Dynamic Changes in Microvascular Density Can Predict Viable and Non-Viable Areas in High-Risk Neuroblastoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Samples Processing
2.3. Image Processing of the H&E and CD31 Pathology Slides
2.4. Data Analysis
2.5. Photoacoustic Imaging
3. Results
3.1. H&E Staining Is Associated with Reliable Vessels Detection
3.2. Viable Regions of Different Histological Subtypes Show Comparable MVD before and after Chemotherapy
3.3. MVD Allows the Identification of Different Histological Components within the Excised Tumor after Induction Chemotherapy
3.4. Photoacoustic Imaging Allows the Detection of Different Regions within the Primary Tumor: Preliminary Ex Vivo Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.R.; Eggert, A.; Caron, H. Neuroblastoma: Biology, Prognosis, and Treatment. Hematol. Oncol. Clin. N. Am. 2010, 24, 65–86. [Google Scholar] [CrossRef] [PubMed]
- Sokol, E.; Desai, A. The evolution of risk classification for neuroblastoma. Children 2019, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.; Foster, J. High-risk neuroblastoma treatment review. Children 2018, 5, 114. [Google Scholar] [CrossRef]
- Cañete, A.; Navarro, S.; Bermúdez, J.; Pellín, A.; Castel, V.; Llombart-Bosch, A. Angiogenesis in neuroblastoma: Relationship to survival and other prognostic factors in a cohort of neuroblastoma patients. J. Clin. Oncol. 2000, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Dungwa, J.V.; Uparkar, U.; May, M.T.; Ramani, P. Angiogenin up-regulation correlates with adverse clinicopathological and biological factors, increased microvascular density and poor patient outcome in neuroblastomas: Angiogenin in neuroblastoma. Histopathology 2012, 60, 911–923. [Google Scholar] [CrossRef]
- Jakovljević, G.; Culić, S.; Stepan, J.; Kosuta, I.; Seiwerth, S. Relationship between tumor vascularity and vascular endothelial growth factor as prognostic factors for patients with neuroblastoma. Coll. Antropol. 2011, 35, 1071–1079. [Google Scholar] [PubMed]
- Ozer, E.; Altungoz, O.; Unlu, M.; Aygun, N.; Tumer, S.; Olgun, N. Association of MYCN amplification and 1p deletion in neuroblastomas with high tumor vascularity. Appl. Immunohistochem. Mol. Morphol. 2007, 15, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Tadeo, I.; Bueno, G.; Berbegall, A.P.; Fernández-Carrobles, M.M.; Castel, V.; García-Rojo, M.; Navarro, S.; Noguera, R. Vascular patterns provide therapeutic targets in aggressive neuroblastic tumors. Oncotarget 2016, 7, 19935–19947. [Google Scholar] [CrossRef]
- Marachelian, A.; Shimada, H.; Sano, H.; Jackson, H.; Stein, J.; Sposto, R.; Matthay, K.K.; Baker, D.; Villablanca, J.G. The significance of serial histopathology in a residual mass for outcome of intermediate risk stage 3 neuroblastoma: Histology intermediate risk neuroblastoma. Pediatr. Blood Cancer 2012, 58, 675–681. [Google Scholar] [CrossRef]
- Coffin, C.M.; Lowichik, A.; Zhou, H. Treatment effects in pediatric soft tissue and bone tumors: Practical considerations for the pathologist. Am. J. Clin. Pathol. 2005, 123, 75–90. [Google Scholar] [CrossRef]
- George, R.E.; Perez-Atayde, A.R.; Yao, X.; London, W.B.; Shamberger, R.C.; Neuberg, D.; Diller, L. Tumor histology during induction therapy in patients with high-risk neuroblastoma: Tumor histology after induction therapy in neuroblastoma. Pediatr. Blood Cancer 2012, 59, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Hishiki, T.; Horie, H.; Higashimoto, Y.; Yotsumoto, K.; Komatsu, S.; Okimoto, Y.; Kakuda, H.; Taneyama, Y.; Saito, T.; Terui, K.; et al. Histological features of primary tumors after induction or high-dose chemotherapy in high-risk neuroblastoma. Pediatr. Surg. Int. 2014, 30, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Hanafy, E.; Al Jabri, A.; Gadelkarim, G.; Dasaq, A.; Nazim, F.; Al Pakrah, M. Tumor histopathological response to neoadjuvant chemotherapy in childhood solid malignancies: Is it still impressive? J. Investig. Med. 2018, 66, 289–297. [Google Scholar] [CrossRef]
- Rich, B.S.; McEvoy, M.P.; Kelly, N.E.; Oh, E.; Abramsin, S.J.; Price, A.P.; Cheung, N.V.; La Quaglia, M.P. Resectability and operative morbidity after chemotherapy in neuroblastoma patients with encasement of major visceral arteries. J. Pediatr. Surg. 2011, 46, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Kiely, E.M. Radical surgery for abdominal neuroblastoma. Semin. Surg. Oncol. 1993, 9, 489–492. [Google Scholar] [CrossRef] [PubMed]
- Holmes, K.; Pötschger, U.; Pearson, A.D.J.; Sarnacki, S.; Cecchetto, G.; Gomez-Chacon, J.; Squire, R.; Freud, E.; Bysiek, A.; Matthyssens, L.E. Influence of surgical excision on the survival of patients with stage 4 high-risk neuroblastoma: A report from the HR-NBL1/SIOPEN study. J. Clin. Oncol. 2020, 38, 2902–2915. [Google Scholar] [CrossRef]
- Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef]
- Guggenheim, J.A.; Allen, T.J.; Plumb, A.; Zhang, E.Z.; Rodriguez-Justo, M.; Punwani, S.; Beard, P.C. Photoacoustic imaging of human lymph nodes with endogenous lipid and hemoglobin contrast. J. Biomed. Opt. 2015, 20, 050504. [Google Scholar] [CrossRef]
- Privitera, L.; Paraboschi, I.; Cross, K.; Giuliani, S. Above and beyond robotic surgery and 3D modelling in paediatric cancer surgery. Front. Pediatr. 2021, 9, 777840. [Google Scholar] [CrossRef]
- Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Plumb, A.A.; Huynh, N.T.; Guggenheim, J.; Zhang, E.; Beard, P. Rapid volumetric photoacoustic tomographic imaging with a Fabry-Perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli. Eur. Radiol. 2018, 28, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- Kayser, K.; Hoshang, S.A.; Metze, K.; Goldmann, T.; Vollmer, E.; Radziszowski, D.; Kosjerina, Z.; Mireskandari, M.; Kayser, G. Texture- and object-related automated information analysis in histological still images of various organs. Anal. Quant. Cytol. Histol. 2008, 30, 323–335. [Google Scholar] [PubMed]
- Gundersen, H.J.G.; Jensen, E.B. Stereological estimation of the volume-weighted mean volume of arbitrary particles observed on random sections. J. Microsc. 1985, 138, 127–142. [Google Scholar] [CrossRef]
- Mayhew, T.M. A stereological perspective on placental morphology in normal and complicated pregnancies. J. Anat. 2009, 215, 77–90. [Google Scholar] [CrossRef]
- Zhang, E.; Laufer, J.; Beard, P. Backward-mode multiwavelength photoacoustic scanner using a planar fabry-perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Appl. Opt. 2008, 47, 561. [Google Scholar] [CrossRef]
- Jathoul, A.P.; Laufer, J.; Ogunlade, O.; Treeby, B.; Cox, B.; Zhang, E.; Johnson, P.; Pizzey, A.R.; Philip, B.; Marafioti, T.; et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat. Photonics 2015, 9, 239–246. [Google Scholar] [CrossRef]
- Laufer, J.G.; Zhang, E.Z.; Treeby, B.E.; Cox, B.T.; Beard, P.C.; Johnson, P.; Pedley, B. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J. Biomed. Opt. 2012, 17, 0560161–0560168. [Google Scholar] [CrossRef]
- Ogunlade, O.; Connell, J.J.; Huang, J.L.; Zhang, E.; Lythgoe, M.F.; Long, D.A.; Beard, P. In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models. Am. J. Physiol.-Ren Physiol. 2018, 314, F1145–F1153. [Google Scholar] [CrossRef]
- Brem, S.; Cotran, R.; Folkman, J. Tumor angiogenesis: A quantitative method for histologic grading. J. Natl. Cancer Inst. 1972, 48, 347–356. [Google Scholar]
- Weidner, N.; Folkman, J.; Pozza, F.; Bevilacqua, P.; Allred, E.N.; Moore, D.H.; Meli, S.; Gasparini, G. Tumor angiogenesis: A new significant and independent prognostic indicator in early-stage breast carcinoma. J. Natl. Cancer Inst. 1992, 84, 1875–1887. [Google Scholar] [CrossRef] [PubMed]
- Kerbel, R.S. Tumor angiogenesis: Past, present and the near future. Carcinogenesis 2000, 21, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, M.; Hinsch, N.; Michaelis, U.R.; Rothweiler, F.; Simon, T.; Ilhelm Doerr, H.W.; Cinatl, J.; Cinatl, J. Chemotherapy-associated angiogenesis in neuroblastoma tumors. Am. J. Pathol. 2012, 180, 1370–1377. [Google Scholar] [CrossRef] [PubMed]
- Michaelis, M.; Klassert, D.; Barth, S.; Suhan, T.; Breitling, R.; Mayer, B.; Hinsch, N.; Doerr, H.W.; Cinatl, J.; Cinatl, J. Chemoresistance acquisition induces a global shift of expression of aniogenesis-associated genes and increased pro-angogenic activity in neuroblastoma cells. Mol. Cancer. 2009, 8, 80. [Google Scholar] [CrossRef]
- Kleinman, N.R.; Lewandowska, K.; Culp, L.A. Tumour progression of human neuroblastoma cells tagged with a lacZ marker gene: Earliest events at ectopic injection sites. Br. J. Cancer 1994, 69, 670–679. [Google Scholar] [CrossRef]
- Meitar, D.; Crawford, S.E.; Rademaker, A.W.; Cohn, S.L. Tumor angiogenesis correlates with metastatic disease, N-myc amplification, and poor outcome in human neuroblastoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1996, 14, 405–414. [Google Scholar] [CrossRef]
- Eggert, A.; Ikegaki, N.; Kwiatkowski, J.; Zhao, H.; Brodeur, G.M.; Himelstein, B.P. High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2000, 6, 1900–1908. [Google Scholar]
- Peddinti, R.; Zeine, R.; Luca, D.; Seshadri, R.; Chlenski, A.; Cole, K.; Pawel, B.; Salwen, H.R.; Maris, J.M.; Cohn, S.L. Prominent microvascular proliferation in clinically aggressive neuroblastoma. Clin. Cancer Res. 2007, 13, 3499–3506. [Google Scholar] [CrossRef]
- Paraboschi, I.; Privitera, L.; Kramer-Marek, G.; Anderson, J.; Giuliani, S. Novel treatments and technologies applied to the cure of neuroblastoma. Children 2021, 8, 482. [Google Scholar] [CrossRef]
- Privitera, L.; Paraboschi, I.; Dixit, D.; Arthurs, O.J.; Giuliani, S. Image-guided surgery and novel intraoperative devices for enhanced visualisation in general and paediatric surgery: A review. Innov. Surg. Sci. 2022, 6, 161–172. [Google Scholar] [CrossRef]
- Johnson, S.P.; Ogunlade, O.; Lythgoe, M.F.; Beard, P.; Pedley, R.B. Longitudinal photoacoustic imaging of the pharmacodynamic effect of vascular targeted therapy on tumors. Clin. Cancer Res. 2019, 25, 7436–7447. [Google Scholar] [CrossRef] [PubMed]
- Manohar, S.; Vaartjes, S.E.; Van Hespen, J.C.G.; Klaase, J.M.; Van Den Engh, F.M.; Steenbergen, W.; Van Leeuwen, T.G. Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics. Opt. Express 2007, 15, 12277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Histology after Induction Chemotherapy | |||||||
---|---|---|---|---|---|---|---|
dNB | pdNB | uNB | GNB | nvNB | Total | ||
Histology at Diagnosis | dNB | 6 | 2 | 1 | 1 | - | 10 |
pdNB | 3 | 3 | 1 | 2 | 1 | 10 | |
uNB | 2 | 4 | - | 1 | 3 | 10 | |
Total | 11 | 9 | 2 | 4 | 4 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Privitera, L.; Musleh, L.; Paraboschi, I.; Ogunlade, O.; Ogunbiyi, O.; Hutchinson, J.C.; Sebire, N.; Beard, P.; Giuliani, S. Dynamic Changes in Microvascular Density Can Predict Viable and Non-Viable Areas in High-Risk Neuroblastoma. Cancers 2023, 15, 917. https://doi.org/10.3390/cancers15030917
Privitera L, Musleh L, Paraboschi I, Ogunlade O, Ogunbiyi O, Hutchinson JC, Sebire N, Beard P, Giuliani S. Dynamic Changes in Microvascular Density Can Predict Viable and Non-Viable Areas in High-Risk Neuroblastoma. Cancers. 2023; 15(3):917. https://doi.org/10.3390/cancers15030917
Chicago/Turabian StylePrivitera, Laura, Layla Musleh, Irene Paraboschi, Olumide Ogunlade, Olumide Ogunbiyi, J. Ciaran Hutchinson, Neil Sebire, Paul Beard, and Stefano Giuliani. 2023. "Dynamic Changes in Microvascular Density Can Predict Viable and Non-Viable Areas in High-Risk Neuroblastoma" Cancers 15, no. 3: 917. https://doi.org/10.3390/cancers15030917
APA StylePrivitera, L., Musleh, L., Paraboschi, I., Ogunlade, O., Ogunbiyi, O., Hutchinson, J. C., Sebire, N., Beard, P., & Giuliani, S. (2023). Dynamic Changes in Microvascular Density Can Predict Viable and Non-Viable Areas in High-Risk Neuroblastoma. Cancers, 15(3), 917. https://doi.org/10.3390/cancers15030917