation Therapy for Early-Stage Breast Cancer and Ductal Carcinoma In Situ. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, e16. [Google Scholar] [CrossRef]
- Shah, C. Intraoperative Radiation Therapy for Breast Cancer: Are We There Yet? Ann. Surg. Oncol. 2021, 28, 20–21. [Google Scholar] [CrossRef]
- Goldberg, M.; Bridhikitti, J.; Khan, A.J.; McGale, P.; Whelan, T.J. A Meta-Analysis of Trials of Partial Breast Irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 60–72. [Google Scholar] [CrossRef]
- Whelan, T.J.; Smith, S.; Nielsen, T.O.; Parpia, S.; Fyles, A.W.; Bane, A.; Liu, F.-F.; Grimard, L.; Stevens, C.; Bowen, J.; et al. LUMINA: A prospective trial omitting radiotherapy (RT) following breast conserving surgery (BCS) in T1N0 luminal A breast cancer (BC). J. Clin. Oncol. 2022, 40, LBA501. [Google Scholar] [CrossRef]
- The PRECISION Trial (Profiling Early Breast Cancer for Radiotherapy Omission): A Phase II Study of Breast-Conserving Surgery Without Adjuvant Radiotherapy for Favorable-Risk Breast Cancer. Available online: https://www.clinicaltrials.gov/ct2/show/NCT02653755 (accessed on 1 December 2022).
- The IDEA Study (Individualized Decisions for Endocrine Therapy Alone). Available online: https://clinicaltrials.gov/ct2/show/NCT02400190 (accessed on 1 December 2022).
- Kirwan, C.C.; Coles, C.E.; Bliss, J.; Group, P.P.W.; Group, P.P.W. It’s PRIMETIME. Postoperative Avoidance of Radiotherapy: Biomarker Selection of Women at Very Low Risk of Local Recurrence. Clin. Oncol. 2016, 28, 594–596. [Google Scholar] [CrossRef] [Green Version]
- De-Escalation of Breast Radiation Trial for Hormone Sensitive, HER-2 Negative, Oncotype Recurrence Score Less Than or Equal to 18 Breast Cancer (DEBRA). Available online: https://www.clinicaltrials.gov/ct2/show/NCT04852887 (accessed on 1 December 2022).
- EXamining PErsonalised Radiation Therapy for Low-risk Early Breast Cancer (EXPERT). Available online: https://clinicaltrials.gov/ct2/show/NCT02889874 (accessed on 1 December 2022).
- Partial Breast Versus no Irradiation for Women With Early Breast Cancer. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03646955 (accessed on 1 December 2022).
- Parulekar, W.R.; Berrang, T.; Kong, I.; Rakovitch, E.; Theberge, V.; Gelmon, K.A.; Chia, S.K.L.; Bellon, J.R.; Jagsi, R.; Ho, A.Y.; et al. CCTG MA.39 tailor RT: A randomized trial of regional radiotherapy in biomarker low-risk node-positive breast cancer (NCT03488693). J. Clin. Oncol. 2019, 37, TPS602. [Google Scholar] [CrossRef]
- Nielsen, T.O.; Leung, S.C.; Riaz, N.; Kos, Z.; Bane, A.; Whelan, T.J. P6-04-02: Ki67 Assessment Protocol: Companion Diagnostic Biomarker for LUMINA Prospective Cohort Study. In Proceedings of the Presented at the San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 6–10 December 2022. [Google Scholar]
- Patel, M.A.; Dillon, D.A.; Digiovanni, G.; Chen, Y.-H.; Catalano, P.; Perez, C.; Wazer, D.; Wright, J.; Jimenez, R.; Winer, E.; et al. Abstract CT271: PRECISION (Profiling early breast cancer for radiotherapy omission): A phase II study of breast-conserving surgery without adjuvant radiotherapy for favorable-risk breast cancer. Cancer Res. 2020, 80, CT271. [Google Scholar] [CrossRef]
- Braunstein, L.Z.; Wong, J.; Dillon, D.A.; Chen, Y.-H.; Catalano, P.; Cahlon, O.; El-Tamer, M.B.; Jimenez, R.; Khan, A.; Perez, C.; et al. OT1-12-02-Preliminary report of the PRECISION Trial (Profiling Early Breast Cancer for Radiotherapy Omission): A Phase II Study of Breast-Conserving Surgery Without Adjuvant Radiotherapy for Favorable-Risk Breast Cancer. In Proceedings of the Presented at San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 6–10 December 2022. [Google Scholar]
- Cuzick, J.; Dowsett, M.; Pineda, S.; Wale, C.; Salter, J.; Quinn, E.; Zabaglo, L.; Mallon, E.; Green, A.R.; Ellis, I.O.; et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J. Clin. Oncol. 2011, 29, 4273–4278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowsett, M.; Sestak, I.; Lopez-Knowles, E.; Sidhu, K.; Dunbier, A.K.; Cowens, J.W.; Ferree, S.; Storhoff, J.; Schaper, C.; Cuzick, J. Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J. Clin. Oncol. 2013, 31, 2783–2790. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Cecchini, R.S.; Harris, E.E.; Mamounas, E.T.; Daniel Stover, D.; Ganz, P.A.; Jagsi, R.; Bergom, C.; Théberge, V.; El-Tamer, M.B.; et al. OT1-12-01: A phase III trial evaluating De-escalation of Breast Radiation (DEBRA) following breast-conserving surgery (BCS) of stage 1, HR+, HER2−, RS ≤ 18 breast cancer: NRG-BR007. In Proceedings of the Presented at San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 6–10 December 2022. [Google Scholar]
- Early Breast Cancer Trialists’ Collaborative, g. Trastuzumab for early-stage, HER2-positive breast cancer: A meta-analysis of 13 864 women in seven randomised trials. Lancet Oncol. 2021, 22, 1139–1150. [Google Scholar] [CrossRef]
- Bazan, J.G.; Jhawar, S.R.; Stover, D.; Park, K.U.; Beyer, S.; Healy, E.; White, J.R. De-escalation of radiation therapy in patients with stage I, node-negative, HER2-positive breast cancer. NPJ Breast Cancer 2021, 7, 33. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Barry, W.T.; Dang, C.T.; Yardley, D.A.; Moy, B.; Marcom, P.K.; Albain, K.S.; Rugo, H.S.; Ellis, M.; Shapira, I.; et al. Adjuvant paclitaxel and trastuzumab for node-negative, HER2-positive breast cancer. N. Engl. J. Med. 2015, 372, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Tolaney, S.M.; Guo, H.; Pernas, S.; Barry, W.T.; Dillon, D.A.; Ritterhouse, L.; Schneider, B.P.; Shen, F.; Fuhrman, K.; Baltay, M.; et al. Seven-Year Follow-Up Analysis of Adjuvant Paclitaxel and Trastuzumab Trial for Node-Negative, Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer. J. Clin. Oncol. 2019, 37, 1868–1875. [Google Scholar] [CrossRef]
- Bellon, J.R.; Guo, H.; Barry, W.T.; Dang, C.T.; Yardley, D.A.; Moy, B.; Marcom, P.K.; Albain, K.S.; Rugo, H.S.; Ellis, M.; et al. Local-regional recurrence in women with small node-negative, HER2-positive breast cancer: Results from a prospective multi-institutional study (the APT trial). Breast Cancer Res. Treat. 2019, 176, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Tolaney, S.M.; Tayob, N.; Dang, C.; Yardley, D.A.; Isakoff, S.J.; Valero, V.; Faggen, M.; Mulvey, T.; Bose, R.; Hu, J.; et al. Adjuvant Trastuzumab Emtansine Versus Paclitaxel in Combination With Trastuzumab for Stage I HER2-Positive Breast Cancer (ATEMPT): A Randomized Clinical Trial. J. Clin. Oncol. 2021, 39, 2375–2385. [Google Scholar] [CrossRef]
- Bellon, J.R.; Tayob, N.; Yang, D.D.; Tralins, J.; Dang, C.T.; Isakoff, S.J.; DeMeo, M.; Burstein, H.J.; Partridge, A.H.; Winer, E.P.; et al. Local Therapy Outcomes and Toxicity From the ATEMPT Trial (TBCRC 033): A Phase II Randomized Trial of Adjuvant Trastuzumab Emtansine Versus Paclitaxel in Combination With Trastuzumab in Women With Stage I HER2-Positive Breast Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 117–124. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Huang, C.S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves Ado-Trastuzumab Emtansine for Early Breast Cancer. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ado-trastuzumab-emtansine-early-breast-cancer (accessed on 1 December 2022).
- Denduluri, N.; Somerfield, M.R.; Chavez-MacGregor, M.; Comander, A.H.; Dayao, Z.; Eisen, A.; Freedman, R.A.; Gopalakrishnan, R.; Graff, S.L.; Hassett, M.J.; et al. Selection of Optimal Adjuvant Chemotherapy and Targeted Therapy for Early Breast Cancer: ASCO Guideline Update. J. Clin. Oncol. 2021, 39, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Huang, C.S.; Mano, M.S.; Mamounas, E.P.; Geyer, C.E., Jr.; Untch, M.; Thery, J.C.; Schwaner, I.; Limentani, S.; Loman, N.; et al. Adjuvant trastuzumab emtansine in HER2-positive breast cancer patients with HER2-negative residual invasive disease in KATHERINE. NPJ Breast Cancer 2022, 8, 106. [Google Scholar] [CrossRef] [PubMed]
- NRG-BR008 (“HERO”): A Phase III Randomized Trial Seeking to Optimize Use of Radiotherapy in Patients with Early-Stage, Low Risk, HER2-Positive Breast Cancer. Available online: https://www.nrgoncology.org/Home/News/Post/nrg-br008-hero-a-phase-iii-randomized-trial-seeking-to-optimize-use-of-radiotherapy-in-patients-with-early-stage-low-risk-her2-positive-breast-cancer (accessed on 1 December 2022).
- Asleh, K.; Riaz, N.; Nielsen, T.O. Heterogeneity of triple negative breast cancer: Current advances in subtyping and treatment implications. J. Exp. Clin. Cancer Res. 2022, 41, 265. [Google Scholar] [CrossRef]
- Bianchini, G.; De Angelis, C.; Licata, L.; Gianni, L. Treatment landscape of triple-negative breast cancer—Expanded options, evolving needs. Nat. Rev. Clin. Oncol. 2022, 19, 91–113. [Google Scholar] [CrossRef]
- Abdou, Y.; Goudarzi, A.; Yu, J.X.; Upadhaya, S.; Vincent, B.; Carey, L.A. Immunotherapy in triple negative breast cancer: Beyond checkpoint inhibitors. NPJ Breast Cancer 2022, 8, 121. [Google Scholar] [CrossRef]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.L.; Taghian, A.G.; Katz, M.S.; Niemierko, A.; Abi Raad, R.F.; Boon, W.L.; Bellon, J.R.; Wong, J.S.; Smith, B.L.; Harris, J.R. Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. J. Clin. Oncol. 2008, 26, 2373–2378. [Google Scholar] [CrossRef]
- Cancello, G.; Maisonneuve, P.; Rotmensz, N.; Viale, G.; Mastropasqua, M.G.; Pruneri, G.; Montagna, E.; Dellapasqua, S.; Iorfida, M.; Cardillo, A.; et al. Prognosis in women with small (T1mic,T1a,T1b) node-negative operable breast cancer by immunohistochemically selected subtypes. Breast Cancer Res. Treat. 2011, 127, 713–720. [Google Scholar] [CrossRef] [Green Version]
- Rask, G.; Nazemroaya, A.; Jansson, M.; Wadsten, C.; Nilsson, G.; Blomqvist, C.; Holmberg, L.; Warnberg, F.; Sund, M. Correlation of tumour subtype with long-term outcome in small breast carcinomas: A Swedish population-based retrospective cohort study. Breast Cancer Res. Treat. 2022, 195, 367–377. [Google Scholar] [CrossRef]
- An, X.; Lei, X.; Huang, R.; Luo, R.; Li, H.; Xu, F.; Yuan, Z.; Wang, S.; de Nonneville, A.; Goncalves, A.; et al. Adjuvant chemotherapy for small, lymph node-negative, triple-negative breast cancer: A single-center study and a meta-analysis of the published literature. Cancer 2020, 126 (Suppl. S16), 3837–3846. [Google Scholar] [CrossRef] [PubMed]
- Vaz-Luis, I.; Ottesen, R.A.; Hughes, M.E.; Mamet, R.; Burstein, H.J.; Edge, S.B.; Gonzalez-Angulo, A.M.; Moy, B.; Rugo, H.S.; Theriault, R.L.; et al. Outcomes by tumor subtype and treatment pattern in women with small, node-negative breast cancer: A multi-institutional study. J. Clin. Oncol. 2014, 32, 2142–2150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, A.Y.; Gupta, G.; King, T.A.; Perez, C.A.; Patil, S.M.; Rogers, K.H.; Wen, Y.H.; Brogi, E.; Morrow, M.; Hudis, C.A.; et al. Favorable prognosis in patients with T1a/T1bN0 triple-negative breast cancers treated with multimodality therapy. Cancer 2012, 118, 4944–4952. [Google Scholar] [CrossRef] [PubMed]
- Leon-Ferre, R.A.; Flora Jonas, S.F.; Salgado, R.; Loi, S.; De Jong, V.; Carter, J.M.; Nielson, T.; Leung, S.; Riaz, N.; Curigliano, G.; et al. PD9-05 Stromal tumor-infiltrating lymphocytes identify early-stage triple-negative breast cancer patients with favorable outcomes at 10-year follow-up in the absence of systemic therapy: A pooled analysis of 1835 patients. In Proceedings of the Presented at San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 1 December 2022. [Google Scholar]
- Eaton, B.R.; Jiang, R.; Torres, M.A.; Kahn, S.T.; Godette, K.; Lash, T.L.; Ward, K.C. Benefit of adjuvant radiotherapy after breast-conserving therapy among elderly women with T1-T2N0 estrogen receptor-negative breast cancer. Cancer 2016, 122, 3059–3068. [Google Scholar] [CrossRef] [Green Version]
- Haque, W.; Verma, V.; Hsiao, K.Y.; Hatch, S.; Arentz, C.; Szeja, S.; Schwartz, M.; Niravath, P.; Bonefas, E.; Miltenburg, D.; et al. Omission of radiation therapy following breast conservation in older (>/=70 years) women with T1-2N0 triple-negative breast cancer. Breast J. 2019, 25, 1126–1133. [Google Scholar] [CrossRef]
- Haque, W.; Verma, V.; Farach, A.; Brian Butler, E.; Teh, B.S. Postmastectomy radiation therapy for triple negative, node-negative breast cancer. Radiother. Oncol. 2019, 132, 48–54. [Google Scholar] [CrossRef]
- Wang, J.; Shi, M.; Ling, R.; Xia, Y.; Luo, S.; Fu, X.; Xiao, F.; Li, J.; Long, X.; Wang, J.; et al. Adjuvant chemotherapy and radiotherapy in triple-negative breast carcinoma: A prospective randomized controlled multi-center trial. Radiother. Oncol. 2011, 100, 200–204. [Google Scholar] [CrossRef]
- Spring, L.M.; Bar, Y.; Isakoff, S.J. The Evolving Role of Neoadjuvant Therapy for Operable Breast Cancer. J. Natl. Compr. Cancer Netw. 2022, 20, 723–734. [Google Scholar] [CrossRef]
- Samiei, S.; Simons, J.M.; Engelen, S.M.E.; Beets-Tan, R.G.H.; Classe, J.M.; Smidt, M.L.; Group, E. Axillary Pathologic Complete Response After Neoadjuvant Systemic Therapy by Breast Cancer Subtype in Patients With Initially Clinically Node-Positive Disease: A Systematic Review and Meta-analysis. JAMA Surg. 2021, 156, e210891. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Tee, S.R.; Devane, L.A.; Evoy, D.; Rothwell, J.; Geraghty, J.; Prichard, R.S.; McDermott, E.W. Meta-analysis of sentinel lymph node biopsy after neoadjuvant chemotherapy in patients with initial biopsy-proven node-positive breast cancer. Br. J. Surg. 2018, 105, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Boughey, J.C.; Ballman, K.V.; Le-Petross, H.T.; McCall, L.M.; Mittendorf, E.A.; Ahrendt, G.M.; Wilke, L.G.; Taback, B.; Feliberti, E.C.; Hunt, K.K. Identification and Resection of Clipped Node Decreases the False-negative Rate of Sentinel Lymph Node Surgery in Patients Presenting With Node-positive Breast Cancer (T0-T4, N1-N2) Who Receive Neoadjuvant Chemotherapy: Results From ACOSOG Z1071 (Alliance). Ann. Surg. 2016, 263, 802–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caudle, A.S.; Yang, W.T.; Krishnamurthy, S.; Mittendorf, E.A.; Black, D.M.; Gilcrease, M.Z.; Bedrosian, I.; Hobbs, B.P.; DeSnyder, S.M.; Hwang, R.F.; et al. Improved Axillary Evaluation Following Neoadjuvant Therapy for Patients With Node-Positive Breast Cancer Using Selective Evaluation of Clipped Nodes: Implementation of Targeted Axillary Dissection. J. Clin. Oncol. 2016, 34, 1072–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simons, J.M.; van Nijnatten, T.J.A.; van der Pol, C.C.; van Diest, P.J.; Jager, A.; van Klaveren, D.; Kam, B.L.R.; Lobbes, M.B.I.; de Boer, M.; Verhoef, C.; et al. Diagnostic Accuracy of Radioactive Iodine Seed Placement in the Axilla With Sentinel Lymph Node Biopsy After Neoadjuvant Chemotherapy in Node-Positive Breast Cancer. JAMA Surg. 2022, 157, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Ditsch, N.; Kolberg-Liedtke, C.; Friedrich, M.; Jackisch, C.; Albert, U.S.; Banys-Paluchowski, M.; Bauerfeind, I.; Blohmer, J.U.; Budach, W.; Dall, P.; et al. AGO Recommendations for the Diagnosis and Treatment of Patients with Early Breast Cancer: Update 2021. Breast Care 2021, 16, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Ayala de la Pena, F.; Andres, R.; Garcia-Saenz, J.A.; Manso, L.; Margeli, M.; Dalmau, E.; Pernas, S.; Prat, A.; Servitja, S.; Ciruelos, E. SEOM clinical guidelines in early stage breast cancer (2018). Clin. Transl. Oncol. 2019, 21, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Consensus Guideline on the Management of the Axilla in Patients with Invasive/In-Situ Breast Cancer. The American Society of Breast Surgeons. Available online: https://www.breastsurgeons.org/docs/statements/Consensus-Guideline-on-the-Management-of-the-Axilla-Concise-Overview.pdf (accessed on 26 November 2022).
- Barrio, A.V.; Montagna, G.; Mamtani, A.; Sevilimedu, V.; Edelweiss, M.; Capko, D.; Cody, H.S., 3rd; El-Tamer, M.; Gemignani, M.L.; Heerdt, A.; et al. Nodal Recurrence in Patients With Node-Positive Breast Cancer Treated With Sentinel Node Biopsy Alone After Neoadjuvant Chemotherapy-A Rare Event. JAMA Oncol. 2021, 7, 1851–1855. [Google Scholar] [CrossRef]
- Kahler-Ribeiro-Fontana, S.; Pagan, E.; Magnoni, F.; Vicini, E.; Morigi, C.; Corso, G.; Intra, M.; Canegallo, F.; Ratini, S.; Leonardi, M.C.; et al. Long-term standard sentinel node biopsy after neoadjuvant treatment in breast cancer: A single institution ten-year follow-up. Eur. J. Surg. Oncol. 2021, 47, 804–812. [Google Scholar] [CrossRef]
- Haffty, B.G.; McCall, L.M.; Ballman, K.V.; Buchholz, T.A.; Hunt, K.K.; Boughey, J.C. Impact of Radiation on Locoregional Control in Women with Node-Positive Breast Cancer Treated with Neoadjuvant Chemotherapy and Axillary Lymph Node Dissection: Results from ACOSOG Z1071 Clinical Trial. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 174–182. [Google Scholar] [CrossRef]
- Krug, D.; Lederer, B.; Seither, F.; Nekljudova, V.; Ataseven, B.; Blohmer, J.U.; Costa, S.D.; Denkert, C.; Ditsch, N.; Gerber, B.; et al. Post-Mastectomy Radiotherapy After Neoadjuvant Chemotherapy in Breast Cancer: A Pooled Retrospective Analysis of Three Prospective Randomized Trials. Ann. Surg. Oncol. 2019, 26, 3892–3901. [Google Scholar] [CrossRef]
- Stecklein, S.R.; Park, M.; Liu, D.D.; Valle Goffin, J.J.; Caudle, A.S.; Mittendorf, E.A.; Barcenas, C.H.; Mougalian, S.; Woodward, W.A.; Valero, V.; et al. Long-Term Impact of Regional Nodal Irradiation in Patients With Node-Positive Breast Cancer Treated With Neoadjuvant Systemic Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 568–577. [Google Scholar] [CrossRef] [PubMed]
- De Wild, S.R.; de Munck, L.; Simons, J.M.; Verloop, J.; van Dalen, T.; Elkhuizen, P.H.M.; Houben, R.M.A.; van Leeuwen, A.E.; Linn, S.C.; Pijnappel, R.M.; et al. De-escalation of radiotherapy after primary chemotherapy in cT1-2N1 breast cancer (RAPCHEM; BOOG 2010-03): 5-year follow-up results of a Dutch, prospective, registry study. Lancet Oncol. 2022, 23, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Mamounas, E.P.; Bandos, H.; White, J.R.; Julian, T.B.; Khan, A.J.; Shaitelman, S.F.; Torres, M.A.; Vicini, F.; Ganz, P.A.; McCloskey, S.A.; et al. NRG Oncology/NSABP B-51/RTOG 1304: Phase III trial to determine if chest wall and regional nodal radiotherapy (CWRNRT) post mastectomy (Mx) or the addition of RNRT to whole breast RT post breast-conserving surgery (BCS) reduces invasive breast cancer recurrence-free interval (IBCR-FI) in patients (pts) with pathologically positive axillary (PPAx) nodes who are ypN0 after neoadjuvant chemotherapy (NC). J. Clin. Oncol. 2019, 37, TPS600. [Google Scholar] [CrossRef]
- Kushekhar, K.; Chellappa, S.; Aandahl, E.M.; Taskén, K. Role of Lymphocytes in Cancer Immunity and Immune Evasion Mechanisms. In Biomarkers of the Tumor Microenvironment, 2nd ed.; Akslen, L.A., Watnick, R.S., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2022; pp. 159–182. [Google Scholar]
- El Bairi, K.; Haynes, H.R.; Blackley, E.; Fineberg, S.; Shear, J.; Turner, S.; de Freitas, J.R.; Sur, D.; Amendola, L.C.; Gharib, M.; et al. The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group. NPJ Breast Cancer 2021, 7, 150. [Google Scholar] [CrossRef]
- De Jong, V.M.T.; Wang, Y.; Ter Hoeve, N.D.; Opdam, M.; Stathonikos, N.; Jozwiak, K.; Hauptmann, M.; Cornelissen, S.; Vreuls, W.; Rosenberg, E.H.; et al. Prognostic Value of Stromal Tumor-Infiltrating Lymphocytes in Young, Node-Negative, Triple-Negative Breast Cancer Patients Who Did Not Receive (neo)Adjuvant Systemic Therapy. J. Clin. Oncol. 2022, 40, 2361–2374. [Google Scholar] [CrossRef]
- Park, J.H.; Jonas, S.F.; Bataillon, G.; Criscitiello, C.; Salgado, R.; Loi, S.; Viale, G.; Lee, H.J.; Dieci, M.V.; Kim, S.B.; et al. Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers (TNBC) who did not receive adjuvant chemotherapy. Ann. Oncol. 2019, 30, 1941–1949. [Google Scholar] [CrossRef]
- Shenasa, E.; Stovgaard, E.S.; Jensen, M.B.; Asleh, K.; Riaz, N.; Gao, D.; Leung, S.; Ejlertsen, B.; Laenkholm, A.V.; Nielsen, T.O. Neither Tumor-Infiltrating Lymphocytes nor Cytotoxic T Cells Predict Enhanced Benefit from Chemotherapy in the DBCG77B Phase III Clinical Trial. Cancers 2022, 14, 3808. [Google Scholar] [CrossRef]
- Dieci, M.V.; Mathieu, M.C.; Guarneri, V.; Conte, P.; Delaloge, S.; Andre, F.; Goubar, A. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Ann. Oncol. 2015, 26, 1698–1704. [Google Scholar] [CrossRef]
- Denkert, C.; von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef]
- Denkert, C.; von Minckwitz, G.; Brase, J.C.; Sinn, B.V.; Gade, S.; Kronenwett, R.; Pfitzner, B.M.; Salat, C.; Loi, S.; Schmitt, W.D.; et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J. Clin. Oncol. 2015, 33, 983–991. [Google Scholar] [CrossRef]
- Solinas, C.; Ceppi, M.; Lambertini, M.; Scartozzi, M.; Buisseret, L.; Garaud, S.; Fumagalli, D.; de Azambuja, E.; Salgado, R.; Sotiriou, C.; et al. Tumor-infiltrating lymphocytes in patients with HER2-positive breast cancer treated with neoadjuvant chemotherapy plus trastuzumab, lapatinib or their combination: A meta-analysis of randomized controlled trials. Cancer Treat. Rev. 2017, 57, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Salgado, R.; Park, Y.H.; Munoz-Couselo, E.; Kim, S.B.; Sohn, J.; Im, S.A.; Foukakis, T.; Kuemmel, S.; Dent, R.; et al. Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: Results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann. Oncol. 2020, 31, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Stecklein, S.R.; Yoder, R.; Staley, J.M.; Schwensen, K.; O’Dea, A.; Nye, L.E.; Elia, M.; Satelli, D.; Crane, G.; et al. Clinical and biomarker results of neoadjuvant phase II study of pembrolizumab and carboplatin plus docetaxel in triple-negative breast cancer (TNBC) (NeoPACT). J. Clin. Oncol. 2022, 40, 513. [Google Scholar] [CrossRef]
- Cytlak, U.M.; Dyer, D.P.; Honeychurch, J.; Williams, K.J.; Travis, M.A.; Illidge, T.M. Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nat. Rev. Immunol. 2022, 22, 124–138. [Google Scholar] [CrossRef] [PubMed]
- Monjazeb, A.M.; Schalper, K.A.; Villarroel-Espindola, F.; Nguyen, A.; Shiao, S.L.; Young, K. Effects of Radiation on the Tumor Microenvironment. Semin. Radiat. Oncol. 2020, 30, 145–157. [Google Scholar] [CrossRef]
- Goldberg, J.; Pastorello, R.G.; Vallius, T.; Davis, J.; Cui, Y.X.; Agudo, J.; Waks, A.G.; Keenan, T.; McAllister, S.S.; Tolaney, S.M.; et al. The Immunology of Hormone Receptor Positive Breast Cancer. Front. Immunol. 2021, 12, 674192. [Google Scholar] [CrossRef]
- Bates, A.M.; O’Leary, K.A.; Emma, S.; Nystuen, E.; Sumiec, E.G.; Schuler, L.A.; Morris, Z.S. Abstract 2255: Enhancing immunogenicity in immunologically cold ER+ breast cancer using estrogen receptor blockade and radiation therapy. Cancer Res. 2020, 80, 2255. [Google Scholar] [CrossRef]
- Ngo, M.-H.; Tiberi, D.; Vavassis, P.; Nguyen, D.; Fortin, B.; Gervais, M.-K.; Sideris, L.; Dubé, P.; Leblanc, G.; Dufresne, M.-P.; et al. Abstract P4-12-07: Single pre-operative radiation therapy (SPORT) trial for low risk breast cancer: A phase 1 study comparing pathological findings in immediate versus delayed surgery. Cancer Res. 2020, 80, P4-12-07. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, D.; Zhao, S.; Suo, C.; Shi, J.; Xue, M.Z.; Ruan, M.; Wang, H.; Zhao, J.; Li, Q.; et al. Multi-Omics Profiling Reveals Distinct Microenvironment Characterization and Suggests Immune Escape Mechanisms of Triple-Negative Breast Cancer. Clin. Cancer Res. 2019, 25, 5002–5014. [Google Scholar] [CrossRef] [Green Version]
- Mittendorf, E.A.; Zhang, H.; Barrios, C.H.; Saji, S.; Jung, K.H.; Hegg, R.; Koehler, A.; Sohn, J.; Iwata, H.; Telli, M.L.; et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. Lancet 2020, 396, 1090–1100. [Google Scholar] [CrossRef]
- Verbus, E.A.; Rossi, A.J.; Clark, A.S.; Taunk, N.K.; Nayak, A.; Hernandez, J.M.; Tchou, J.C. Preoperative Use of a Radiation Boost to Enhance Effectiveness of Immune Checkpoint Blockade Therapy in Operable Breast Cancer. Ann. Surg. Oncol. 2022, 29, 1530–1532. [Google Scholar] [CrossRef] [PubMed]
- BreastVAX: Radiation Boost to Enhance Immune Checkpoint Blockade Therapy (BreastVAX). Available online: https://clinicaltrials.gov/ct2/show/NCT04454528 (accessed on 1 December 2022).
- Tchou, J.; Clark, A.; Taunk, N.; Freedman, G.; Xu, N.; Minn, A.; Bradbury, A.; Gross, A.D.; Domchek, S.; Knollman, H.; et al. 644 Major pathologic response after a single radiotherapy fraction + a single pembrolizumab dose given preoperatively in patients with cT1N0 triple negative breast cancer (TNBC)—Preliminary results of a phase 1b/2 study (NCT04454528). J. ImmunoTherapy Cancer 2022, 10, A674. [Google Scholar] [CrossRef]
- Single Pre-Operative Radiation Therapy (SPORT) for Low Risk Breast Cancer (SPORT). Available online: https://clinicaltrials.gov/ct2/show/NCT01717261 (accessed on 1 December 2022).
- Preoperative Single-Fraction Radiotherapy in Early Stage Breast Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT02482376 (accessed on 1 December 2022).
- Radiotherapy in Preoperative Setting With CyberKnife for Breast Cancer (ROCK). Available online: https://clinicaltrials.gov/ct2/show/NCT03520894 (accessed on 1 December 2022).
- Stereotactic Image-Guided Neoadjuvant Ablative Radiation Then Lumpectomy (SIGNAL 2). Available online: https://clinicaltrials.gov/ct2/show/NCT02212860 (accessed on 1 December 2022).
- SABER Study for Selected Early Stage Breast Cancer (SABER). Available online: https://clinicaltrials.gov/ct2/show/NCT04360330 (accessed on 1 December 2022).
- GammaPod Dose Escalation Radiation for Early Stage Breast Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT04234386 (accessed on 1 December 2022).
- Hypofractionated Radiation Therapy in Treating Participants With Breast Cancer Before Surgery. Available online: https://clinicaltrials.gov/ct2/show/NCT03624478 (accessed on 1 December 2022).
- Study of Stereotactic Radiotherapy for Breast Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT03043794 (accessed on 1 December 2022).
- Breast Cancer Study of Preoperative Pembrolizumab + Radiation. Available online: https://clinicaltrials.gov/ct2/show/NCT03366844 (accessed on 1 December 2022).
- Neo-adjuvant Chemotherapy Combined With Stereotactic Body Radiotherapy to the Primary Tumour +/- Durvalumab, +/- Oleclumab in Luminal B Breast Cancer: (Neo-CheckRay). Available online: https://www.clinicaltrials.gov/ct2/show/NCT03875573 (accessed on 1 December 2022).
- Kovacs, A.; Stenmark Tullberg, A.; Werner Ronnerman, E.; Holmberg, E.; Hartman, L.; Sjostrom, M.; Lundstedt, D.; Malmstrom, P.; Ferno, M.; Karlsson, P. Effect of Radiotherapy After Breast-Conserving Surgery Depending on the Presence of Tumor-Infiltrating Lymphocytes: A Long-Term Follow-Up of the SweBCG91RT Randomized Trial. J. Clin. Oncol. 2019, 37, 1179–1187. [Google Scholar] [CrossRef] [PubMed]
- Malmstrom, P.; Holmberg, L.; Anderson, H.; Mattsson, J.; Jonsson, P.E.; Tennvall-Nittby, L.; Balldin, G.; Loven, L.; Svensson, J.H.; Ingvar, C.; et al. Breast conservation surgery, with and without radiotherapy, in women with lymph node-negative breast cancer: A randomised clinical trial in a population with access to public mammography screening. Eur. J. Cancer 2003, 39, 1690–1697. [Google Scholar] [CrossRef]
- Killander, F.; Karlsson, P.; Anderson, H.; Mattsson, J.; Holmberg, E.; Lundstedt, D.; Holmberg, L.; Malmstrom, P. No breast cancer subgroup can be spared postoperative radiotherapy after breast-conserving surgery. Fifteen-year results from the Swedish Breast Cancer Group randomised trial, SweBCG 91 RT. Eur. J. Cancer 2016, 67, 57–65. [Google Scholar] [CrossRef]
- Stenmark Tullberg, A.; Puttonen, H.A.J.; Sjostrom, M.; Holmberg, E.; Chang, S.L.; Feng, F.Y.; Speers, C.; Pierce, L.J.; Lundstedt, D.; Killander, F.; et al. Immune Infiltrate in the Primary Tumor Predicts Effect of Adjuvant Radiotherapy in Breast Cancer; Results from the Randomized SweBCG91RT Trial. Clin. Cancer Res. 2021, 27, 749–758. [Google Scholar] [CrossRef]
- Whelan, T.J.; Olivotto, I.A.; Parulekar, W.R.; Ackerman, I.; Chua, B.H.; Nabid, A.; Vallis, K.A.; White, J.R.; Rousseau, P.; Fortin, A.; et al. Regional Nodal Irradiation in Early-Stage Breast Cancer. N. Engl. J. Med. 2015, 373, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Riaz, N.; E.Chen, B.; Bane, A.; Gao, D.; Stovgaard, E.S.; Kos, Z.; Leung, S.C.; Shenasa, E.; Parulekar, W.; Chambers, S.; et al. P4-02-16: Prognostic and Predictive Capacity of Tumor Infiltrating Lymphocytes in the MA.20 regional radiotherapy trial. In Proceedings of the Poster Presentation at San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 6–10 December 2022. [Google Scholar]
- Overgaard, M.; Hansen, P.S.; Overgaard, J.; Rose, C.; Andersson, M.; Bach, F.; Kjaer, M.; Gadeberg, C.C.; Mouridsen, H.T.; Jensen, M.B.; et al. Postoperative radiotherapy in high-risk premenopausal women with breast cancer who receive adjuvant chemotherapy. Danish Breast Cancer Cooperative Group 82b Trial. N. Engl. J. Med. 1997, 337, 949–955. [Google Scholar] [CrossRef]
- Overgaard, M.; Jensen, M.B.; Overgaard, J.; Hansen, P.S.; Rose, C.; Andersson, M.; Kamby, C.; Kjaer, M.; Gadeberg, C.C.; Rasmussen, B.B.; et al. Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. Lancet 1999, 353, 1641–1648. [Google Scholar] [CrossRef]
- Tramm, T.; Vinter, H.; Vahl, P.; Ozcan, D.; Alsner, J.; Overgaard, J. Tumor-infiltrating lymphocytes predict improved overall survival after post-mastectomy radiotherapy: A study of the randomized DBCG82bc cohort. Acta Oncol. 2022, 61, 153–162. [Google Scholar] [CrossRef]
- Liveringhouse, C.L.; Washington, I.R.; Diaz, R.; Jimenez, R.B.; Harris, E.E.; Rabinovitch, R.; Woodward, W.A.; Torres-Roca, J.F.; Ahmed, K.A. Genomically Guided Breast Radiation Therapy: A Review of the Current Data and Future Directions. Adv. Radiat. Oncol. 2021, 6, 100731. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.G.; Speers, C.; Jagsi, R. Tailoring the Omission of Radiotherapy for Early-Stage Breast Cancer Based on Tumor Biology. Semin. Radiat. Oncol. 2022, 32, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials; Board on Health Care Services; Board on Health Sciences Policy; Institute of Medicine. Evolution of Translational Omics: Lessons Learned and the Path Forward; National Academic Press: Washington, DC, USA, 2012. [Google Scholar]
- Simon, R.M.; Paik, S.; Hayes, D.F. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J. Natl. Cancer Inst. 2009, 101, 1446–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jennings, L.; Van Deerlin, V.M.; Gulley, M.L. College of American Pathologists Molecular Pathology Resource C: Recommended principles and practices for validating clinical molecular pathology tests. Arch. Pathol. Lab. Med. 2009, 133, 743–755. [Google Scholar] [CrossRef]
- Eschrich, S.A.; Pramana, J.; Zhang, H.; Zhao, H.; Boulware, D.; Lee, J.H.; Bloom, G.; Rocha-Lima, C.; Kelley, S.; Calvin, D.P.; et al. A gene expression model of intrinsic tumor radiosensitivity: Prediction of response and prognosis after chemoradiation. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 489–496. [Google Scholar] [CrossRef] [Green Version]
- Eschrich, S.A.; Fulp, W.J.; Pawitan, Y.; Foekens, J.A.; Smid, M.; Martens, J.W.; Echevarria, M.; Kamath, V.; Lee, J.H.; Harris, E.E.; et al. Validation of a radiosensitivity molecular signature in breast cancer. Clin. Cancer Res. 2012, 18, 5134–5143. [Google Scholar] [CrossRef] [Green Version]
- Torres-Roca, J.F.; Fulp, W.J.; Caudell, J.J.; Servant, N.; Bollet, M.A.; van de Vijver, M.; Naghavi, A.O.; Harris, E.E.; Eschrich, S.A. Integration of a Radiosensitivity Molecular Signature Into the Assessment of Local Recurrence Risk in Breast Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Li, B.; Pollom, E.L.; Horst, K.C.; Li, R. Integrating Radiosensitivity and Immune Gene Signatures for Predicting Benefit of Radiotherapy in Breast Cancer. Clin. Cancer Res. 2018, 24, 4754–4762. [Google Scholar] [CrossRef] [Green Version]
- Tramm, T.; Mohammed, H.; Myhre, S.; Kyndi, M.; Alsner, J.; Børresen-Dale, A.-L.; Sørlie, T.; Frigessi, A.; Overgaard, J. Development and validation of a gene profile predicting benefit of postmastectomy radiotherapy in patients with high-risk breast cancer: A study of gene expression in the DBCG82bc cohort. Clin. Cancer Res. 2014, 20, 5272–5280. [Google Scholar] [CrossRef] [Green Version]
- Speers, C.; Zhao, S.; Liu, M.; Bartelink, H.; Pierce, L.J.; Feng, F.Y. Development and Validation of a Novel Radiosensitivity Signature in Human Breast Cancer. Clin. Cancer Res. 2015, 21, 3667–3677. [Google Scholar] [CrossRef] [Green Version]
- Sjostrom, M.; Chang, S.L.; Fishbane, N.; Davicioni, E.; Zhao, S.G.; Hartman, L.; Holmberg, E.; Feng, F.Y.; Speers, C.W.; Pierce, L.J.; et al. Clinicogenomic Radiotherapy Classifier Predicting the Need for Intensified Locoregional Treatment After Breast-Conserving Surgery for Early-Stage Breast Cancer. J. Clin. Oncol. 2019, 37, 3340–3349. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, M.; Chang, S.L.; Hartman, L.; Holmberg, E.; Feng, F.Y.; Speers, C.W.; Pierce, L.J.; Malmström, P.; Fernö, M.; Karlsson, P. Discovery and validation of a genomic signature to identify women with early-stage invasive breast cancer who may safely omit adjuvant radiotherapy after breast-conserving surgery. J. Clin. Oncol. 2021, 39, 512. [Google Scholar] [CrossRef]
- Taylor, K.J.; Bartlett, J.M.S.; Bennett, J.; Chang, S.L.; Arrick, B.; Baehner, F.; Loane, J.F.; Piper, T.; Mallon, E.; Dunlop, J.; et al. Abstract: Validation of Profile for the Omission of Local Adjuvant Radiotherapy (POLAR) in early stage invasive breast cancer patients of the Scottish Conservation Trial. In Proceedings of the Presented at San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 6–10 December 2022. [Google Scholar]
- Sjostrom, M.; Fyles, A.; Liu, F.F.; McCready, D.; Shi, W.; Rey-McIntyre, K.; Chang, S.L.; Feng, F.Y.; Speers, C.W.; Pierce, L.J.; et al. Development and Validation of a Genomic Profile for the Omission of Local Adjuvant Radiation in Breast Cancer. J. Clin. Oncol. 2023, JCO2200655. [Google Scholar] [CrossRef]
- Braun, S.; Vogl, F.D.; Naume, B.; Janni, W.; Osborne, M.P.; Coombes, R.C.; Schlimok, G.; Diel, I.J.; Gerber, B.; Gebauer, G.; et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N. Engl. J. Med. 2005, 353, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Hartkopf, A.D.; Brucker, S.Y.; Taran, F.A.; Harbeck, N.; von Au, A.; Naume, B.; Pierga, J.Y.; Hoffmann, O.; Beckmann, M.W.; Ryden, L.; et al. Disseminated tumour cells from the bone marrow of early breast cancer patients: Results from an international pooled analysis. Eur. J. Cancer 2021, 154, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Wiedswang, G.; Borgen, E.; Karesen, R.; Kvalheim, G.; Nesland, J.M.; Qvist, H.; Schlichting, E.; Sauer, T.; Janbu, J.; Harbitz, T.; et al. Detection of isolated tumor cells in bone marrow is an independent prognostic factor in breast cancer. J. Clin. Oncol. 2003, 21, 3469–3478. [Google Scholar] [CrossRef]
- Braun, S.; Pantel, K.; Muller, P.; Janni, W.; Hepp, F.; Kentenich, C.R.; Gastroph, S.; Wischnik, A.; Dimpfl, T.; Kindermann, G.; et al. Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. N. Engl. J. Med. 2000, 342, 525–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartkopf, A.D.; Wallwiener, M.; Fehm, T.N.; Hahn, M.; Walter, C.B.; Gruber, I.; Brucker, S.Y.; Taran, F.A. Disseminated tumor cells from the bone marrow of patients with nonmetastatic primary breast cancer are predictive of locoregional relapse. Ann. Oncol. 2015, 26, 1155–1160. [Google Scholar] [CrossRef]
- Bidard, F.C.; Kirova, Y.M.; Vincent-Salomon, A.; Alran, S.; de Rycke, Y.; Sigal-Zafrani, B.; Sastre-Garau, X.; Mignot, L.; Fourquet, A.; Pierga, J.Y. Disseminated tumor cells and the risk of locoregional recurrence in nonmetastatic breast cancer. Ann. Oncol. 2009, 20, 1836–1841. [Google Scholar] [CrossRef]
- Mignot, F.; Loirat, D.; Dureau, S.; Bataillon, G.; Caly, M.; Vincent-Salomon, A.; Berger, F.; Fourquet, A.; Pierga, J.Y.; Kirova, Y.M.; et al. Disseminated Tumor Cells Predict Efficacy of Regional Nodal Irradiation in Early Stage Breast Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 389–396. [Google Scholar] [CrossRef]
- Kim, M.Y.; Oskarsson, T.; Acharyya, S.; Nguyen, D.X.; Zhang, X.H.; Norton, L.; Massague, J. Tumor self-seeding by circulating cancer cells. Cell 2009, 139, 1315–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorsen, L.B.J.; Overgaard, J.; Matthiessen, L.W.; Berg, M.; Stenbygaard, L.; Pedersen, A.N.; Nielsen, M.H.; Overgaard, M.; Offersen, B.V.; Committee, D.R. Internal Mammary Node Irradiation in Patients With Node-Positive Early Breast Cancer: Fifteen-Year Results From the Danish Breast Cancer Group Internal Mammary Node Study. J. Clin. Oncol. 2022, 40, 4198–4206. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.B.; Byun, H.K.; Kim, D.Y.; Ahn, S.J.; Lee, H.S.; Park, W.; Kim, S.S.; Kim, J.H.; Lee, K.C.; Lee, I.J.; et al. Effect of Elective Internal Mammary Node Irradiation on Disease-Free Survival in Women With Node-Positive Breast Cancer: A Randomized Phase 3 Clinical Trial. JAMA Oncol. 2022, 8, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Poortmans, P.M.; Weltens, C.; Fortpied, C.; Kirkove, C.; Peignaux-Casasnovas, K.; Budach, V.; van der Leij, F.; Vonk, E.; Weidner, N.; Rivera, S.; et al. Internal mammary and medial supraclavicular lymph node chain irradiation in stage I-III breast cancer (EORTC 22922/10925): 15-year results of a randomised, phase 3 trial. Lancet Oncol. 2020, 21, 1602–1610. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Wu, S.; Wang, Y.; Shi, D. Circulating tumor cell isolation for cancer diagnosis and prognosis. EBioMedicine 2022, 83, 104237. [Google Scholar] [CrossRef]
- Bidard, F.C.; Michiels, S.; Riethdorf, S.; Mueller, V.; Esserman, L.J.; Lucci, A.; Naume, B.; Horiguchi, J.; Gisbert-Criado, R.; Sleijfer, S.; et al. Circulating Tumor Cells in Breast Cancer Patients Treated by Neoadjuvant Chemotherapy: A Meta-analysis. J. Natl. Cancer Inst. 2018, 110, 560–567. [Google Scholar] [CrossRef]
- Rack, B.; Schindlbeck, C.; Juckstock, J.; Andergassen, U.; Hepp, P.; Zwingers, T.; Friedl, T.W.; Lorenz, R.; Tesch, H.; Fasching, P.A.; et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J. Natl. Cancer Inst. 2014, 106, dju066. [Google Scholar] [CrossRef]
- Trapp, E.K.; Fasching, P.A.; Fehm, T.; Schneeweiss, A.; Mueller, V.; Harbeck, N.; Lorenz, R.; Schumacher, C.; Heinrich, G.; Schochter, F.; et al. Does the Presence of Circulating Tumor Cells in High-Risk Early Breast Cancer Patients Predict the Site of First Metastasis-Results from the Adjuvant SUCCESS A Trial. Cancers 2022, 14, 3949. [Google Scholar] [CrossRef]
- Early Breast Cancer Trialists’ Collaborative, G.; McGale, P.; Taylor, C.; Correa, C.; Cutter, D.; Duane, F.; Ewertz, M.; Gray, R.; Mannu, G.; Peto, R.; et al. Effect of radiotherapy after mastectomy and axillary surgery on 10-year recurrence and 20-year breast cancer mortality: Meta-analysis of individual patient data for 8135 women in 22 randomised trials. Lancet 2014, 383, 2127–2135. [Google Scholar] [CrossRef]
- Evaluate the Clinical Benefit of a Post-operative Treatment Associating Radiotherapy + Nivolumab + Ipilimumab Versus Radiotherapy + Capecitabine for Triple Negative Breast Cancer Patients With Residual Disease (BreastImmune03). Available online: https://clinicaltrials.gov/ct2/show/NCT03818685 (accessed on 1 December 2022).
- Hannoun-Levi, J.M.; Montagne, L.; Sumodhee, S.; Schiappa, R.; Boulahssass, R.; Gautier, M.; Gal, J.; Chand, M.E. APBI Versus Ultra-APBI in the Elderly With Low-Risk Breast Cancer: A Comparative Analysis of Oncological Outcome and Late Toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 56–67. [Google Scholar] [CrossRef]
- Hannoun-Levi, J.M.; Chamorey, E.; Boulahssass, R.; Polgar, C.; Strnad, V. Endocrine therapy with accelerated Partial breast irradiatiOn or exclusive ultra-accelerated Partial breast irradiation for women aged >/= 60 years with Early-stage breast cancer (EPOPE): The rationale for a GEC-ESTRO randomized phase III-controlled trial. Clin. Transl. Radiat. Oncol. 2021, 29, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, X.; Chen, D.; Yu, J. Radiotherapy combined with immunotherapy: The dawn of cancer treatment. Signal Transduct. Target. Ther. 2022, 7, 258. [Google Scholar] [CrossRef] [PubMed]
Trial Name (NCT ID) & Completion Year | Trial/Study Design (n) | Eligibility Criteria | Outcome Measures | ||||||
---|---|---|---|---|---|---|---|---|---|
Age (yr) | Pathological Stage | Grade | Receptor Status by IHC | Surgery | Margin Status (mm) | IHC/Genomic Classifier | |||
Trials investigating omission of whole breast irradiation in node-negative breast cancers | |||||||||
LUMINA (NCT01791829) [69] 2024 | Prospective, single arm, observational study (n = 501) | ≥55 | Stage 1 (pT1N0M0) | 1–2 | ER+/PR+/HER2− | BCS+ SLNB or axillary dissection | ≥1 | Molecularly defined luminal A by IHC 1: ER ≥ 1%, PR > 20%, HER2− (by IHC or in situ hybridization) and Ki-67 ≤ 13.25% | Primary: 5-year ipsilateral invasive breast cancer or DCIS recurrence Secondary: Contralateral breast cancer, RFS based on any recurrence, DFS based on any recurrence, second cancer or death, and OS |
PRECISION (NCT02653755) [70] 2026 | Phase II prospective cohort study (n = 690) | 50–75 | Stage I (pT1N0M0) (Axillary nodes with isolated tumor cells permitted) | 1–2 | ER+/PR+/HER2− | BCS+ SLNB or axillary dissection | No ink on tumor or re-excision with no residual disease | Prosigna ROR | Primary: 5-year risk of ipsilateral LRR Secondary: 5-year risk of any recurrence, DFS, and OS |
IDEA (NCT02400190) [71] 2026 | Prospective, single-arm observational study (n = 202) | 50–69 | Stage I (pT1N0M0) (Axillary nodes with isolated tumor cells permitted) | N/A | ER+/PR+/HER2− | BCS+ SLNB or SLNB→axillary dissection or axillary dissection | ≥2 | Oncotype Dx RS ≤ 18 | Primary: 5-year LRR Secondary (10 years): Recurrence pattern, subsequent therapy for local recurrences, OS, and BCSS |
PRIMETIME (ISRCTN: 41579286) [72] 2027 | Case-cohort, prospective study (n = 1500) | ≤60 | Stage I (pT1N0M0) | 1–2 | ER+/PR+/HER2− 2 | BCS+ SLNB | ≥1 | IHC4+C | Primary: 5-year IBTR |
DEBRA NCT04852887 [73] 2041 | Phase III, multicenter randomized trial (n = 1670) | 50–70 | Stage I (pT1N0M0) (Patients with pathologic staging of pN0(i+) or pN0(mol+) are not permitted | N/A | ER+/PR+/HER2− | BCS→ WBI + ET vs. BCS→ET | No ink on tumor or re-excision with no residual disease | N/A | Primary: 5-year invasive or non-invasive IBTR Secondary: Percentage of women with an intact index breast, any invasive IBTR, any breast cancer recurrence at a local, regional, or distant site, recurrence or a secondary primary cancer and death |
EXPERT (NCT02889874) [74] 2023 | Randomized phase III clinical trial (n = 1167) | ≥50 | Stage I (pT1N0M0) | 1–2 | ER+/PR+/HER2− | BCS+ SLNB or axillary dissection | No ink on margin | PAM50 Luminal A and Prosigna ROR ≤ 60 | Primary: 10-year risk of ipsilateral local recurrence Secondary: 10-year LRR, distant recurrence, DFS including DCIS, iDFS, OS, rates of salvage RT or mastectomy, and quality of life-related endpoints such as convenience of care and fear for recurrence |
The DBCG RT Natural Trial (NCT03646955) [75] 2035 | Randomized phase III clinical trial (n = 926) | ≥60 | Stage I (pT1N0M0) | 1–2 | ≥10% ER+/HER2− | BCS+ SLNB or axillary dissection | ≥2 | N/A | Primary: 10-year-invasive local recurrence in ipsilateral breast. Secondary: (10-year) Regional recurrence, distant recurrence, and death. |
Trials investigating omission of regional nodal irradiation in node-positive/negative breast cancers | |||||||||
CCTG MA.39 (TAILOR RT) (NCT03488693) [76] 2027 | Randomized phase III, clinical trial (n = 2140) | ≥40 | Stage 1 T1–3N0–1 | N/A | ER+/HER2− (Local testing) | BCS or mastectomy + SLNB and/or axillary dissection | ≥1 | Oncotype Dx RS < 18 | Primary: Breast cancer recurrence-free interval Secondary: DFS, LRR, OS, breast cancer mortality, distant recurrence, toxicity, arm volume, and mobility assessments, patient reported outcomes and cost effectiveness |
Genomic Classifier | Description of the Classifier | Breast Cancer Cohort/Trial Characteristics | Prognostic Value | Predictive Value |
---|---|---|---|---|
Radiation Sensitivity Index (RSI) [172,173,174] |
| FIRST PUBLICATION COHORTS [173] (I) Karolinska prospective cohort: segmentectomy/mastectomy +RT (n = 77); mastectomy only (n = 82) (II) Erasmus cohort: BCS+RT (n = 219) MRM (n = 67) SECOND PUBLICATION COHORTS [174]: 4 Dutch + 1 French cohorts (n = 343) BCS+SLNB/Axillary dissection→ WBI+/− RNI (Integration of RSI index with breast cancer molecular subtype) | RSI is a radiation-specific signature that has shown prognostic value in RT treated group but not in the no-RT group. FIRST PUBLICATION [173] Karolinska cohort: Compared to radioresistant patients, radiosensitive patients had improved 5-year RFS. Erasmus cohort: Compared to radioresistant patients, radiosensitive patients had improved 5-year DMFS. Multivariate analysis: Independent prognostic variable associated with outcome in RT-treated patients in both cohorts and in RT-treated ER+ subset in the Erasmus cohort. SECOND PUBLICATION [174]: -RSI index was not prognostic in the full cohort. - In patients with triple-negative subtype, RSI-resistant tumors were associated with higher risk of local relapse compared to those with RSI-sensitive/intermediate categories. | No |
Radiation Sensitivity Signature (RSS) and Immune Signature (IMS) [175] | Gene signatures are based on intrinsic radiation sensitivity and antitumor immunity. RSS: 34 gene classifier was derived from MSigDB. IMS: comprised of 119 genes involved in antigen presentation and processing pathways curated from the Immunology Database and Analysis Portal. Four genes (ADRM1, MICB, PSMD13, RFXANK) showed significant interaction with radiotherapy. Immune-effective: IMS score > −3.8 Immune defective: IMSscore < −3.8 | Model training cohort for RSS: GSE30682 cohort (n = 343) treated with BCS+RT. Endpoint: LRFS Model training cohort for IMS: E-TABM-158 RT: n = 66, No RT: n = 63. Endpoint: DSS Validation of ISS and IMS: METABRIC cohort (n = 1981) | In the METABRIC cohort: For radiation-sensitive group, patients who received radiotherapy experienced an improved DSS than those who did not.For immune-effective group, patients treated with radiotherapy had significantly better DSS compared with those without radiation therapy. Combined ISS and IMS were validated in the METABRIC cohort. Patients were categorized into four groups: -Concordant group: immune-sensitive/immune effective group treated with radiation had significantly better DSS. -Concordant group: immune-resistant/immune defective treated with radiation had significantly poor DSS. No significant prognostic associations were found in the two discordant groups. | When evaluated independently, both RSS and IMS predicted benefit from radiation in the RT-treated cohort for the endpoint of DSS. Integration of RSS and IMS stratified patients into groups. Benefit from radiation is seen in the radiation-sensitive/immune effective group treated with radiotherapy. Radiation resistant/immune defective group did not derive benefit from radiation. |
DBCG-RT Profile [176] | 7 gene classifiers (HLA-DQA, RGS1, DNALI1, hCG2023290, IGKC, OR8G2, and ADH1B) developed on the fresh frozen tissues from the training cohort. The classifier stratified the training cohort into high- and low-risk groups for locoregional relapse. The final signature consisted of 4 genes (IGKC, RGS1, ADH1B, and DNALI1) as the remaining 3 genes failed quality control during transfer to formalin fixed paraffin embedded tissues. | DBCG82b/c randomized clinical trial: 3083 women (<70 years) with high-risk disease randomized PMRT+RNI or not. All post-menopausal women received tamoxifen (82c) and premenopausal women (82b) received CMF. Training set = 191 Validation set: 112 | Prognostic value was assessed in the non-irradiated group of training set who received systemic treatments and stratified the population into two groups: low LRR risk and high LRR risk, which demonstrated low- and high-risk for locoregional failures, respectively. Multivariate analysis: DBCG-RT profile provided independent prognostic information for locoregional relapse risk. | Predictive value was demonstrated in both training and validation cohorts. DBCG-RT profile predicted benefit from PMRT in patients classified as high-risk-LRR. No benefit was derived from PMRT in DBCG-RT low-risk category. |
Radiation Sensitivity Signature (RSS) [177] | Clonogenic survival assays were performed on a panel of 16 breast cancer cell lines to identify the surviving fraction at 2 Gy, which represents the intrinsic radiosensitivity or radioresistance of the breast cancer cells. The classifier was trained and cross-validated from 147 to 51 genes enriched in cell cycle, DNA damage, and DNA repair pathways. The classifier was independent of breast cancer molecular subtypes. | Training cohort (n = 343) treated with BCS + RT for which locoregional recurrence data were available. Validation cohort (n = 228) treated with mastectomy or BCT and radiation if indicated. | RSS provided prognostic information for overall survival of locoregional recurrences and stratifies patients unlikely to develop local recurrence after radiation from those at high risk of recurrence despite receiving standard radiation. | No |
Adjuvant Radiotherapy Intensification Classifier (ARTIC) [178] | Clinicogenomic classifier comprising of 27 genes and age. | Training cohort: 3 publicly available data sets with gene expression data: Servant (n = 343) van de Vijver (n = 228) Lund fresh frozen (n = 102) Validation cohort: SweBCG91-RT phase III trial cohort (n = 748) in which patients were treated with BCS with or without radiation. | ARTIC provided prognostic information for locoregional recurrence in both the treatment arms (with or without radiation). | Patients with low ARTIC scores derived significant benefits from radiation for the endpoint of locoregional recurrence compared to patients with high ARTIC scores who gained less from radiation. |
Profile for the Omission of Local Adjuvant Radiotherapy (POLAR) [179] | Transcriptome-wide profiling of tumors was performed using the Affymetrix Human Exon 1.0 ST microarray. A 16-gene signature (proliferation and immune response) was trained in the training set of patients who did not receive radiation. | SweBCG91-RT cohort was divided into a training set (n = 243) and validation set (n = 354) | Tumors with POLAR low-risk had a 10-year locoregional recurrence rate of 7% in the absence of radiation. POLAR high-risk had a significantly decreased risk of locoregional recurrence when treated with radiation. | Independent external validation for predictive performance was performed in 623 patients from three randomized clinical trials (SweBCG91-RT, n = 354; Scottish Conservation Trial; n = 137 and trial from Princess Margaret Hospital, Canada, n = 132) High POLAR score was predictive of benefits from radiation with significant reduction in the local recurrence rate [180,181] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, N.; Jeen, T.; Whelan, T.J.; Nielsen, T.O. Recent Advances in Optimizing Radiation Therapy Decisions in Early Invasive Breast Cancer. Cancers 2023, 15, 1260. https://doi.org/10.3390/cancers15041260
Riaz N, Jeen T, Whelan TJ, Nielsen TO. Recent Advances in Optimizing Radiation Therapy Decisions in Early Invasive Breast Cancer. Cancers. 2023; 15(4):1260. https://doi.org/10.3390/cancers15041260
Chicago/Turabian StyleRiaz, Nazia, Tiffany Jeen, Timothy J. Whelan, and Torsten O. Nielsen. 2023. "Recent Advances in Optimizing Radiation Therapy Decisions in Early Invasive Breast Cancer" Cancers 15, no. 4: 1260. https://doi.org/10.3390/cancers15041260
APA StyleRiaz, N., Jeen, T., Whelan, T. J., & Nielsen, T. O. (2023). Recent Advances in Optimizing Radiation Therapy Decisions in Early Invasive Breast Cancer. Cancers, 15(4), 1260. https://doi.org/10.3390/cancers15041260