Central Nervous System Progression/Relapse in Mature T- and NK-Cell Lymphomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Brief Overview T-Cell Development and Lymphomagenesis
3. Incidence, Patterns, and Outcomes of CNS Progression/Relapse in MTNKL
3.1. Pooled Cohorts
3.2. MTNKL Cohorts
4. Clinicopathologic Risk Factors and Predictive Models
ATLL and ENKTL
5. Role of CNS Prophylaxis and Frontline Therapy
6. Treatment of CNS Progression/Relapse
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef]
- Cree, I.A. The WHO Classification of Haematolymphoid Tumours. Leukemia 2022, 36, 1701–1702. [Google Scholar] [CrossRef]
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; de Leval, L.; Dirnhofer, S.; et al. The International Consensus Classification of Mature Lymphoid Neoplasms: A report from the Clinical Advisory Committee. Blood 2022, 140, 1229–1253. [Google Scholar] [CrossRef]
- Harris, M.E. International Peripheral T-Cell and Natural Killer/T-Cell Lymphoma Study: Pathology Findings and Clinical Outcomes. J. Clin. Oncol. 2008, 26, 4124–4130. [Google Scholar] [CrossRef]
- Bellei, M.; Foss, F.M.; Shustov, A.R.; Horwitz, S.M.; Marcheselli, L.; Kim, W.S.; Cabrera, M.E.; Dlouhy, I.; Nagler, A.; Advani, R.H.; et al. The outcome of peripheral T-cell lymphoma patients failing first-line therapy: A report from the prospective, International T-Cell Project. Haematologica 2018, 103, 1191–1197. [Google Scholar] [CrossRef]
- Haioun, C.; Besson, C.; Lepage, E.; Thieblemont, C.; Simon, D.; Rose, C.; Tilly, H.; Sonet, A.; Lederlin, P.; Attal, M.; et al. Incidence and risk factors of central nervous system relapse in histologically aggressive non-Hodgkin’s lymphoma uniformly treated and receiving intrathecal central nervous system prophylaxis: A GELA study on 974 patients. Ann. Oncol. 2000, 11, 685–690. [Google Scholar] [CrossRef]
- Tilly, H.; Lepage, E.; Coiffier, B.; Blanc, M.; Herbrecht, R.; Bosly, A.; Attal, M.; Fillet, G.; Guettier, C.; Molina, T.J.; et al. Intensive conventional chemotherapy (ACVBP regimen) compared with standard CHOP for poor-prognosis aggressive non-Hodgkin lymphoma. Blood 2003, 102, 4284–4289. [Google Scholar] [CrossRef]
- Hollender, A.; Kvaloy, S.; Nome, O.; Skovlund, E.; Lote, K.; Holte, H. Central nervous system involvement following diagnosis ofnon-Hodgkin’s lymphoma: A risk model. Ann. Oncol. 2002, 13, 1099–1107. [Google Scholar] [CrossRef]
- Van Besien, K.; Ha, C.S.; Murphy, S.; McLaughlin, P.; Rodriguez, A.; Amin, K.; Forman, A.; Romaguera, J.; Hagemeister, F.; Younes, A.; et al. Risk Factors, Treatment, and Outcome of Central Nervous System Recurrence in Adults with Intermediate-Grade and Immunoblastic Lymphoma. Blood 1998, 91, 1178–1184. [Google Scholar] [CrossRef]
- Boehme, V.; Zeynalova, S.; Kloess, M.; Loeffler, M.; Kaiser, U.; Pfreundschuh, M.; Schmitz, N. Incidence and risk factors of central nervous system recurrence in aggressive lymphoma—A survey of 1693 patients treated in protocols of the German High-Grade Non-Hodgkin’s Lymphoma Study Group (DSHNHL). Ann. Oncol. 2007, 18, 149–157. [Google Scholar] [CrossRef]
- Bernstein, S.H.; Unger, J.M.; LeBlanc, M.; Friedberg, J.; Miller, T.P.; Fisher, R.I. Natural History of CNS Relapse in Patients with Aggressive Non-Hodgkin’s Lymphoma: A 20-Year Follow-Up Analysis of SWOG 8516—The Southwest Oncology Group. J. Clin. Oncol. 2009, 27, 114–119. [Google Scholar] [CrossRef]
- Schmitz, N.; Zeynalova, S.; Nickelsen, M.; Kansara, R.; Villa, D.; Sehn, L.H.; Glass, B.; Scott, D.W.; Gascoyne, R.D.; Connors, J.M.; et al. CNS International Prognostic Index: A Risk Model for CNS Relapse in Patients with Diffuse Large B-Cell Lymphoma Treated with R-CHOP. J. Clin. Oncol. 2016, 34, 3150–3156. [Google Scholar] [CrossRef]
- Bobillo, S.; Crespo, M.; Escudero, L.; Mayor, R.; Raheja, P.; Carpio, C.; Rubio-Perez, C.; Tazón-Vega, B.; Palacio, C.; Carabia, J.; et al. Cell free circulating tumor DNA in cerebrospinal fluid detects and monitors central nervous system involvement of B-cell lymphomas. Haematologica 2021, 106, 513–521. [Google Scholar] [CrossRef]
- Yi, J.H.; Kim, J.H.; Baek, K.K.; Lim, T.; Lee, D.J.; Ahn, Y.C.; Kim, K.; Kim, S.J.; Ko, Y.H.; Kim, W.S. Elevated LDH and paranasal sinus involvement are risk factors for central nervous system involvement in patients with peripheral T-cell lymphoma. Ann. Oncol. 2011, 22, 1636–1643. [Google Scholar] [CrossRef]
- Ellin, F.; Landström, J.; Jerkeman, M.; Relander, T. Central nervous system relapse in peripheral T-cell lymphomas: A Swedish Lymphoma Registry study. Blood 2015, 126, 36–41. [Google Scholar] [CrossRef]
- Pro, B.; Perini, G. Central nervous system prophylaxis in peripheral T-cell lymphoma. Blood 2010, 115, 5427. [Google Scholar] [CrossRef]
- Gurion, R.; Mehta, N.; Migliacci, J.C.; Zelenetz, A.; Moskowitz, A.; Lunning, M.; Moskowitz, C.; Hamlin, P.; Horwitz, S. Central nervous system involvement in T-cell lymphoma: A single center experience. Acta Oncol. 2016, 55, 561–566. [Google Scholar] [CrossRef]
- Chihara, D.; Fanale, M.A.; Miranda, R.N.; Noorani, M.; Westin, J.R.; Nastoupil, L.J.; Hagemeister, F.B.; Fayad, L.E.; Romaguera, J.E.; Samaniego, F.; et al. The risk of central nervous system relapses in patients with peripheral T-cell lymphoma. PLoS ONE 2018, 13, e0191461. [Google Scholar] [CrossRef]
- Mocikova, H.; Pytlík, R.; Benesova, K.; Janikova, A.; Duras, J.; Sykorova, A.; Steinerova, K.; Prochazka, V.; Campr, V.; Belada, D.; et al. Peripheral T-Cell Lymphomas Involving the Central Nervous System: A Report from the Czech Lymphoma Study Group Registry. Front. Oncol. 2022, 12, 874462. [Google Scholar] [CrossRef]
- Rothenberg, E.V. Single-cell insights into the hematopoietic generation of T-lymphocyte precursors in mouse and human. Exp. Hematol. 2021, 95, 1–12. [Google Scholar] [CrossRef]
- Luc, S.; Buza-Vidas, N.; Jacobsen, S.E.W. Delineating the cellular pathways of hematopoietic lineage commitment. Semin. Immunol. 2008, 20, 213–220. [Google Scholar] [CrossRef]
- Bell, J.J.; Bhandoola, A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 2008, 452, 764–767. [Google Scholar] [CrossRef]
- De Obaldia, M.E.; Bell, J.J.; Bhandoola, A. Early T-cell progenitors are the major granulocyte precursors in the adult mouse thymus. Blood 2013, 121, 64–71. [Google Scholar] [CrossRef]
- Doulatov, S.; Notta, F.; Eppert, K.; Nguyen, L.T.; Ohashi, P.S.; Dick, J.E. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat. Immunol. 2010, 11, 585–593. [Google Scholar] [CrossRef]
- Luc, S.; Luis, T.C.; Boukarabila, H.; Macaulay, I.C.; Buza-Vidas, N.; Bouriez-Jones, T.; Lutteropp, M.; Woll, P.S.; Loughran, S.J.; Mead, A.J.; et al. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat. Immunol. 2012, 13, 412–419. [Google Scholar] [CrossRef]
- Masuda, K.; Itoi, M.; Amagai, T.; Minato, N.; Katsura, Y.; Kawamoto, H. Thymic Anlage Is Colonized by Progenitors Restricted to T, NK, and Dendritic Cell Lineages. J. Immunol. 2005, 174, 2525–2532. [Google Scholar] [CrossRef]
- Shen, H.Q.; Lu, M.; Ikawa, T.; Masuda, K.; Ohmura, K.; Minato, N.; Katsura, Y.; Kawamoto, H. T/NK Bipotent Progenitors in the Thymus Retain the Potential to Generate Dendritic Cells. J. Immunol. 2003, 171, 3401–3406. [Google Scholar] [CrossRef]
- Wada, H.; Masuda, K.; Satoh, R.; Kakugawa, K.; Ikawa, T.; Katsura, Y.; Kawamoto, H. Adult T-cell progenitors retain myeloid potential. Nature 2008, 452, 768–772. [Google Scholar] [CrossRef]
- Del Real, M.M.; Rothenberg, E.V. Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. Development 2013, 140, 1207–1219. [Google Scholar] [CrossRef]
- Varnum-Finney, B.; Brashem-Stein, C.; Bernstein, I.D. Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 2003, 101, 1784–1789. [Google Scholar] [CrossRef] [Green Version]
- Radtke, F.; Wilson, A.; Stark, G.; Bauer, M.; van Meerwijk, J.; MacDonald, H.R.; Aguet, M. Deficient T Cell Fate Specification in Mice with an Induced Inactivation of Notch1. Immunity 1999, 10, 547–558. [Google Scholar] [CrossRef]
- Feyerabend, T.B.; Terszowski, G.; Tietz, A.; Blum, C.; Luche, H.; Gossler, A.; Gale, N.W.; Radtke, F.; Fehling, H.J.; Rodewald, H.-R. Deletion of Notch1 Converts Pro-T Cells to Dendritic Cells and Promotes Thymic B Cells by Cell-Extrinsic and Cell-Intrinsic Mechanisms. Immunity 2009, 30, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Koch, U.; Fiorini, E.; Benedito, R.; Besseyrias, V.; Schuster-Gossler, K.; Pierres, M.; Manley, N.R.; Duarte, A.; MacDonald, H.R.; Radtke, F. Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J. Exp. Med. 2008, 205, 2515–2523. [Google Scholar] [CrossRef] [PubMed]
- Jaleco, A.C.; Neves, H.; Hooijberg, E.; Gameiro, P.; Clode, N.; Haury, M.; Henrique, D.; Parreira, L. Differential Effects of Notch Ligands Delta-1 and Jagged-1 in Human Lymphoid Differentiation. J. Exp. Med. 2001, 194, 991–1002. [Google Scholar] [CrossRef]
- Schmitt, T.M.; Ciofani, M.; Petrie, H.T.; Zuniga-Pflucker, J.C. Maintenance of T Cell Specification and Differentiation Requires Recurrent Notch Receptor–Ligand Interactions. J. Exp. Med. 2004, 200, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Ciofani, M.; Zuniga-Pflucker, J.C. Notch promotes survival of pre–T cells at the β-selection checkpoint by regulating cellular metabolism. Nat. Immunol. 2005, 6, 881–888. [Google Scholar] [CrossRef]
- Stier, S.; Cheng, T.; Dombkowski, D.; Carlesso, N.; Scadden, D.T. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 2002, 99, 2369–2378. [Google Scholar] [CrossRef]
- Pui, J.C.; Allman, D.; Xu, L.; DeRocco, S.; Karnell, F.G.; Bakkour, S.; Lee, J.Y.; Kadesch, T.; Hardy, R.R.; Aster, J.C.; et al. Notch1 Expression in Early Lymphopoiesis Influences B versus T Lineage Determination. Immunity 1999, 11, 299–308. [Google Scholar] [CrossRef]
- Chen, E.L.Y.; Thompson, P.K.; Zúñiga-Pflücker, J.C. RBPJ-dependent Notch signaling initiates the T cell program in a subset of thymus-seeding progenitors. Nat. Immunol. 2019, 20, 1456–1468. [Google Scholar] [CrossRef]
- De Obaldia, M.E.; Bell, J.J.; Wang, X.; Harly, C.; Yashiro-Ohtani, Y.; DeLong, J.H.; Zlotoff, D.A.; Sultana, D.A.; Pear, W.S.; Bhandoola, A. T cell development requires constraint of the myeloid regulator C/EBP-α by the Notch target and transcriptional repressor Hes1. Nat. Immunol. 2013, 14, 1277–1284. [Google Scholar] [CrossRef] [Green Version]
- Luis, T.C.; Naber, B.A.; Roozen, P.P.; Brugman, M.H.; de Haas, E.F.; Ghazvini, M.; Fibbe, W.E.; van Dongen, J.J.; Fodde, R.; Staal, F.J. Canonical Wnt Signaling Regulates Hematopoiesis in a Dosage-Dependent Fashion. Cell Stem Cell 2011, 9, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Coles, A.H.; Zhu, Z.; Zayas, J.; Jurecic, R.; Kang, J.; Jones, S.N. Noncanonical Wnt signaling promotes apoptosis in thymocyte development. J. Exp. Med. 2007, 204, 3077–3084. [Google Scholar] [CrossRef] [PubMed]
- Staal, F.J.; Clevers, H.C. Wnt signaling in the thymus. Curr. Opin. Immunol. 2003, 15, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Weerkamp, F.; Baert, M.R.M.; Naber, B.A.E.; Koster, E.E.L.; de Haas, E.F.E.; Atkuri, K.R.; van Dongen, J.J.M.; Herzenberg, L.A.; Staal, F.J.T. Wnt signaling in the thymus is regulated by differential expression of intracellular signaling molecules. Proc. Natl. Acad. Sci. USA 2006, 103, 3322–3326. [Google Scholar] [CrossRef]
- Staal, F.J.; Clevers, H.C. WNT signalling and haematopoiesis: A WNT–WNT situation. Nat. Rev. Immunol. 2005, 5, 21–30. [Google Scholar] [CrossRef]
- Huntington, N.D.; Vosshenrich, C.A.J.; Di Santo, J.P. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat. Rev. Immunol. 2007, 7, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Di Vito, C.; Mikulak, J.; Mavilio, D. On the Way to Become a Natural Killer Cell. Front. Immunol. 2019, 10, 1812. [Google Scholar] [CrossRef]
- Rothenberg, E.V. Transcriptional Control of Early T and B Cell Developmental Choices. Annu. Rev. Immunol. 2014, 32, 283–321. [Google Scholar] [CrossRef]
- Rothenberg, E.V. The chromatin landscape and transcription factors in T cell programming. Trends Immunol. 2014, 35, 195–204. [Google Scholar] [CrossRef]
- Parker, M.E.; Ciofani, M. Regulation of γδ T Cell Effector Diversification in the Thymus. Front. Immunol. 2020, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Cortés, J.R.; Palomero, T. Biology and Molecular Pathogenesis of Mature T-Cell Lymphomas. Cold Spring Harb. Perspect. Med. 2021, 11, a035402. [Google Scholar] [CrossRef]
- Deleeuw, R.J.; Zettl, A.; Klinker, E.; Haralambieva, E.; Trottier, M.; Chari, R.; Ge, Y.; Gascoyne, R.D.; Chott, A.; Müller–Hermelink, H.K.; et al. Whole-Genome Analysis and HLA Genotyping of Enteropathy-Type T-Cell Lymphoma Reveals 2 Distinct Lymphoma Subtypes. Gastroenterology 2007, 132, 1902–1911. [Google Scholar] [CrossRef]
- Kern, W.F.; Spier, C.M.; Hanneman, E.H.; Miller, T.P.; Matzner, M.; Grogan, T.M. Neural cell adhesion molecule-positive peripheral T-cell lymphoma: A rare variant with a propensity for unusual sites of involvement. Blood 1992, 79, 2432–2437. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-X.; Wang, H.; Feng, X.-L.; Liu, Q.-F.; Wang, W.-H.; Lv, N.; Jin, J.; Wang, S.-L.; Liu, Y.-P.; Fang, H.; et al. Immunophenotypic characteristics and clinical relevance of CD56+ and CD56− extranodal nasal-type natural killer/T-cell lymphoma. Leuk. Lymphoma 2011, 52, 417–424. [Google Scholar] [CrossRef]
- Shipp, M.A. International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A Predictive Model for Aggressive Non-Hodgkin’s Lymphoma. N. Engl. J. Med. 1993, 329, 987–994. [Google Scholar] [CrossRef]
- López-Guillermo, A.; Cid, J.; Salar, A.; López, A.; Montalbán, C.; Castrillo, J.M.; González, M.; Ribera, J.-M.; Brunet, S.; García-Conde, J.; et al. Peripheral T-cell lymphomas: Initial features, natural history, and prognostic factors in a series of 174 patients diagnosed according to the R.E.A.L. Classification. Ann. Oncol. 1998, 9, 849–855. [Google Scholar] [CrossRef]
- Mak, V.; Hamm, J.; Chhanabhai, M.; Shenkier, T.; Klasa, R.; Sehn, L.H.; Villa, D.; Gascoyne, R.D.; Connors, J.M.; Savage, K.J. Survival of Patients with Peripheral T-Cell Lymphoma After First Relapse or Progression: Spectrum of Disease and Rare Long-Term Survivors. J. Clin. Oncol. 2013, 31, 1970–1976. [Google Scholar] [CrossRef]
- Hill, Q.A.; Owen, R.G. CNS prophylaxis in lymphoma: Who to target and what therapy to use. Blood Rev. 2006, 20, 319–332. [Google Scholar] [CrossRef]
- Teshima, T.; Akashi, K.; Shibuya, T.; Taniguchi, S.; Okamura, T.; Harada, M.; Sumida, I.; Hanada, M.; Niho, Y. Central nervous system involvement in adult T-cell leukemia/lymphoma. Cancer 1990, 65, 327–332. [Google Scholar] [CrossRef]
- Gessain, A.; Cassar, O. Epidemiological Aspects and World Distribution of HTLV-1 Infection. Front. Microbiol. 2012, 3, 388. [Google Scholar] [CrossRef] [Green Version]
- Shah, U.A.; Chung, E.Y.; Giricz, O.; Pradhan, K.; Kataoka, K.; Gordon-Mitchell, S.; Bhagat, T.D.; Mai, Y.; Wei, Y.; Ishida, E.; et al. North American ATLL has a distinct mutational and transcriptional profile and responds to epigenetic therapies. Blood 2018, 132, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Rahman, S.; Shah, N.; Thakkar, A.; Acuna-Villaorduna, A.; Shah, U.A.; Herrera, D.A.; De Castro, A.; Mustafa, J.; Khatun, F.; et al. Predictors of Central Nervous System (CNS) Involvement in North American Adult T-Cell Leukemia Lymphoma (ATLL) and Their Survival Pattern. Blood 2021, 138, 1400. [Google Scholar] [CrossRef]
- Kim, S.J.; Oh, S.Y.; Hong, J.Y.; Chang, M.H.; Lee, D.H.; Huh, J.; Ko, Y.H.; Ahn, Y.C.; Kim, H.-J.; Suh, C.; et al. When do we need central nervous system prophylaxis in patients with extranodal NK/T-cell lymphoma, nasal type? Ann. Oncol. 2010, 21, 1058–1063. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Suh, C.; Park, Y.H.; Ko, Y.H.; Bang, S.M.; Lee, J.H.; Lee, D.H.; Huh, J.; Oh, S.Y.; Kwon, H.-C.; et al. Extranodal Natural Killer T-Cell Lymphoma, Nasal-Type: A Prognostic Model from a Retrospective Multicenter Study. J. Clin. Oncol. 2006, 24, 612–618. [Google Scholar] [CrossRef]
- Kim, H.; Jeong, H.; Yamaguchi, M.; Sohn, I.; Yoon, S.E.; Byeon, S.; Hur, J.Y.; Koh, Y.; Yoon, S.-S.; Kim, S.J.; et al. Prediction and prevention of central nervous system relapse in patients with extranodal natural killer/T-cell lymphoma. Blood 2020, 136, 2548–2556. [Google Scholar] [CrossRef]
- Kim, S.J.; Yoon, D.H.; Jaccard, A.; Chng, W.J.; Lim, S.T.; Hong, H.; Park, Y.; Chang, K.M.; Maeda, Y.; Ishida, F.; et al. A prognostic index for natural killer cell lymphoma after non-anthracycline-based treatment: A multicentre, retrospective analysis. Lancet Oncol. 2016, 17, 389–400. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Suzuki, R.; Oguchi, M.; Asano, N.; Amaki, J.; Akiba, T.; Maeda, T.; Itasaka, S.; Kubota, N.; Saito, Y.; et al. Treatments and Outcomes of Patients with Extranodal Natural Killer/T-Cell Lymphoma Diagnosed Between 2000 and 2013: A Cooperative Study in Japan. J. Clin. Oncol. 2017, 35, 32–39. [Google Scholar] [CrossRef]
- Orellana-Noia, V.M.; Reed, D.R.; McCook, A.A.; Sen, J.M.; Barlow, C.M.; Malecek, M.-K.; Watkins, M.P.; Kahl, B.S.; Spinner, M.A.; Advani, R.; et al. Single-route CNS prophylaxis for aggressive non-Hodgkin lymphomas: Real-world outcomes from 21 US academic institutions. Blood 2022, 139, 413–423. [Google Scholar] [CrossRef]
- Horwitz, S.M.; Ansell, S.; Ai, W.Z.; Barnes, J.; Barta, S.K.; Brammer, J.; Clemens, M.W.; Dogan, A.; Foss, F.; Ghione, P.; et al. T-Cell Lymphomas, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 285–308. [Google Scholar] [CrossRef]
- Cook, L.B.; Fuji, S.; Hermine, O.; Bazarbachi, A.; Ramos, J.C.; Ratner, L.; Horwitz, S.; Fields, P.; Tanase, A.; Bumbea, H.; et al. Revised Adult T-Cell Leukemia-Lymphoma International Consensus Meeting Report. J. Clin. Oncol. 2019, 37, 677–687. [Google Scholar] [CrossRef]
- Tsukasaki, K.; Tobinai, K.; Shimoyama, M.; Kozuru, M.; Uikc, N.; Yamada, Y.; Tomonaga, M.; Araki, K.; Kasai, M.; Takatsuki, K.; et al. Deoxycoformycin-Containing Combination Chemotherapy for Adult T-Cell Leukemia-Lymphoma: Japan Clinical Oncology Group Study (JCOG9109). Int. J. Hematol. 2003, 77, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Tomonaga, M.; Fukuda, H.; Hanada, S.; Utsunomiya, A.; Tara, M.; Sano, M.; Ikeda, S.; Takatsuki, K.; Kozuru, M.; et al. A new G-CSF-supported combination chemotherapy, LSG15, for adult T-cell leukaemia-lymphoma: Japan Clinical Oncology Group Study 9303. Br. J. Haematol. 2001, 113, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Tsukasaki, K.; Utsunomiya, A.; Fukuda, H.; Shibata, T.; Fukushima, T.; Takatsuka, Y.; Ikeda, S.; Masuda, M.; Nagoshi, H.; Ueda, R.; et al. VCAP-AMP-VECP Compared with Biweekly CHOP for Adult T-Cell Leukemia-Lymphoma: Japan Clinical Oncology Group Study JCOG9801. J. Clin. Oncol. 2007, 25, 5458–5464. [Google Scholar] [CrossRef] [PubMed]
- Pitz, M.W.; Desai, A.; Grossman, S.A.; Blakeley, J.O. Tissue concentration of systemically administered antineoplastic agents in human brain tumors. J. Neuro Oncol. 2011, 104, 629–638. [Google Scholar] [CrossRef]
- Cook, L.B.; Phillips, A.A. How I treat adult T-cell leukemia/lymphoma. Blood 2021, 137, 459–470. [Google Scholar] [CrossRef]
- Jeong, H.; Cho, H.; Kim, H.; Chae, H.; Lee, J.-B.; Lee, K.; Kim, S.; Lee, S.-W.; Ryu, J.-S.; Kim, K.W.; et al. Efficacy and safety of prophylactic high-dose MTX in high-risk DLBCL: A treatment intent–based analysis. Blood Adv. 2021, 5, 2142–2152. [Google Scholar] [CrossRef]
- Wilson, M.R.; Eyre, T.A.; Kirkwood, A.A.; Doo, N.W.; Soussain, C.; Choquet, S.; Martinez-Calle, N.; Preston, G.; Ahearne, M.J.; Schorb, E.; et al. Timing of high-dose methotrexate CNS prophylaxis in DLBCL: A multicenter international analysis of 1384 patients. Blood 2022, 139, 2499–2511. [Google Scholar] [CrossRef]
- Bhansali, R.S.; Ganesan, N.; Stuver, R.N.; Horwitz, S.M.; Wudhikarn, K.; Hwang, S.R.; Bennani, N.; Chavez, J.C.; Sokol, L.; Saeed, H.; et al. A Multi-Institutional Retrospective Analysis of T-Cell Lymphomas with Central Nervous System Relapse. Blood 2021, 138, 1382. [Google Scholar] [CrossRef]
- O’Connor, O.A.; Falchi, L.; Lue, J.K.; Marchi, E.; Kinahan, C.; Sawas, A.; Deng, C.; Montanari, F.; Amengual, J.E.; Kim, H.A.; et al. Oral 5-azacytidine and romidepsin exhibit marked activity in patients with PTCL: A multicenter phase 1 study. Blood 2019, 134, 1395–1405. [Google Scholar] [CrossRef]
- Amengual, J.E.; Lichtenstein, R.; Lue, J.; Sawas, A.; Deng, C.; Lichtenstein, E.; Khan, K.; Atkins, L.; Rada, A.; Kim, H.A.; et al. A phase 1 study of romidepsin and pralatrexate reveals marked activity in relapsed and refractory T-cell lymphoma. Blood 2018, 131, 397–407. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, O.A.; Horwitz, S.; Masszi, T.; Van Hoof, A.; Brown, P.; Doorduijn, J.; Hess, G.; Jurczak, W.; Knoblauch, P.; Chawla, S.; et al. Belinostat in Patients with Relapsed or Refractory Peripheral T-Cell Lymphoma: Results of the Pivotal Phase II BELIEF (CLN-19) Study. J. Clin. Oncol. 2015, 33, 2492–2499. [Google Scholar] [CrossRef]
- Younes, A.; Bartlett, N.L.; Leonard, J.P.; Kennedy, D.A.; Lynch, C.M.; Sievers, E.L.; Forero-Torres, A. Brentuximab Vedotin (SGN-35) for Relapsed CD30-Positive Lymphomas. N. Engl. J. Med. 2010, 363, 1812–1821. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, S.M.; Advani, R.H.; Bartlett, N.L.; Jacobsen, E.D.; Sharman, J.P.; O’Connor, O.A.; Siddiqi, T.; Kennedy, D.A.; Oki, Y. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood 2014, 123, 3095–3100. [Google Scholar] [CrossRef] [PubMed]
- Pro, B.; Advani, R.; Brice, P.; Bartlett, N.L.; Rosenblatt, J.D.; Illidge, T.; Matous, J.; Ramchandren, R.; Fanale, M.; Connors, J.M.; et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood 2017, 130, 2709–2717. [Google Scholar] [CrossRef] [PubMed]
- Toumishey, E.; Prasad, A.; Dueck, G.; Chua, N.; Finch, D.; Johnston, J.; van der Jagt, R.; Stewart, D.; White, D.; Belch, A.; et al. Final report of a phase 2 clinical trial of lenalidomide monotherapy for patients with T-cell lymphoma. Cancer 2015, 121, 716–723. [Google Scholar] [CrossRef]
- Brammer, J.E.; Zinzani, P.L.; Zain, J.; Mead, M.; Casulo, C.; Jacobsen, E.D.; Gritti, G.; Litwak, D.; Cohan, D.; Katz, D.J.; et al. Duvelisib in Patients with Relapsed/Refractory Peripheral T-Cell Lymphoma from the Phase 2 Primo Trial: Results of an Interim Analysis. Blood 2021, 138, 2456. [Google Scholar] [CrossRef]
- Mociková, H.; Malikova, H.; Holesta, M.; Elturki, A.; Campr, V.; Kozak, T. Durable Response to Brentuximab Vedotin-Based Chemotherapy in Refractory Hodgkin Lymphoma with Central Nervous System (CNS) Involvement. Am. J. Case Rep. 2020, 21, e921657-1–e921657-4. [Google Scholar] [CrossRef]
- Tomlinson, S.B.; Sandwell, S.; Chuang, S.T.; Johnson, M.D.; Vates, G.E.; Reagan, P.M. Central nervous system relapse of systemic ALK-rearranged anaplastic large cell lymphoma treated with alectinib. Leuk. Res. 2019, 83, 106164. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; Van Der Weyden, C.; Khoo, C.; Lade, S.; Blombery, P.; Westerman, D.; Khot, A.; Melo, B.; Johnstone, R.W.; Prince, H.M.; et al. Durable clinical remission induced by romidepsin for chemotherapy-refractory peripheral T-cell lymphoma with central nervous system involvement. Leuk. Lymphoma 2017, 58, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, J.L.; Geng, H.; Fraser, E.J.; Formaker, P.; Chen, L.; Sharma, J.; Killea, P.; Choi, K.; Ventura, J.; Kurhanewicz, J.; et al. Phase 1 investigation of lenalidomide/rituximab plus outcomes of lenalidomide maintenance in relapsed CNS lymphoma. Blood Adv. 2018, 2, 1595–1607. [Google Scholar] [CrossRef] [Green Version]
- Ghesquieres, H.; Chevrier, M.; Laadhari, M.; Chinot, O.; Choquet, S.; Moluçon-Chabrot, C.; Beauchesne, P.; Gressin, R.; Morschhauser, F.; Schmitt, A.; et al. Lenalidomide in combination with intravenous rituximab (REVRI) in relapsed/refractory primary CNS lymphoma or primary intraocular lymphoma: A multicenter prospective ‘proof of concept’ phase II study of the French Oculo-Cerebral lymphoma (LOC) Network and the Lymphoma Study Association (LYSA). Ann. Oncol. 2019, 30, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Isaev, K.; Ennishi, D.; Hilton, L.; Skinnider, B.; Mungall, K.L.; Mungall, A.J.; Bakhtiari, M.; Tremblay-LeMay, R.; Silva, A.; Ben-Neriah, S.; et al. Molecular attributes underlying central nervous system and systemic relapse in diffuse large B-cell lymphoma. Haematologica 2021, 106, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Kogure, Y.; Kataoka, K. Genetic alterations in adult T-cell leukemia/lymphoma. Cancer Sci. 2017, 108, 1719–1725. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Medeiros, L.J.; Lin, P.; Wang, S.A.; Tang, G.; Yin, C.C.; You, M.J.; Khoury, J.D.; Iyer, S.P.; et al. PD-L1 expression is associated with ALK positivity and STAT3 activation, but not outcome in patients with systemic anaplastic large cell lymphoma. Mod. Pathol. 2020, 33, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.-W.; Wang, H.; Zhang, W.-W.; Wang, J.-H.; Liu, W.-J.; Xia, Z.-J.; Huang, H.-Q.; Jiang, W.-Q.; Zhang, Y.-J.; Wang, L. PD-L1 is upregulated by EBV-driven LMP1 through NF-κB pathway and correlates with poor prognosis in natural killer/T-cell lymphoma. J. Hematol. Oncol. 2016, 9, 109. [Google Scholar] [CrossRef]
- Ni, X.; Hazarika, P.; Zhang, C.; Talpur, R.; Duvic, M. Fas ligand expression by neoplastic T lymphocytes mediates elimination of CD8+ cytotoxic T lymphocytes in mycosis fungoides: A potential mechanism of tumor immune escape? Clin. Cancer Res. 2001, 7, 2682–2692. [Google Scholar]
- Vermeer, M.H.; Van Doorn, R.; Dukers, D.; Bekkenk, M.W.; Meijer, C.J.; Willemze, R. CD8+ T Cells in Cutaneous T-Cell Lymphoma: Expression of Cytotoxic Proteins, Fas Ligand, and Killing Inhibitory Receptors and Their Relationship with Clinical Behavior. J. Clin. Oncol. 2001, 19, 4322–4329. [Google Scholar] [CrossRef]
- Oyarzo, M.P.; Medeiros, L.J.; Atwell, C.; Feretzaki, M.; Leventaki, V.; Drakos, E.; Amin, H.M.; Rassidakis, G.Z. c-FLIP confers resistance to FAS-mediated apoptosis in anaplastic large-cell lymphoma. Blood 2006, 107, 2544–2547. [Google Scholar] [CrossRef]
- Takakuwa, T.; Dong, Z.; Nakatsuka, S.; Kojya, S.; Harabuchi, Y.; Yang, W.-I.; Nagata, S.; Aozasa, K. Frequent mutations of Fas gene in nasal NK/T cell lymphoma. Oncogene 2002, 21, 4702–4705. [Google Scholar] [CrossRef]
- Sugio, T.; Miyawaki, K.; Kato, K.; Sasaki, K.; Yamada, K.; Iqbal, J.; Miyamoto, T.; Ohshima, K.; Maeda, T.; Miyoshi, H.; et al. Microenvironmental immune cell signatures dictate clinical outcomes for PTCL-NOS. Blood Adv. 2018, 2, 2242–2252. [Google Scholar] [CrossRef] [Green Version]
Pooled Study * | Total Population Evaluated, n | Patients with MTNKL, n (%) | Patients with CNS Relapse/Progression, n (%) | Pattern of CNS Involvement, n (%) | Pattern of Relapse, n (%) | Median TTCNS, Months † | Median OS, Months ‡ | Comments |
---|---|---|---|---|---|---|---|---|
Bernstein et al. [11] | 899 | NR | 25 (2.8) | Leptomeningeal—14 (56) Parenchymal—3 (12) Mixed—2 (8) | Isolated CNS—11 (44) CNS + systemic—10 (40) | 5.4 | 2.2 | |
Hollender et al. [8] | 2514 | 121 (4.8) | 222 (8.8) | Leptomeningeal—74 [69.8] Parenchymal—22 (20.8) | NR | 5 a 16 b | 2.4 a 2.2 b | a Patients who progressed during first line treatment b Patients who relapsed after first line treatment |
Boehme et al. [10] | 1693 | 137 (8.1) | 37 (2.2) | Leptomeningeal—8 (21.6) Parenchymal—21 (56.8) Mixed—4 (10.8) | Isolated CNS—15 (40.5) CNS + systemic—22 (59.5) | 4.7 | 4.4 | Of patients with CNS relapse, only 1 had MTNKL |
MTNKL Study | Total Population Evaluated, n § | Patients with CNS Relapse/Progression, n (%) | Histology-CNS, n (%) # | Histology-Total, n (%) $ | Pattern of CNS Involvement, n (%) | Pattern of Relapse, n (%) | Median TTCNS, Months † | Median OS, Months ‡ | Comments |
---|---|---|---|---|---|---|---|---|---|
López-Guillermo et al. [56] | 174 | 8 (5) | AITL—1 (12.5) Angiocentric a—3 (37.5) Unspecified—4 (50) | AITL—1 (4) Angiocentric a—3 (21) Unspecified—4 (4) | NR | NR | NR | NR | a Reclassified as ENKTL |
Mak et al. [57] | 153 | 12 (7.8) | PTCL, NOS—4 (44) a ALK+ ALCL—2 (22) a ALK- ALCL—2 (22) a | PTCL, NOS—4 (5) a ALK+ ALCL—2 (17) a ALK- ALCL—2 (8) a | NR | NR | NR | NR | a Data reported only for patients with CNS disease at first relapse (n = 9) |
Yi et al. [14] | 228 | 20 (8.8)a | PTCL, NOS—11 (55) AITL—3 (15) ALK+ ALCL—2 (10) ALK- ALCL—2 (10) ALKu ALCL a—1 (5) EATL—1 (5) | PTCL, NOS—11 (8.5) AITL—3 (5.8) ALK+ ALCL—2 (18.2) ALK- ALCL—2 (16.6) ALKu ALCL—1 (11.1) EATL—1 (12.5) | Leptomeningeal—14 (70) Parenchymal—5 (25) Mixed—1 (5) | Isolated CNS—2 (10) CNS + systemic—18 (90) | 6.1 | 3 | a 2 patients had CNS disease at diagnosis |
Ellin et al. [15] | 625 | 28 (4.5) | PTCL, NOS—15 (53.6) AITL—3 (10.7) ALK+ ALCL—3 (10.7) ALK- ALCL—2 (7.1) ALKu ALCL—1 (3.6) EATL—4 (14.3) | PTCL, NOS—15 (7) AITL—3 (3) ALK+ ALCL—3 (6) ALK- ALCL—2 (2) ALKu ALCL—1 (3) EATL—4 (7) | Leptomeningeal—18 (64.3) Parenchymal—10 (35.7) | Isolated CNS—11 (52.3) a CNS + systemic—10 (47.6) a | 4.3 | 1.1 | a Reported only for patients with CNS disease at first relapse (n = 21) |
Gurion et al. [17] | 231 | 15 (6.5)a | PTCL, NOS—6 (40) AITL—1 (6.7) ALK- ALCL—1 (6.7) ENKTL—2 (13.3) ATLL—4 (26.7) HSTCL—1 (6.7) | PTCL, NOS—6 (8.2) AITL—1 (2.7) ALK- ALCL—1 (3.6) ENKTL—2 (11.8) ATLL—4 [(23.5) HSTCL—1 (11.1) | NR | Isolated CNS—3 (37.5) b CNS + systemic 5 (62.5) b | 3.4 | 2.6 | a 4 patients had CNS disease prior to first line therapy b Reported only for patients with CNS disease after first line therapy (n = 8) |
Chihara et al. [18] | 600 | 13 (2.2) | PTCL, NOS—4 (30.8) AITL—1 (7.7) ALK+ ALCL—4 (30.8) ALK- ALCL—2 (15.4) ENTKL—2 (15.4) | PTCL, NOS—4 (2.3) AITL—1 (0.7) ALK+ ALCL—4 (5.4) ALK- ALCL—2 (1.9) ENTKL—2 (3.7) | Leptomeningeal—13 (100) Parenchymal—0 (0) | NR | 6.4 | 1.5 | |
Mocikova et al. [19] a | 1040 | 13 (1.3) | PTCL, NOS—10 (76.9) AITL—1 (7.7) ALK- ALCL—1 (7.7) EATL b—1 (7.7) | PTCL, NOS—10 (2.4) AITL—1 (0.9) ALK- ALCL—1 (0.6) EATL b—1 (2.6) | Leptomeningeal—4 (30.8) Parenchymal—6 (46.2) Mixed—3 (23.1) | Isolated CNS—2 (15.4) CNS + systemic—11 (84.6) | 0 | 11 c | a Patients with CNS involvement at initial diagnosis b EATL and MEITL are separate diagnoses c OS reported only for patients with CNS + systemic disease at diagnosis |
Mocikova et al. [19] a | 1040 | 16 (1.5) | PTCL, NOS—8 (50) ALK+ ALCL—2 (12.5) ALK- ALCL—2 (12.5) AITL—1 (6.25) EATL c—1 (6.25) Other—1 (6.25) | PTCL, NOS—8 (3.4) b ALK+ ALCL—2 (2.9) b ALK- ALCL—2 (10.5) b AITL—1 (1.6) b EATL c—1 (5) b Other—1 (0.9) b | Leptomeningeal—6 (37.5) Parenchymal—5 (31.3) Mixed—5 (31.3]) | Isolated CNS—4 (25) CNS + systemic—12 (75) | NR | 11.8 | a Patients with secondary CNS relapse b Compared within population of patients who experienced relapse (n = 509) c EATL and MEITL are separate diagnoses c OS from initial diagnosis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhansali, R.S.; Barta, S.K. Central Nervous System Progression/Relapse in Mature T- and NK-Cell Lymphomas. Cancers 2023, 15, 925. https://doi.org/10.3390/cancers15030925
Bhansali RS, Barta SK. Central Nervous System Progression/Relapse in Mature T- and NK-Cell Lymphomas. Cancers. 2023; 15(3):925. https://doi.org/10.3390/cancers15030925
Chicago/Turabian StyleBhansali, Rahul S., and Stefan K. Barta. 2023. "Central Nervous System Progression/Relapse in Mature T- and NK-Cell Lymphomas" Cancers 15, no. 3: 925. https://doi.org/10.3390/cancers15030925
APA StyleBhansali, R. S., & Barta, S. K. (2023). Central Nervous System Progression/Relapse in Mature T- and NK-Cell Lymphomas. Cancers, 15(3), 925. https://doi.org/10.3390/cancers15030925