Real-World Effectiveness of Sorafenib versus Lenvatinib Combined with PD-1 Inhibitors in Unresectable Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Assessment of Efficacy and Adverse Events
2.3. Endpoints
2.4. Statistical Analysis
3. Results
3.1. Differences in Baseline Characteristics between the Sorafenib and Lenvatinib Groups
3.2. Differences in the ORR between the Sorafenib and Lenvatinib Groups
3.3. Survival Outcomes in the Sorafenib and Lenvatinib Groups
3.4. OS According to ALBI Grade and Systemic Line of Combination Therapy
3.5. Prognostic Factors for Survival
3.6. Incidence of Treatment-Related AEs between the Sorafenib and Lenvatinib Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AE | Adverse events |
ALBI | Albumin–bilirubin |
BCLC | Barcelona Clinic Liver Cancer |
CI | Confidence intervals |
CLIP | Cancer of the Liver Italian Program |
CR | Complete response |
CTCAE | Common Terminology Criteria for Adverse Events |
ICI | Immune checkpoint inhibitors |
MTKI | Multitarget tyrosine kinase inhibitor |
ORR | Objective response rates |
OS | Overall survival |
PD | Progressive disease |
PR | Partial response |
SD | Stable disease |
VEGF | Vascular endothelial growth factor |
References
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.Y.; Wang, S.Y.; Lin, S.M.; Diagnosis Group; Systemic Therapy Group. Management consensus guideline for hepatocellular carcinoma: 2020 update on surveillance, diagnosis, and systemic treatment by the Taiwan Liver Cancer Association and the Gastroenterological Society of Taiwan. J. Formos. Med. Assoc. 2021, 120, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef] [PubMed]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, S.M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J.M.; Lynch, M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 2008, 7, 3129–3140. [Google Scholar] [CrossRef] [Green Version]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Bruix, J.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Cheng, A.L.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Kruger, S.; Ilmer, M.; Kobold, S.; Cadilha, B.L.; Endres, S.; Ormanns, S.; Schuebbe, G.; Renz, B.W.; D’Haese, J.G.; von Bergwelt-Baildon, M.; et al. Advances in cancer immunotherapy 2019—Latest trends. J. Exp. Clin. Cancer Res. 2019, 38, 268. [Google Scholar] [CrossRef] [Green Version]
- Abd El Aziz, M.A.; Facciorusso, A.; Nayfeh, T.; Saadi, S.; Elnaggar, M.; Cotsoglou, C.; Sacco, R. Immune Checkpoint Inhibitors for Unresectable Hepatocellular Carcinoma. Vaccines 2020, 8, 616. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.N.; Tang, J.M.; Kong, X.; Yang, J.Y.; Zheng, F.; Gou, L.-Y.; Huang, Y.-Z.; Zhang, L.; Chen, S.Y.; et al. VEGF is essential for the growth and migration of human hepatocellular carcinoma cells. Mol. Biol. Rep. 2012, 39, 5085–5093. [Google Scholar] [CrossRef] [Green Version]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Melero, I.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Yamashita, T.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Lin, J.; Wu, L.; Bai, X.; Xie, Y.; Wang, A.; Zhang, H.; Yang, X.; Wan, X.; Lu, X.; Zhao, H.; et al. Combination treatment including targeted therapy for advanced hepatocellular carcinoma. Oncotarget 2016, 7, 71036–71051. [Google Scholar] [CrossRef] [Green Version]
- Hato, T.; Zhu, A.X.; Duda, D.G. Rationally combining anti-VEGF therapy with checkpoint inhibitors in hepatocellular carcinoma. Immunotherapy 2016, 8, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.; Kato, Y.U.; Ozawa, Y.; Kodama, K.; Ito, J.; Ichikawa, K.; Yamada, K.; Hori, Y.; Tabata, K.; Nomoto, K.; et al. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model. Cancer Sci. 2018, 109, 3993–4002. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ramjiawan, R.R.; Reiberger, T.; Ng, M.R.; Hato, T.; Huang, Y.; Ochiai, H.; Kitahara, S.; Unan, E.C.; Duda, D.G.; et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology 2015, 61, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, Y.; Merle, P.; Cheng, A.L.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Chen, S.C.; Huang, Y.H.; Chen, M.H.; Hung, Y.P.; Lee, R.C.; Shao, Y.Y.; Chao, Y. Anti-PD-1 combined sorafenib versus anti-PD-1 alone in the treatment of advanced hepatocellular cell carcinoma: A propensity score-matching study. BMC Cancer 2022, 22, 55. [Google Scholar] [CrossRef]
- Huang, X.; Xu, L.; Ma, T.; Yin, X.; Huang, Z.; Ran, Y.; Ni, Y.; Bi, X.; Che, X. Lenvatinib Plus Immune Checkpoint Inhibitors Improve Survival in Advanced Hepatocellular Carcinoma: A Retrospective Study. Front. Oncol. 2021, 11, 751159. [Google Scholar] [CrossRef]
- Sangro, B.; Sarobe, P.; Hervás-Stubbs, S.; Melero, I. Advances in immunotherapy for hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 525–543. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.H.; Litière, S.; De Vries, E.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Seymour, L.; et al. RECIST 1.1-Update and clarification: From the RECIST committee. Eur. J. Cancer 2016, 62, 132–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.S.; Yang, H.; Chon, H.J.; Kim, C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp. Mol. Med. 2020, 52, 1475–1485. [Google Scholar] [CrossRef]
- Hegde, P.S.; Wallin, J.J.; Mancao, C. Predictive markers of anti-VEGF and emerging role of angiogenesis inhibitors as immunotherapeutics. Semin. Cancer Biol. 2018, 52, 117–124. [Google Scholar] [CrossRef]
- Suyama, K.; Iwase, H. Lenvatinib: A Promising Molecular Targeted Agent for Multiple Cancers. Cancer Control 2018, 25, 1073274818789361. [Google Scholar] [CrossRef] [Green Version]
- Yi, C.; Chen, L.; Lin, Z.; Liu, L.; Shao, W.; Zhang, R.; Lin, J.; Zhang, J.; Zhu, W.; Chen, J.; et al. Lenvatinib Targets FGF Receptor 4 to Enhance Antitumor Immune Response of Anti-Programmed Cell Death-1 in HCC. Hepatology 2021, 74, 2544–2560. [Google Scholar] [CrossRef]
- Cheng, A.L.; Hsu, C.; Chan, S.L.; Choo, S.P.; Kudo, M. Challenges of combination therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J. Hepatol. 2020, 72, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Gonzalez, A.; Reig, M.; Bruix, J. Treatment of Hepatocellular Carcinoma. Dig. Dis. 2016, 34, 597–602. [Google Scholar] [CrossRef]
Characteristic | PD-1 Inhibitors + Sorafenib (N = 49) | PD-1 Inhibitors + Lenvatinib (N = 39) | p-Value |
---|---|---|---|
Number (%) | Number (%) | ||
Gender | |||
Female | 10 (20.41) | 8 (20.51) | 0.990 |
Male | 39 (79.59) | 31 (79.49) | |
Age, years—median (IQR) | 60.0 (53.0–65.0) | 65.0 (54.0–71.0) | 0.608 |
<55 years | 14 (28.57) | 10 (25.64) | 0.762 |
≥55 years | 35 (71.43) | 29 (74.36) | |
α-Fetoprotein, ng/mL † | |||
<400 ng/mL | 24 (48.98) | 22 (56.41) | 0.472 |
≥400 ng/mL | 24 (48.98) | 16 (41.03) | |
Etiology of chronic liver disease | |||
No liver disease | 4 (8.16) | 2 (5.13) | 0.542 |
Liver disease present | 45 (91.84) | 36 (94.87) | |
Chronic hepatitis B | 31 (63.27) | 30 (76.92) | 0.293 |
Chronic hepatitis C | 13 (26.53) | 8 (20.51) | 0.443 |
Alcoholic hepatitis | 4 (8.16) | 2 (5.13) | 0.542 |
Nonalcoholic steatohepatitis | 0 (0) | 1 (2.56) | 0.323 |
Child-Pugh class | |||
A | 32 (65.31) | 27 (69.23) | 0.701 |
B–C | 17 (34.69) | 12 (30.77) | |
BCLC stage | |||
B | 5 (10.20) | 6 (15.38) | 0.471 |
C–D | 44 (89.80) | 33 (84.62) | |
CLIP | |||
0–1 | 16 (32.65) | 18 (46.15) | 0.231 |
2–5 | 32 (65.31) | 21 (53.85) | |
Distant metastases | |||
No | 22 (44.90) | 14 (35.90) | 0.399 |
Yes | 27 (55.10) | 25 (64.10) | |
ALBI grade ‡ | |||
Grade 1 | 19 (39.58) | 16 (41.03) | 0.861 |
Grade 2–3 | 27 (56.25) | 21 (53.85) | |
ECOG | |||
Score 0 | 25 (51.02) | 22 (56.41) | 0.808 |
Score ≥ 1 | 20 (40.82) | 17 (43.59) | |
Combination therapy as systemic line | |||
1st line | 18 (36.73) | 13 (33.33) | 0.744 |
≥2nd line | 31 (63.27) | 26 (66.67) | |
PD-1 inhibitors types | |||
Nivolumab | 36 (73.47) | 13 (33.33) | <0.001 |
Pembrolizumab | 15 (30.61) | 26 (66.67) | |
PD-1 inhibitors cycles | |||
Median (IQR) | 6 (4–11) | 6 (4–8) | 0.567 |
PD-1 inhibitors total dose (mg) | |||
Median (IQR) | 160 (100–200) | 600 (450–1095) | 0.390 |
MTKI dose (mg/day) | |||
Median (IQR) | 400 (40 –700) | 8 (8–10) | <0.001 |
MTKI duration (day) | |||
Median (IQR) | 73 (43–168) | 70 (57–136) | 0.777 |
PD-1 Inhibitors + Sorafenib (N = 49) † | PD-1 Inhibitors + Lenvatinib (N = 39) ‡ | p | PD-1 Inhibitors + Sorafenib (N = 49) † | PD-1 Inhibitors + Lenvatinib (N = 39) ‡ | ||
---|---|---|---|---|---|---|
mRECISTN (%) | mRECISTN (%) | RECISTN (%) | RECISTN (%) | p | ||
Response | 0.827 | 0.703 | ||||
CR | 2 (4.08) | 1 (2.56) | 0 (0) | 0 (0) | ||
PR | 7 (14.29) | 8 (20.51) | 8 (16.33) | 8 (20.51) | ||
SD | 5 (10.20) | 7 (17.95) | 6 (12.24) | 8 (20.51) | ||
PD | 21 (42.86) | 18 (46.15) | 21 (42.86) | 18 (46.15) | ||
Not evaluable | 14 (28.57) | 5 (12.82) | 14 (28.57) | 5 (12.82) | ||
ORR | 9 (18.37) | 9 (23.08) | 0.944 | 8 (16.33) | 8 (20.51) | 0.948 |
DCR | 14 (28.57) | 16 (41.03) | 0.561 | 14 (28.57) | 16 (41.03) | 0.561 |
Factors | Case No. | HR | 95% CI | p-Value |
---|---|---|---|---|
Age (year) | ||||
≤55 vs. >55 | 24/64 | 0.906 | 0.453–1.811 | 0.780 |
Gender | ||||
male vs. female | 70/18 | 1.715 | 0.792–3.716 | 0.171 |
Child-Pugh score | ||||
A vs. B–C | 59/28 | 0.144 | 0.056–0.370 | <0.001 |
BCLC stage | ||||
B vs. C–D | 11/77 | 1.416 | 0.536–3.745 | 0.483 |
CLIP score | ||||
0-1 vs. 2-5 | 35/53 | 0.786 | 0.317–1.945 | 0.602 |
ECOG score | ||||
0 vs. ≥ 1 | 47/38 | 0.296 | 0.135–0.651 | 0.002 |
ALBI grade † | ||||
1 vs. 2–3 | 35/48 | 0.539 | 0.198–1.466 | 0.226 |
Distal metastasis | ||||
positive vs. negative | 52/36 | 1.713 | 0.841–3.488 | 0.138 |
α-Fetoprotein level (ng/mL) ‡ | ||||
< 400 vs. ≥ 400 | 46/40 | 0.921 | 0.457–1.857 | 0.819 |
Combination therapy as systemic line | ||||
1st line vs. ≥ 2nd line | 31/57 | 1.312 | 0.660–2.606 | 0.439 |
MTKI type | ||||
lenvatinib vs. sorafenib | 49/39 | 0.394 | 0.183–0.849 | 0.017 |
ICI type § | ||||
nivolumab vs. pembrolizumab | 47/38 | 1.213 | 0.576–2.557 | 0.611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, H.-C.; Lee, Y.-C.; Chang, T.-T.; Lin, Y.-J.; Wu, H.-T.; Wang, C.-T.; Chen, C.-Y.; Chen, P.-J.; Hsieh, M.-T.; Lin, S.-H.; et al. Real-World Effectiveness of Sorafenib versus Lenvatinib Combined with PD-1 Inhibitors in Unresectable Hepatocellular Carcinoma. Cancers 2023, 15, 854. https://doi.org/10.3390/cancers15030854
Chiang H-C, Lee Y-C, Chang T-T, Lin Y-J, Wu H-T, Wang C-T, Chen C-Y, Chen P-J, Hsieh M-T, Lin S-H, et al. Real-World Effectiveness of Sorafenib versus Lenvatinib Combined with PD-1 Inhibitors in Unresectable Hepatocellular Carcinoma. Cancers. 2023; 15(3):854. https://doi.org/10.3390/cancers15030854
Chicago/Turabian StyleChiang, Hsueh-Chien, Yang-Cheng Lee, Ting-Tsung Chang, Yih-Jyh Lin, Hung-Tsung Wu, Chung-Teng Wang, Chiung-Yu Chen, Po-Jun Chen, Ming-Tsung Hsieh, Sheng-Hsiang Lin, and et al. 2023. "Real-World Effectiveness of Sorafenib versus Lenvatinib Combined with PD-1 Inhibitors in Unresectable Hepatocellular Carcinoma" Cancers 15, no. 3: 854. https://doi.org/10.3390/cancers15030854
APA StyleChiang, H. -C., Lee, Y. -C., Chang, T. -T., Lin, Y. -J., Wu, H. -T., Wang, C. -T., Chen, C. -Y., Chen, P. -J., Hsieh, M. -T., Lin, S. -H., Chen, S. -H., Chuang, C. -H., Wu, I. -C., Hong, T. -C., Wu, J. -S., Han, M. -Z., Chen, W. -T., Chiang, C. -M., Hung, K. -K., & Kuo, H. -Y. (2023). Real-World Effectiveness of Sorafenib versus Lenvatinib Combined with PD-1 Inhibitors in Unresectable Hepatocellular Carcinoma. Cancers, 15(3), 854. https://doi.org/10.3390/cancers15030854