Ten Considerations for Integrating Patient-Reported Outcomes into Clinical Care for Childhood Cancer Survivors
Abstract
:Simple Summary
Abstract
1. Introduction
Choosing the right measure Consideration 1: Purpose of using a PROM
Consideration 4: Data collection method
Consideration 8: Scoring methods
Consideration 10: Integration into the clinical workflow
|
Measurement Property | Importance for Clinical Consideration |
---|---|
Content validity | Demonstrates relevance for the construct to be measured in the context of pediatric cancer survivors. |
Internal consistency | Demonstrates the unidimensionality of each subscale separately. |
Reliability | Demonstrates the items that appropriately capture the same concept of a given PRO at the same time or over different time points. |
Measurement error | Quantifies unobserved components of PROMs that influence the accuracy of the assessment. |
Construct validity/known-group validity | Demonstrates how PROMs are sensitive to levels of clinical anchors or parameters relevant to survivors. |
Structural validity | Demonstrates the appropriateness of PROMs based on a reflective theoretical model, not a formative model. |
Cross-cultural validity/measurement invariance | Demonstrates how the constructs of PROMs are comparable across different demographic or cultural subgroups, including those who differ in ethnicity, language, gender, age, or patient population. |
Criterion validity | Demonstrates the degree to which the PROM agrees with a gold standard. Only necessary if a gold standard measure of the construct of interest in pediatric cancer survivors is available. There are very few gold standard PROMs for pediatric cancer survivors. |
Responsiveness | Demonstrates how the change in PRO scores reflects a change in clinical status in a way that is meaningful to the patient or clinician. |
Interpretability | Demonstrates how survivors can comprehend the meaning of PRO items. |
Feasibility | Decreases the burden of PRO assessment, especially among survivors who are ill or have poor functional status. |
Predictive validity | Facilitates predicting adverse events (e.g., the onset of late effect) or premature death for high-risk survivor populations. |
Cutpoints/MID | Uses an anchor-based approach with multiple anchors in calculating the MID or cutpoint that can be used to help clinicians interpret PRO scores for clinical decision making. |
Response shift | Calculates response-shift-adjusted PRO scores to reflect genuine PRO scores if response-shift effects alter the construct or meaning of PROMs. |
Score calculation | Calculates score depending upon the response type of items and the availability of scoring instructions and algorithms. |
2. Choosing the Right Measure
2.1. Consideration 1: Purpose of Using a PROM
2.2. Consideration 2: Health Profile vs. Health Preference
2.3. Consideration 3: Measurement Properties
2.3.1. Content Appropriateness
2.3.2. Responsiveness
2.3.3. Predictive Validity
2.3.4. Response-Shift Effects
3. Ensuring Participants Complete the PROM
3.1. Consideration 4: Data Collection Method
mHealth and Smartphone Applications
3.2. Consideration 5: Data Collection Frequency and Longitudinal Assessment
3.3. Consideration 6: Survivor Capacity
3.4. Consideration 7: Self- vs. Proxy Reports
4. Interpreting the Results
4.1. Consideration 8: Scoring Methods
4.2. Consideration 9: Clinical Meaning and Interpretability
5. Selecting a Strategy for Clinical Response
Consideration 10: Integration into the Clinical Workflow
6. Illustration for Integrating Novel PRO Data Collection into the Clinical Workflow
6.1. Patient-Generated Health Data
6.2. Novel Unstructured PRO Data Collection
6.3. Data Repository and Analysis
6.4. Integration into the EHR and Patient Portal
7. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ward, Z.J.; Yeh, J.M.; Bhakta, N.; Frazier, A.L.; Girardi, F.; Atun, R. Global childhood cancer survival estimates and priority-setting: A simulation-based analysis. Lancet Oncol. 2019, 20, 972–983. [Google Scholar] [CrossRef]
- Oeffinger, K.C.; Mertens, A.C.; Sklar, C.A.; Kawashima, T.; Hudson, M.M.; Meadows, A.T.; Friedman, D.L.; Marina, N.; Hobbie, W.; Kadan-Lottick, N.S.; et al. Chronic Health Conditions in Adult Survivors of Childhood Cancer. N. Engl. J. Med. 2006, 355, 1572–1582. [Google Scholar] [CrossRef]
- Gibson, T.M.; Mostoufi-Moab, S.; Stratton, K.L.; Leisenring, W.M.; Barnea, D.; Chow, E.J.; Donaldson, S.S.; Howell, R.M.; Hudson, M.M.; Mahajan, A.; et al. Temporal patterns in the risk of chronic health conditions in survivors of childhood cancer diagnosed 1970–99: A report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 2018, 19, 1590–1601. [Google Scholar] [CrossRef]
- Bhakta, N.; Liu, Q.; Ness, K.K.; Baassiri, M.; Eissa, H.; Yeo, F.; Chemaitilly, W.; Ehrhardt, M.J.; Bass, J.; Bishop, M.W.; et al. The cumulative burden of surviving childhood cancer: An initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet 2017, 390, 2569–2582. [Google Scholar] [CrossRef]
- Varni, J.W.; Limbers, C.A.; Burwinkle, T.M. Impaired health-related quality of life in children and adolescents with chronic conditions: A comparative analysis of 10 disease clusters and 33 disease categories/severities utilizing the PedsQLTM 4.0 Generic Core Scales. Health Qual. Life Outcomes 2007, 5, 43. [Google Scholar] [CrossRef] [PubMed]
- Zeltzer, L.K.; Lu, Q.; Leisenring, W.; Tsao, J.C.; Recklitis, C.; Armstrong, G.; Mertens, A.C.; Robison, L.L.; Ness, K.K. Psychosocial Outcomes and Health-Related Quality of Life in Adult Childhood Cancer Survivors: A Report from the Childhood Cancer Survivor Study. Cancer Epidemiol. Biomark. Prev. 2008, 17, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.B. Linking Clinical Variables With Health-Related Quality of Life. JAMA 1995, 273, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Huang, I.-C.; Brinkman, T.M.; Kenzik, K.; Gurney, J.G.; Ness, K.K.; Lanctot, J.; Shenkman, E.; Robison, L.L.; Hudson, M.M.; Krull, K.R. Association Between the Prevalence of Symptoms and Health-Related Quality of Life in Adult Survivors of Childhood Cancer: A Report From the St Jude Lifetime Cohort Study. J. Clin. Oncol. 2013, 31, 4242–4251. [Google Scholar] [CrossRef] [PubMed]
- Miaskowski, C.; Aouizerat, B.E.; Dodd, M.; Cooper, B. Conceptual Issues in Symptom Clusters Research and Their Implications for Quality-of-Life Assessment in Patients With Cancer. JNCI Monogr. 2007, 2007, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Finnegan, L.; Campbell, R.T.; Ferrans, C.E.; Wilbur, J.; Wilkie, D.J.; Shaver, J. Symptom Cluster Experience Profiles in Adult Survivors of Childhood Cancers. J. Pain Symptom Manag. 2009, 38, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Menche, J.; Barabási, A.-L.; Sharma, A. Human symptoms–disease network. Nat. Commun. 2014, 5, 4212. [Google Scholar] [CrossRef]
- Dodd, M.J.; Miaskowski, C.; Paul, S.M. Symptom clusters and their effect on the functional status of patients with cancer. Oncol. Nurs. Forum 2001, 28, 465–470. [Google Scholar] [PubMed]
- Miaskowski, C.; Barsevick, A.; Berger, A.; Casagrande, R.; Grady, P.A.; Jacobsen, P.; Kutner, J.; Patrick, D.; Zimmerman, L.; Xiao, C.; et al. Advancing Symptom Science Through Symptom Cluster Research: Expert Panel Proceedings and Recommendations. J. Natl. Cancer Inst. 2017, 109, 4. [Google Scholar] [CrossRef]
- Huang, I.-C.; Ehrhardt, M.; Liu, W.; Li, C.; Mulrooney, D.; Chemaitilly, W.; Srivastava, D.; Armstrong, G.; Robison, L.; Hudson, M.; et al. Longitudinal symptoms predict future clinically assessed chronic health conditions (CHCs) in adult survivors of childhood cancer: A follow-up study over two decades. In Proceedings of the International Society of Paediatric Oncology (SIOP) Virtual Congress, Virtual Meeting, 14–17 October 2020. [Google Scholar]
- Yang, L.Y.; Manhas, D.S.; Howard, A.F.; Olson, R.A. Patient-reported outcome use in oncology: A systematic review of the impact on patient-clinician communication. Support. Care Cancer 2018, 26, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Easpaig, B.N.G.; Tran, Y.; Bierbaum, M.; Arnolda, G.; Delaney, G.P.; Liauw, W.; Ward, R.L.; Olver, I.; Currow, D.; Girgis, A.; et al. What are the attitudes of health professionals regarding patient reported outcome measures (PROMs) in oncology practice? A mixed-method synthesis of the qualitative evidence. BMC Health Serv. Res. 2020, 20, 102. [Google Scholar] [CrossRef]
- Schepers, S.A.; Haverman, L.; Zadeh, S.; Grootenhuis, M.A.; Wiener, L. Healthcare Professionals’ Preferences and Perceived Barriers for Routine Assessment of Patient-Reported Outcomes in Pediatric Oncology Practice: Moving toward International Processes of Change. Pediatr. Blood Cancer 2016, 63, 2181–2188. [Google Scholar] [CrossRef]
- Chen, M.; Jones, C.M.; Bauer, H.E.; Osakwe, O.; Ketheeswaran, P.; Baker, J.N.; Huang, I.-C. Barriers and Opportunities for Patient-Reported Outcome Implementation: A National Pediatrician Survey in the United States. Children 2022, 9, 185. [Google Scholar] [CrossRef]
- Hatfield, D.R.; Ogles, B.M. The Use of Outcome Measures by Psychologists in Clinical Practice. Prof. Psychol. Res. Pract. 2004, 35, 485–491. [Google Scholar] [CrossRef]
- Aaronson, N.; Choucair, A.; Elliott, T.; Greenhalgh, J.; Halyard, M.; Hess, R.; Miller, D.; Reeve, B.; Santana, M.; Snyder, C. User’s Guide to Implementing Patient-Reported Outcomes Assessment in Clinical Practice. Int. Soc. Qual. Life Res. 2015, 2, 1–47. [Google Scholar]
- Snyder, C.; Wu, A.W. Users’ Guide to Integrating Patient-Reported Outcomes in Electronic Health Records; Johns Hopkins University: Baltimore, MD, USA, 2017. [Google Scholar]
- Chen, P.; Hudson, M.M.; Li, M.; Huang, I.-C. Health utilities in pediatric cancer patients and survivors: A systematic review and meta-analysis for clinical implementation. Qual. Life Res. 2021, 31, 343–374. [Google Scholar] [CrossRef]
- McDougall, J.; Tsonis, M. Quality of life in survivors of childhood cancer: A systematic review of the literature (2001–2008). Support. Care Cancer 2009, 17, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Schulte, F.; Russell, K.B.; Cullen, P.; Embry, L.; Fay-McClymont, T.; Johnston, D.; Rosenberg, A.R.; Sung, L. Systematic review and meta-analysis of health-related quality of life in pediatric CNS tumor survivors. Pediatr. Blood Cancer 2017, 64, e26442. [Google Scholar] [CrossRef]
- Klassen, A.F.; Strohm, S.J.; Maurice-Stam, H.; Grootenhuis, M.A. Quality of life questionnaires for children with cancer and childhood cancer survivors: A review of the development of available measures. Support. Care Cancer 2010, 18, 1207–1217. [Google Scholar] [CrossRef]
- Brazier, J.; Ara, R.; Rowen, D.; Chevrou-Severac, H. A Review of Generic Preference-Based Measures for Use in Cost-Effectiveness Models. Pharmacoeconomics 2017, 35, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Berzon, R.A.; Revicki, D.A.; Lenderking, W.R.; Moinpour, C.M.; Basch, E.; Reeve, B.B.; Wu, A.W. The Use of Patient-reported Outcomes (PRO) Within Comparative Effectiveness Research: Implications for clinical practice and health care policy. Med. Care 2012, 50, 1060–1070. [Google Scholar] [CrossRef]
- Anthony, S.J.; Selkirk, E.; Sung, L.; Klaassen, R.J.; Dix, D.; Scheinemann, K.; Klassen, A. Considering quality of life for children with cancer: A systematic review of patient-reported outcome measures and the development of a conceptual model. Qual. Life Res. 2014, 23, 771–789. [Google Scholar] [CrossRef]
- Singhal, S.; Dickerson, J.; Glover, M.J.; Roy, M.; Chiu, M.; Ellis-Caleo, T.; Hui, G.; Tamayo, C.; Loecher, N.; Wong, H.-N.; et al. Patient-reported outcome measurement implementation in cancer survivors: A systematic review. J. Cancer Surviv. 2022, 1–22. [Google Scholar] [CrossRef]
- Brazier, J.E.; Yang, Y.; Tsuchiya, A.; Rowen, D.L. A review of studies mapping (or cross walking) non-preference based measures of health to generic preference-based measures. Eur. J. Health Econ. 2010, 11, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, D.; Segal, L. Comparing the Incomparable? A Systematic Review of Competing Techniques for Converting Descriptive Measures of Health Status into QALY-Weights. Med. Decis. Mak. 2008, 28, 66–89. [Google Scholar] [CrossRef]
- Sox, H.C.; Goodman, S.N. The Methods of Comparative Effectiveness Research. Annu. Rev. Public Health 2012, 33, 425–445. [Google Scholar] [CrossRef]
- Tsevat, J.; Weeks, J.C.; Guadagnoli, E.; Tosteson, A.N.A.; Mangione, C.M.; Pliskin, J.; Weinstein, M.C.; Cleary, P.D. Using health-related quality-of-life information. J. Gen. Intern. Med. 1994, 9, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Mokkink, L.B.; de Vet, H.C.W.; Prinsen, C.A.C.; Patrick, D.L.; Alonso, J.; Bouter, L.M.; Terwee, C.B. COSMIN Risk of Bias checklist for systematic reviews of Patient-Reported Outcome Measures. Qual. Life Res. 2018, 27, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Mokkink, L.B.; Terwee, C.B.; Patrick, D.L.; Alonso, J.; Stratford, P.W.; Knol, D.L.; Bouter, L.M.; de Vet, H.C. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J. Clin. Epidemiol. 2010, 63, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Prinsen, C.A.C.; Mokkink, L.B.; Bouter, L.M.; Alonso, J.; Patrick, D.L.; de Vet, H.C.W.; Terwee, C.B. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual. Life Res. 2018, 27, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.F.; Cella, D.; Clauser, S.B.; Flynn, K.E.; Lad, T.; Lai, J.-S.; Reeve, B.B.; Smith, A.W.; Stone, A.A.; Weinfurt, K. Standardizing Patient-Reported Outcomes Assessment in Cancer Clinical Trials: A Patient-Reported Outcomes Measurement Information System Initiative. J. Clin. Oncol. 2007, 25, 5106–5112. [Google Scholar] [CrossRef]
- Horan, M.R.; Sim, J.-A.; Krull, K.R.; Baker, J.N.; Huang, I.-C. A Review of Patient-Reported Outcome Measures in Childhood Cancer. Children 2022, 9, 1497. [Google Scholar] [CrossRef] [PubMed]
- Reeves, T.; Mathis, T.; Bauer, H.; Strivasata, K.; Hudson, M.; Robison, L.; Baker, J.; Huang, I.-C. Application of the Patient-Reported Outcomes Version of the Common Terminology Criteria for Adverse Events (PROCTCAE) in adult survivors of childhood cancer: A content elicitation study. Qual. Life Res. 2021, 30 (Suppl. S1), S33–S34. [Google Scholar]
- Revicki, D.A.; Cella, D.; Hays, R.D.; Sloan, J.A.; Lenderking, W.R.; Aaronson, N.K. Responsiveness and minimal important differences for patient reported outcomes. Health Qual. Life Outcomes 2006, 4, 70. [Google Scholar] [CrossRef]
- Food and Drug Administration. Guidance for Industry: Patient-Reported Outcome Measures: Use in Medical Product Development to Support Labeling Claims; Dockets Management Food and Drug Administration: Rockville, MD, USA, 2009.
- Shin, H.; Dudley, W.N.; Bhakta, N.; Horan, M.R.; Wang, Z.; Bartlett, T.R.; Srivastava, D.; Yasui, Y.; Baker, J.N.; Robison, L.L.; et al. Associations of Symptom Clusters and Health Outcomes in Adult Survivors of Childhood Cancer: A Report From the St Jude Lifetime Cohort Study. J. Clin. Oncol. 2022, 41, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Sprangers, M.A.; Schwartz, C.E. Integrating response shift into health-related quality of life research: A theoretical model. Soc. Sci. Med. 1999, 48, 1507–1515. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.E.; Rohde, G.; Biletch, E.; Stuart, R.B.B.; Huang, I.-C.; Lipscomb, J.; Stark, R.B.; Skolasky, R.L. If it’s information, it’s not “bias”: A scoping review and proposed nomenclature for future response-shift research. Qual. Life Res. 2021, 31, 2247–2257. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.E.; Bode, R.; Repucci, N.; Becker, J.; Sprangers, M.A.G.; Fayers, P. The clinical significance of adaptation to changing health: A meta-analysis of response shift. Qual. Life Res. 2006, 15, 1533–1550. [Google Scholar] [CrossRef]
- Rapkin, B.D.; Schwartz, C.E. Toward a theoretical model of quality-of-life appraisal: Implications of findings from studies of response shift. Health Qual. Life Outcomes 2004, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Huang, I.C.; Revicki, D.A.; Schwartz, C.E. Measuring pediatric patient-reported outcomes: Good progress but a long way to go. Qual. Life Res. 2014, 23, 747–750. [Google Scholar] [CrossRef]
- Jung, M.; Lee, S.; Kim, J.; Kim, H.; Ko, B.; Son, B.H.; Ahn, S.-H.; Park, Y.R.; Cho, D.; Chung, H.; et al. A Mobile Technology for Collecting Patient-Reported Physical Activity and Distress Outcomes: Cross-Sectional Cohort Study. JMIR mHealth uHealth 2020, 8, e17320. [Google Scholar] [CrossRef] [PubMed]
- Leidy, N.K.; Vernon, M. Perspectives on Patient-Reported Outcomes: Content validity and qualitative research in a changing clinical trial environment. Pharmacoeconomics 2008, 26, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Barthel, D.; Fischer, K.I.; Nolte, S.; Otto, C.; Meyrose, A.K.; Reisinger, S.; Dabs, M.; Thyen, U.; Klein, M.; Muehlan, H.; et al. Implementation of the Kids-CAT in clinical settings: A newly developed computer-adaptive test to facilitate the assessment of patient-reported outcomes of children and adolescents in clinical practice in Germany. Qual. Life Res. 2016, 25, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, R.D.; Weiss, D.J.; Kupfer, D.J.; Frank, E.; Fagiolini, A.; Grochocinski, V.J.; Bhaumik, D.K.; Stover, A.; Bock, R.D.; Immekus, J.C. Using computerized adaptive testing to reduce the burden of mental health assessment. Psychiatr. Serv. 2008, 59, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Bjorner, J.B.; Chang, C.-H.; Thissen, D.; Reeve, B.B. Developing tailored instruments: Item banking and computerized adaptive assessment. Qual. Life Res. 2007, 16, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Cella, D.; Gershon, R.; Lai, J.-S.; Choi, S. The future of outcomes measurement: Item banking, tailored short-forms, and computerized adaptive assessment. Qual. Life Res. 2007, 16, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, M.A.; Ruble, K.; Mensinger, J.; Birkhoff, S.; Morris, A.M.; Griffith, P.M.; Adams, J.M. The Use and Effect of the Health Storylines mHealth App on Female Childhood Cancer Survivors’ Self-efficacy, Health-Related Quality of Life and Perceived Illness. Cancer Nurs. 2022, 45, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Yuan, C.; Zou, Y.; Lin, H. Development and Pilot Testing a Self-Reported Pediatric PROMIS App for Young Children Aged 5–7 Years. J. Pediatr. Nurs. 2020, 53, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Stinson, J.N.; Jibb, L.; Nguyen, C.; Nathan, P.C.; Maloney, A.M.; Dupuis, L.; Gerstle, J.T.; Alman, B.; Hopyan, S.; Strahlendorf, C.; et al. Development and Testing of a Multidimensional iPhone Pain Assessment Application for Adolescents with Cancer. J. Med. Internet Res. 2013, 15, e51. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Alamán, J.; Lacuesta, R.; Garcia-Magariño, I.; Gallardo, J. A methodology for the design and development of gamified mobile apps for monitoring cancer survivors. J. Biomed. Inf. 2020, 106, 103439. [Google Scholar] [CrossRef] [PubMed]
- Primack, B.A.; Carroll, M.V.; McNamara, M.; Klem, M.L.; King, B.; Rich, M.; Chan, C.W.; Nayak, S. Role of Video Games in Improving Health-Related Outcomes: A Systematic Review. Am. J. Prev. Med. 2012, 42, 630–638. [Google Scholar] [CrossRef]
- Leahy, A.B.; Feudtner, C.; Basch, E. Symptom Monitoring in Pediatric Oncology Using Patient-Reported Outcomes: Why, How, and Where Next. Patient-Patient-Cent. Outcomes Res. 2018, 11, 147–153. [Google Scholar] [CrossRef] [PubMed]
- der Vlist, M.M.N.-V.; Houtveen, J.; Dalmeijer, G.W.; Grootenhuis, M.A.; van der Ent, C.K.; van Grotel, M.; Swart, J.F.; van Montfrans, J.M.; van de Putte, E.M.; Nijhof, S.L. Internet and smartphone-based ecological momentary assessment and personalized advice (PROfeel) in adolescents with chronic conditions: A feasibility study. Internet Interv. 2021, 25, 100395. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Hageman, L.; Chen, Y.; Wong, F.L.; McQuaid, E.L.; Duncan, C.; Mascarenhas, L.; Freyer, D.; Mba, N.; Aristizabal, P.; et al. Effect of a Daily Text Messaging and Directly Supervised Therapy Intervention on Oral Mercaptopurine Adherence in Children With Acute Lymphoblastic Leukemia: A randomized clinical trial. JAMA Netw. Open 2020, 3, e2014205. [Google Scholar] [CrossRef]
- Cella, D.; Riley, W.; Stone, A.; Rothrock, N.; Reeve, B.; Yount, S.; Amtmann, D.; Bode, R.; Buysse, D.; Choi, S.; et al. The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. J. Clin. Epidemiol. 2010, 63, 1179–1194. [Google Scholar] [CrossRef]
- Riley, A.W. Evidence That School-Age Children Can Self-Report on Their Health. Ambul. Pediatr. 2004, 4, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Hicks, C.L.; von Baeyer, C.L.; Spafford, P.A.; van Korlaar, I.; Goodenough, B. The Faces Pain Scale—Revised: Toward a common metric in pediatric pain measurement. Pain 2001, 93, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Krull, K.R.; Brinkman, T.M.; Li, C.; Armstrong, G.T.; Ness, K.K.; Srivastava, D.K.; Gurney, J.G.; Kimberg, C.; Krasin, M.J.; Pui, C.-H.; et al. Neurocognitive Outcomes Decades After Treatment for Childhood Acute Lymphoblastic Leukemia: A Report From the St Jude Lifetime Cohort Study. J. Clin. Oncol. 2013, 31, 4407–4415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelmann, M.N.; Daryani, V.M.; Bishop, M.W.; Liu, W.; Brinkman, T.M.; Stewart, C.F.; Mulrooney, D.A.; Kimberg, C.; Ness, K.K.; Cheung, Y.T.; et al. Neurocognitive and Patient-Reported Outcomes in Adult Survivors of Childhood Osteosarcoma. JAMA Oncol. 2016, 2, 201–208. [Google Scholar] [CrossRef]
- Brinkman, T.M.; Bass, J.K.; Li, Z.; Ness, K.K.; Gajjar, A.; Pappo, A.S.; Armstrong, G.T.; Merchant, T.E.; Srivastava, D.K.; Robison, L.L.; et al. Treatment-induced hearing loss and adult social outcomes in survivors of childhood CNS and non-CNS solid tumors: Results from the St. Jude Lifetime Cohort Study. Cancer 2015, 121, 4053–4061. [Google Scholar] [CrossRef] [PubMed]
- Whelan, K.F.; Mstratton, K.S.; KawaMshima, T.K.; Waterbor, J.W.; Castleberry, R.P.; Stovall, M.; Sklar, C.A.; Packer, R.J.; Mitby, P.; Aitken, C.L.; et al. Ocular late effects in childhood and adolescent cancer survivors: A report from the childhood cancer survivor study. Pediatr. Blood Cancer 2010, 54, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Lundy, J.J.; Coons, S.J. Measurement Equivalence of Interactive Voice Response and Paper Versions of the EQ-5D in a Cancer Patient Sample. Value Health 2011, 14, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Richardson, K.J. Deaf culture: Competencies and best practices. Nurse Pract. 2014, 39, 20–28. [Google Scholar] [CrossRef]
- Mack, J.W.; McFatrich, M.; Withycombe, J.S.; Maurer, S.; Jacobs, S.S.; Lin, L.; Lucas, N.R.; Baker, J.N.; Mann, C.M.; Sung, L.; et al. Agreement Between Child Self-report and Caregiver-Proxy Report for Symptoms and Functioning of Children Undergoing Cancer Treatment. JAMA Pediatr. 2020, 174, e202861. [Google Scholar] [CrossRef]
- Schulte, F.; Wurz, A.; Reynolds, K.; Strother, D.; Dewey, D. Quality of Life in Survivors of Pediatric Cancer and Their Siblings: The Consensus Between Parent-Proxy and Self-Reports. Pediatr. Blood Cancer 2016, 63, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.-C.; Yeh, C.-H. Agreement between child self-report and parent proxy-report to evaluate Quality of Life in Children with Cancer. Psycho-Oncology 2005, 14, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, D.; Hinds, P.S.; Ethier, M.-C.; Ness, K.K.; Zupanec, S.; Sung, L. Psychometric Properties of Instruments Used to Measure Fatigue in Children and Adolescents With Cancer: A Systematic Review. J. Pain Symptom Manag. 2013, 45, 83–91. [Google Scholar] [CrossRef]
- Huang, I.-C.; Shenkman, E.A.; Leite, W.; Knapp, C.A.; Thompson, L.A.; Revicki, D.A. Agreement was not found in adolescents’ quality of life rated by parents and adolescents. J. Clin. Epidemiol. 2009, 62, 337–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeish, D.; Wolf, M.G. Thinking twice about sum scores. Behav. Res. Methods 2020, 52, 2287–2305. [Google Scholar] [CrossRef] [PubMed]
- Stover, A.M.; McLeod, L.D.; Langer, M.M.; Chen, W.-H.; Reeve, B.B. State of the psychometric methods: Patient-reported outcome measure development and refinement using item response theory. J. Patient-Rep. Outcomes 2019, 3, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Feißt, M.; Hennigs, A.; Heil, J.; Moosbrugger, H.; Kelava, A.; Stolpner, I.; Kieser, M.; Rauch, G. Refining scores based on patient reported outcomes—Statistical and medical perspectives. BMC Med. Res. Methodol. 2019, 19, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Fries, J.F.; Krishnan, E.; Rose, M.; Lingala, B.; Bruce, B. Improved responsiveness and reduced sample size requirements of PROMIS physical function scales with item response theory. Thromb. Haemost. 2011, 13, R147. [Google Scholar] [CrossRef]
- Shi, Q.; Mendoza, T.R.; Cleeland, C.S. Interpreting Patient-reported Outcome Scores for Clinical Research and Practice: Definition, determination, and application of cutpoints. Med. Care 2019, 57, S8–S12. [Google Scholar] [CrossRef] [PubMed]
- PROMIS® Score Cut Points. Available online: https://staging.healthmeasures.net/score-and-interpret/interpret-scores/promis/promis-score-cut-points (accessed on 23 January 2023).
- Basch, E. Patient-Reported Outcomes—Harnessing Patients’ Voices to Improve Clinical Care. N. Engl. J. Med. 2017, 376, 105–108. [Google Scholar] [CrossRef]
- Di Maio, M.; Basch, E.; Denis, F.; Fallowfield, L.; Ganz, P.; Howell, D.; Kowalski, C.; Perrone, F.; Stover, A.; Sundaresan, P.; et al. The role of patient-reported outcome measures in the continuum of cancer clinical care: ESMO Clinical Practice Guideline. Ann. Oncol. 2022, 33, 878–892. [Google Scholar] [CrossRef] [PubMed]
- Demiris, G.; Iribarren, S.J.; Sward, K.; Lee, S.; Yang, R. Patient generated health data use in clinical practice: A systematic review. Nurs. Outlook 2019, 67, 311–330. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Ensari, I.; Weng, C.; Kahn, M.G.; Natarajan, K. Factors Affecting the Quality of Person-Generated Wearable Device Data and Associated Challenges: Rapid Systematic Review. JMIR mHealth uHealth 2021, 9, e20738. [Google Scholar] [CrossRef]
- Melstrom, L.G.; Rodin, A.S.; Rossi, L.A.; Fu, P.; Fong, Y.; Sun, V. Patient generated health data and electronic health record integration in oncologic surgery: A call for artificial intelligence and machine learning. J. Surg. Oncol. 2021, 123, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Sim, J.-A.; Wang, J.X.; Forrest, C.B.; Krull, K.R.; Srivastava, D.; Hudson, M.M.; Robison, L.L.; Baker, J.N.; Huang, I.-C. Natural Language Processing and Machine Learning Methods to Characterize Unstructured Patient-Reported Outcomes: Validation Study. J. Med. Internet Res. 2021, 23, e26777. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Hernandez, G.; Sarker, A.; O’Connor, K.; Savova, G. Capturing the Patient’s Perspective: A Review of Advances in Natural Language Processing of Health-Related Text. Yearb. Med. Inf. 2017, 26, 214–227. [Google Scholar] [CrossRef]
- Forsyth, A.W.; Barzilay, R.; Hughes, K.S.; Lui, D.; Lorenz, K.A.; Enzinger, A.; Tulsky, J.A.; Lindvall, C. Machine Learning Methods to Extract Documentation of Breast Cancer Symptoms From Electronic Health Records. J. Pain Symptom Manag. 2018, 55, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.R.; Johnson, S.B.; Bakken, S.R. Exploring the Ability of Natural Language Processing to Extract Data From Nursing Narratives. CIN Comput. Inform. Nurs. 2009, 27, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Koleck, T.A.; Dreisbach, C.; Bourne, P.E.; Bakken, S. Natural language processing of symptoms documented in free-text narratives of electronic health records: A systematic review. J. Am. Med. Inform. Assoc. 2019, 26, 364–379. [Google Scholar] [CrossRef]
- Vaughn, J.; Gollarahalli, S.; Shaw, R.J.; Docherty, S.; Yang, Q.; Malhotra, C.; Summers-Goeckerman, E.; Shah, N. Mobile Health Technology for Pediatric Symptom Monitoring. Nurs. Res. 2020, 69, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Chandran, D.; Robbins, D.A.; Chang, C.-K.; Shetty, H.; Sanyal, J.; Downs, J.; Fok, M.; Ball, M.; Jackson, R.; Stewart, R.; et al. Use of Natural Language Processing to identify Obsessive Compulsive Symptoms in patients with schizophrenia, schizoaffective disorder or bipolar disorder. Sci. Rep. 2019, 9, 14146. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Horwitz, M.M.; Zhou, L.; Toh, S. Using Machine Learning to Identify Health Outcomes from Electronic Health Record Data. Curr. Epidemiol. Rep. 2018, 5, 331–342. [Google Scholar] [CrossRef] [PubMed]
- International Consortium for Health Outcomes Measurement. Available online: https://www.ichom.org/ (accessed on 18 August 2022).
- Karimi, M.; Cox, A.D.; White, S.V.; Karlson, C.W. Fatigue, Physical and Functional Mobility, and Obesity in Pediatric Cancer Survivors. Cancer Nurs. 2020, 43, E239–E245. [Google Scholar] [CrossRef] [PubMed]
- Christen, S.; Roser, K.; Mulder, R.L.; Ilic, A.; Lie, H.C.; Loonen, J.J.; Mellblom, A.V.; Kremer, L.C.M.; Hudson, M.M.; Constine, L.S.; et al. Recommendations for the surveillance of cancer-related fatigue in childhood, adolescent, and young adult cancer survivors: A report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. J. Cancer Surviv. 2020, 14, 923–938. [Google Scholar] [CrossRef]
- Children’s Oncology Group. Long-Term Follow-Up Guidelines for Survivors of Childhood, Adolescent, and Young Adult Cancers, Version 5.0; Children’s Oncology Group: Monrovia, CA, USA, 2018. [Google Scholar]
- Landier, W.; Bhatia, S.; Eshelman, D.A.; Forte, K.J.; Sweeney, T.; Hester, A.L.; Darling, J.; Armstrong, F.D.; Blatt, J.; Constine, L.S.; et al. Development of Risk-Based Guidelines for Pediatric Cancer Survivors: The Children’s Oncology Group Long-Term Follow-Up Guidelines from the Children’s Oncology Group Late Effects Committee and Nursing Discipline. J. Clin. Oncol. 2004, 22, 4979–4990. [Google Scholar] [CrossRef]
- Hudson, M.M.; Bhatia, S.; Casillas, J.; Landier, W.; Rogers, Z.R.; Allen, C.; Harper, J.; Hord, J.; Jain, J.; Warwick, A.; et al. Long-term Follow-up Care for Childhood, Adolescent, and Young Adult Cancer Survivors. Pediatrics 2021, 148, e2021053127. [Google Scholar] [CrossRef] [PubMed]
- Gotay, C.C.; Kawamoto, C.T.; Bottomley, A.; Efficace, F. The Prognostic Significance of Patient-Reported Outcomes in Cancer Clinical Trials. J. Clin. Oncol. 2008, 26, 1355–1363. [Google Scholar] [CrossRef]
- Faulkenberry, J.G.; Luberti, A.; Craig, S. Electronic health records, mobile health, and the challenge of improving global health. Curr. Probl. Pediatr. Adolesc. Health Care 2022, 52, 101111. [Google Scholar] [CrossRef]
- Chung, H.; Kim, J.; Cook, K.F.; Askew, R.L.; Revicki, D.A.; Amtmann, D. Testing measurement invariance of the patient-reported outcomes measurement information system pain behaviors score between the US general population sample and a sample of individuals with chronic pain. Qual. Life Res. 2014, 23, 239–244. [Google Scholar] [CrossRef]
- Hays, R.D.; Morales, L.S.; Reise, S.P. Item Response Theory and health outcomes measurement in the 21st century. Med. Care 2000, 38, II-28–II-42. [Google Scholar] [CrossRef]
- Jaeschke, R.; Singer, J.; Guyatt, G.H. Measurement of health status. Ascertaining the minimal clinically important difference. Control Clin. Trials 1989, 10, 407–415. [Google Scholar] [CrossRef]
- Schwartz, C.E.S.; Sprangers, M.A.G. Methodological approaches for assessing response shift in longitudinal health-related quality-of-life research. Soc. Sci. Med. 1999, 48, 1531–1548. [Google Scholar] [CrossRef] [PubMed]
- Tippins, N.; Sackett, P.; Oswald, F. Principles for the validation and use of personnel selection procedures. Ind. Organ. Psychol. 2018, 11, 1–97. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horan, M.R.; Sim, J.-a.; Krull, K.R.; Ness, K.K.; Yasui, Y.; Robison, L.L.; Hudson, M.M.; Baker, J.N.; Huang, I.-C. Ten Considerations for Integrating Patient-Reported Outcomes into Clinical Care for Childhood Cancer Survivors. Cancers 2023, 15, 1024. https://doi.org/10.3390/cancers15041024
Horan MR, Sim J-a, Krull KR, Ness KK, Yasui Y, Robison LL, Hudson MM, Baker JN, Huang I-C. Ten Considerations for Integrating Patient-Reported Outcomes into Clinical Care for Childhood Cancer Survivors. Cancers. 2023; 15(4):1024. https://doi.org/10.3390/cancers15041024
Chicago/Turabian StyleHoran, Madeline R., Jin-ah Sim, Kevin R. Krull, Kirsten K. Ness, Yutaka Yasui, Leslie L. Robison, Melissa M. Hudson, Justin N. Baker, and I-Chan Huang. 2023. "Ten Considerations for Integrating Patient-Reported Outcomes into Clinical Care for Childhood Cancer Survivors" Cancers 15, no. 4: 1024. https://doi.org/10.3390/cancers15041024
APA StyleHoran, M. R., Sim, J. -a., Krull, K. R., Ness, K. K., Yasui, Y., Robison, L. L., Hudson, M. M., Baker, J. N., & Huang, I. -C. (2023). Ten Considerations for Integrating Patient-Reported Outcomes into Clinical Care for Childhood Cancer Survivors. Cancers, 15(4), 1024. https://doi.org/10.3390/cancers15041024