Significant Tumor Regression after Neoadjuvant Chemotherapy in Gastric Cancer, but Poor Survival of the Patient? Role of MHC Class I Alterations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Patients and Chemotherapy
2.2. Response Evaluation
2.3. Follow-Up and Overall Survival
2.4. Analysis of Allelic Imbalance
2.5. Statistical Analyses
3. Results
3.1. Frequency of Allelic Imbalance and Association with Clinicopathological Parameters
3.2. Allelic Imbalances and Response to Neoadjuvant CTx
3.3. Allelic Imbalances and Univariable Survival Analysis
3.4. Multivariable Survival Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Cunningham, D.; Allum, W.H.; Stenning, S.P.; Thompson, J.N.; Van de Velde, C.J.; Nicolson, M.; Scarffe, J.H.; Lofts, F.J.; Falk, S.J.; Iveson, T.J.; et al. Perioperative Chemotherapy versus Surgery Alone for Resectable Gastroesophageal Cancer. N. Engl. J. Med. 2006, 355, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Al-Batran, S.-E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.-G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef]
- Mandard, A.M.; Dalibard, F.; Mandard, J.C.; Marnay, J.; Henry-Amar, M.; Petiot, J.F.; Roussel, A.; Jacob, J.H.; Segol, P.; Samama, G.; et al. Pathologic assessment of tumor regression after preoperative chemoradiotherapy of esophageal carcinoma. Clinicopathologic correlations. Cancer 1994, 73, 2680–2686. [Google Scholar] [CrossRef]
- Becker, K.; Mueller, J.D.; Schulmacher, C.; Ott, K.; Fink, U.; Busch, R.; Bottcher, K.; Siewert, J.R.; Hofler, H. Histomorphology and grading of regression in gastric carcinoma treated with neoadjuvant chemotherapy. Cancer 2003, 98, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Langer, R.; Reim, D.; Novotny, A.; Buschenfelde, C.M.Z.; Engel, J.; Friess, H.; Hofler, H. Significance of Histopathological Tumor Regression After Neoadjuvant Chemotherapy in Gastric Adenocarcinomas: A summary of 480 cases. Ann. Surg. 2011, 253, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Spoerl, S.; Novotny, A.; Al-Batran, S.-E.; Lordick, F.; Thuss-Patience, P.; Pauligk, C.; Haller, B.; Feith, M.; Lorenzen, S. Histopathological regression predicts treatment outcome in locally advanced esophagogastric adenocarcinoma. Eur. J. Cancer 2018, 90, 26–33. [Google Scholar] [CrossRef]
- Xie, J.-W.; Lu, J.; Xu, B.-B.; Zheng, C.-H.; Li, P.; Wang, J.-B.; Lin, J.-X.; Chen, Q.-Y.; Cao, L.-L.; Lin, M.; et al. Prognostic Value of Tumor Regression Grading in Patients Treated With Neoadjuvant Chemotherapy Plus Surgery for Gastric Cancer. Front. Oncol. 2021, 11, 587856. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-N.; Wang, Y.-K.; Zhang, L.; Jia, Y.-N.; Fei, S.; Ying, X.-J.; Zhang, Y.; Li, S.-X.; Sun, Y.; Li, Z.-Y.; et al. Comparison of tumor regression grading systems for locally advanced gastric adenocarcinoma after neoadjuvant chemotherapy. World J. Gastrointest. Oncol. 2021, 13, 2161–2179. [Google Scholar] [CrossRef]
- Kohlruss, M.; Krenauer, M.; Grosser, B.; Pfarr, N.; Jesinghaus, M.; Slotta-Huspenina, J.; Novotny, A.; Hapfelmeier, A.; Schmidt, T.; Steiger, K.; et al. Diverse ‘just-right’ levels of chromosomal instability and their clinical implications in neoadjuvant treated gastric cancer. Br. J. Cancer 2021, 125, 1621–1631. [Google Scholar] [CrossRef]
- Sansregret, L.; Vanhaesebroeck, B.; Swanton, C. Determinants and clinical implications of chromosomal instability in cancer. Nat. Rev. Clin. Oncol. 2018, 15, 139–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lama-Sherpa, T.D.; Shevde, L.A. An Emerging Regulatory Role for the Tumor Microenvironment in the DNA Damage Response to Double-Strand Breaks. Mol. Cancer Res. 2020, 18, 185–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruni, D.; Angell, H.K.; Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 2020, 20, 662–680. [Google Scholar] [CrossRef] [PubMed]
- Davoli, T.; Uno, H.; Wooten, E.C.; Elledge, S.J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 2017, 355, eaaf8399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, P.; Aptsiauri, N.; Ruiz-Cabello, F.; Garrido, F. HLA class I loss in colorectal cancer: Implications for immune escape and immunotherapy. Cell. Mol. Immunol. 2021, 18, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Garrido, F.; Algarra, I.; García-Lora, A.M.; Garcia-Lora, A. The escape of cancer from T lymphocytes: Immunoselection of MHC class I loss variants harboring structural-irreversible “hard” lesions. Cancer Immunol. Immunother. 2010, 59, 1601–1606. [Google Scholar] [CrossRef]
- Marincola, F.M.; Jaffee, E.M.; Hicklin, D.J.; Ferrone, S. Escape of human solid tumors from T-cell recognition: Molecular mechanisms and functional significance. Adv. Immunol. 2000, 74, 181–273. [Google Scholar] [CrossRef] [PubMed]
- Dhatchinamoorthy, K.; Colbert, J.D.; Rock, K.L. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front. Immunol. 2021, 12, 636568. [Google Scholar] [CrossRef] [PubMed]
- Siewert, J.R.; Stein, H.J. Classification of adenocarcinoma of the oesophagogastric junction. Br. J. Surg. 1998, 85, 1457–1459. [Google Scholar] [CrossRef] [PubMed]
- Bauer, L.; Hapfelmeier, A.; Blank, S.; Reiche, M.; Slotta-Huspenina, J.; Jesinghaus, M.; Novotny, A.; Schmidt, T.; Grosser, B.; Kohlruss, M.; et al. A novel pretherapeutic gene expression-based risk score for treatment guidance in gastric cancer. Ann. Oncol. 2017, 29, 127–132. [Google Scholar] [CrossRef]
- Kohlruss, M.; Reiche, M.; Jesinghaus, M.; Grosser, B.; Slotta-Huspenina, J.; Hapfelmeier, A.; Bauer, L.; Novotny, A.; Weichert, W.; Keller, G. A microsatellite based multiplex PCR method for the detection of chromosomal instability in gastric cancer. Sci. Rep. 2018, 8, 12551. [Google Scholar] [CrossRef] [PubMed]
- Kohlruss, M.; Grosser, B.; Krenauer, M.; Slotta-Huspenina, J.; Jesinghaus, M.; Blank, S.; Novotny, A.; Reiche, M.; Schmidt, T.; Ismani, L.; et al. Prognostic implication of molecular subtypes and response to neoadjuvant chemotherapy in 760 gastric carcinomas: Role of Epstein–Barr virus infection and high- and low-microsatellite instability. J. Pathol. Clin. Res. 2019, 5, 227–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holleley, C.E.; Geerts, P.G. Multiplex Manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 2009, 46, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Frigerio, S.; Padberg, B.C.; Strebel, R.T.; Lenggenhager, D.M.; Messthaler, A.; Abdou, M.T.; Moch, H.; Zimmermann, D.R. Improved detection of bladder carcinoma cells in voided urine by standardized microsatellite analysis. Int J Cancer 2007, 121, 329–338. [Google Scholar] [CrossRef]
- Garrido, M.A.; Rodriguez, T.; Zinchenko, S.; Maleno, I.; Ruiz-Cabello, F.; Concha, Á.; Olea, N.; Garrido, F.; Aptsiauri, N. HLA class I alterations in breast carcinoma are associated with a high frequency of the loss of heterozygosity at chromosomes 6 and 15. Immunogenetics 2018, 70, 647–659. [Google Scholar] [CrossRef]
- Poetsch, M.; Kleist, B. Loss of heterozygosity at 15q21.3 correlates with occurrence of metastases in head and neck cancer. Mod. Pathol. 2006, 19, 1462–1469. [Google Scholar] [CrossRef] [Green Version]
- Feenstra, M.; Veltkamp, M.; van Kuik, J.; Wiertsema, S.; Slootweg, P.; van den Tweel, J.; de Weger, R.; Tilanus, M. HLA class I expression and chromosomal deletions at 6p and 15q in head and neck squamous cell carcinomas. Tissue Antigens 1999, 54, 235–245. [Google Scholar] [CrossRef]
- Gyapay, G.; Morissette, J.; Vignal, A.; Dib, C.; Fizames, C.; Millasseau, P.; Marc, S.; Bernardi, G.; Lathrop, M.; Weissenbach, J. The 1993-94 Genethon human genetic linkage map. Nat Genet 1994, 7, 246–339. [Google Scholar] [CrossRef]
- Gourraud, P.A.; Mano, S.; Barnetche, T.; Carrington, M.; Inoko, H.; Cambon-Thomsen, A. Integration of microsatellite characteristics in the MHC region: A literature and sequence based analysis. Tissue Antigens 2004, 64, 543–555. [Google Scholar] [CrossRef]
- Available online: https://genecards.weizmann.ac.il/geneloc_prev-bin/marker_cards.pl?id=1113499 (accessed on 21 November 2022).
- Beckmann, M.W.; Picard, F.; An, H.X.; van Roeyen, C.R.; Dominik, S.I.; Mosny, D.S.; Schnurch, H.G.; Bender, H.G.; Niederacher, D. Clinical impact of detection of loss of heterozygosity of BRCA1 and BRCA2 markers in sporadic breast cancer. Br J Cancer 1996, 73, 1220–1226. [Google Scholar] [CrossRef]
- Peduzzi, P.; Concato, J.; Feinstein, A.R.; Holford, T.R. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. J. Clin. Epidemiol. 1995, 48, 1503–1510. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, R.; Cadieux, E.L.; Salgado, R.; Bakir, M.A.; Moore, D.A.; Hiley, C.T.; Lund, T.; Tanić, M.; Reading, J.L.; Joshi, K.; et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 2019, 567, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, R.; Swanton, C.; McGranahan, N. Understanding the impact of immune-mediated selection on lung cancer evolution. Br. J. Cancer 2021, 124, 1615–1617. [Google Scholar] [CrossRef] [PubMed]
- Jhunjhunwala, S.; Hammer, C.; Delamarre, L. Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer 2021, 21, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Havel, J.J.; Chowell, D.; Chan, T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019, 19, 133–150. [Google Scholar] [CrossRef]
- McGranahan, N.; Rosenthal, R.; Hiley, C.T.; Rowan, A.J.; Watkins, T.B.K.; Wilson, G.A.; Birkbak, N.J.; Veeriah, S.; Van Loo, P.; Herrero, J.; et al. Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution. Cell 2017, 171, 1259–1271.e11. [Google Scholar] [CrossRef] [Green Version]
- Algarra, I.; Garrido, F.; Garcia-Lora, A.M. MHC heterogeneity and response of metastases to immunotherapy. Cancer Metastasis Rev. 2021, 40, 501–517. [Google Scholar] [CrossRef]
- Aptsiauri, N.; Garrido, F. The Challenges of HLA Class I Loss in Cancer Immunotherapy: Facts and Hopes. Clin. Cancer Res. 2022, 28, 5021–5029. [Google Scholar] [CrossRef]
- Maleno, I.; Aptsiauri, N.; Cabrera, T.; Gallego, A.; Paschen, A.; López-Nevot, M.A.; Garrido, F. Frequent loss of heterozygosity in the β2-microglobulin region of chromosome 15 in primary human tumors. Immunogenetics 2010, 63, 65–71. [Google Scholar] [CrossRef]
- Wang, X.C.; Zhang, J.Q.; Shen, Y.Q.; Miao, F.Q.; Xie, W. Loss of heterozygosity at 6p21.3 underlying HLA class I downregulation in gastric cancer. J. Exp. Clin. Cancer Res. 2006, 25, 115–119. [Google Scholar]
- Garrido, M.A.; Perea, F.; Vilchez, J.R.; Rodríguez, T.; Anderson, P.; Garrido, F.; Ruiz-Cabello, F.; Aptsiauri, N. Copy Neutral LOH Affecting the Entire Chromosome 6 Is a Frequent Mechanism of HLA Class I Alterations in Cancer. Cancers 2021, 13, 5046. [Google Scholar] [CrossRef] [PubMed]
Category | Value | n (%) |
---|---|---|
Cases | Total | 158 (100) |
Age (yr) | Median | 62.2 |
Range | 30.0–81.3 | |
Overall survival (mo) a | Median | 48.1 |
95% CI | 25.7–70.5 | |
Follow-up period (mo) | Median | 61.9 |
95% CI | 53.5–70.3 | |
Sex | Male | 123 (77.8) |
Female | 35 (22.2) | |
Tumor localization | Proximal | 102 (64.6) |
Non-proximal | 56 (35.4) | |
Laurén classification | Intestinal | 77 (48.7) |
Non-intestinal | 81 (51.3) | |
Clinical tumor stage (cT) | T2 | 9 (5.9) |
T3/4 | 143 (94.1) | |
n/a | 6 | |
ypT b | 0 | 8 (5.1) |
1 | 17 (10.9) | |
2 | 27 (17.3) | |
3 | 82 (52.6) | |
4 | 22 (14.1) | |
n/a | 2 | |
ypN b | Negative | 65 (41.7) |
Positive | 91 (58.3) | |
n/a | 2 | |
Metastasis status | Negative | 108 (69.2) |
Positive | 48 (30.8) | |
n/a | 2 | |
yUICC stage b | 0 | 6 (3.9) |
1 | 26 (16.7) | |
2 | 38 (24.5) | |
3 | 37(23.9) | |
4 | 48 (31.0) | |
n/a | 3 | |
Resection category | R0 | 125 (80.1) |
R1 | 31 (19.9) | |
n/a | 2 | |
Tumor regression grade (TRG) | 1 | 44 (27.9) |
2 | 37 (23.4) | |
3 | 77 (48.7) | |
Responder Non-responder | TRG1 | 44 (27.8) |
TRG2, TRG3 | 114 (72.2) |
Marker | AI (n) | Informative * Tumors (n) | Frequency (%) |
---|---|---|---|
D6S291 | 48 | 104 | 46.2 |
D6S273 | 45 | 116 | 38.8 |
D6S265 | 52 | 111 | 46.8 |
D6S2872 | 61 | 102 | 60.0 |
D15S508 | 38 | 62 | 61.3 |
D15S1028 | 78 | 117 | 66.7 |
D15S119 | 75 | 112 | 67.0 |
D15S982 | 69 | 111 | 62.6 |
D15S117 | 74 | 131 | 56.5 |
Responder (TRG1) | Non-Responder (TRG2/3) | ||||||
---|---|---|---|---|---|---|---|
Marker | AI (n) | Informative * Tumors (n) | Frequency (%) | AI (n) | Informative * Tumors (n) | Frequency (%) | p-Value ** |
D6S291 | 11 | 30 | 36.7 | 37 | 74 | 50.0 | 0.217 |
D6S273 | 14 | 33 | 42.4 | 31 | 83 | 37.3 | 0.613 |
D6S265 | 18 | 37 | 48.6 | 34 | 74 | 50.0 | 0.788 |
D6S2872 | 17 | 31 | 54.8 | 44 | 71 | 62.0 | 0.499 |
D15S508 | 10 | 19 | 52.6 | 28 | 43 | 65.1 | 0.352 |
D15S1028 | 20 | 32 | 62.5 | 58 | 85 | 68.2 | 0.557 |
D15S119 | 26 | 34 | 76.5 | 49 | 78 | 62.9 | 0.158 |
D15S982 | 19 | 34 | 55.9 | 41 | 77 | 53.2 | 0.797 |
D15S117 | 18 | 40 | 45.0 | 56 | 91 | 61.5 | 0.079 |
Marker | Response Status | AI Status | OS Median (Months) (95% CI) | HR (95% CI) | p-Value * | p-Value Inter-Action ** |
---|---|---|---|---|---|---|
D6S291 | Responder | Yes | n.r. | 0.57 (0.12–2.84) | 0.497 | 0.715 |
No | n.r. | 1 | ||||
Non-responder | Yes | 31.05 (21.11–40.99) | 0.79 (0.44–1.41) | 0.424 | ||
No | 28.40 (15.40–41.40) | 1 | ||||
D6S273 | Responder | yes | 66.00 | 2.73 (0.77–9.71) | 0.120 | 0.098 |
No | n.r. | 1 | ||||
Non-responder | Yes | 66.10 (10.24–121.96) | 0.84 (0.47–1.50) | 0.562 | ||
No | 29.31 (15.48–43.15) | 1 | ||||
D6S265 | Responder | Yes | 57.80 | 3.62 (0.96–13.68) | 0.058 | 0.064 |
No | n.r. | 1 | ||||
Non-responder | Yes | 31.34 (16.72–45.97) | 0.92 (0.51–1.65) | 0.773 | ||
No | 31.90 (11.90–51.90) | 1 | ||||
D6S2872 | Responder | Yes | n.r. | 3.73 (0.77–18.03) | 0.101 | 0.217 |
No | n.r. | 1 | ||||
Non-responder | Yes | 28.40 (17.38–39.42) | 1.29 (0.69–2.38) | 0.424 | ||
No | 38.70 (0.00–84.79) | 1 | ||||
D15S508 | Responder | Yes | n.r. | 0.71 (0.14–3.53) | 0.543 | 0.698 |
No | n.r. | 1 | ||||
Non-responder | Yes | 25.21 (0.01–50.42) | 1.02 (0.43–2.39 | 0.968 | ||
No | 44.62 (0.00–91.21) | 1 | ||||
D15S1028 | Responder | Yes | n.r. | 0.78 (0.18–3.49) | 0.746 | 0.663 |
No | n.r. | |||||
Non-responder | Yes | 31.90 (18.71–45.09) | 1.12 (0.62–2.03) | 0.717 | ||
No | 48.10 (2.14–94.06) | 1 | ||||
D15S119 | Responder | Yes | n.r. | 0.88 (0.18–4.36) | 0.873 | 0.896 |
No | n.r. | 1 | ||||
Non-responder | Yes | 48.10 (2.14–94.06) | 0.98 (0.55–1.74) | 0.955 | ||
No | 27.40 (15.11–39.69) | 1 | ||||
D15S982 | Responder | Yes | n.r. | 0.82 (0.25–2.69) | 0.744 | 0.476 |
No | 66.00 | 1 | ||||
Non-responder | Yes | 30.20 (12.58–47.82) | 1.32 (0.74–2.36) | 0.341 | ||
No | 31.05 (23.84–38.26) | 1 | ||||
D15S117 | Responder | Yes | n.r. | 1.37 (0.40–4.75) | 0.615 | 0.955 |
No | n.r. | 1 | ||||
Non-responder | Yes | 21.90 (8.70–35.11) | 1.32 (0.75–2.34) | 0.341 | ||
No | 33.80 (5.95–61.65) | 1 |
HR | 95% CI | p-Value * | |
---|---|---|---|
yUICC stage | 0.014 | ||
0, 1, 2 | 1 | - | |
3, 4 | 3.00 | 1.53–5.88 | |
Response | 0.553 | ||
Yes | 1 | ||
No | 1.31 | 0.54–3.19 | |
R-category | 0.020 | ||
R0 | 1 | ||
R1 | 2.16 | 1.13–4.15 | |
Sex | 0.015 | ||
Male | 1 | ||
Female | 0.38 | 0.18–0.83 | |
AI D6S265 | 0.091 | ||
No | 1 | ||
Yes | 1.74 | 0.91–3.30 | |
Interaction (AI D6S265 andResponse) | 0.14 | 0.03–0.63 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiltner, T.; Szörenyi, N.; Kohlruss, M.; Hapfelmeier, A.; Herz, A.-L.; Slotta-Huspenina, J.; Jesinghaus, M.; Novotny, A.; Lange, S.; Ott, K.; et al. Significant Tumor Regression after Neoadjuvant Chemotherapy in Gastric Cancer, but Poor Survival of the Patient? Role of MHC Class I Alterations. Cancers 2023, 15, 771. https://doi.org/10.3390/cancers15030771
Hiltner T, Szörenyi N, Kohlruss M, Hapfelmeier A, Herz A-L, Slotta-Huspenina J, Jesinghaus M, Novotny A, Lange S, Ott K, et al. Significant Tumor Regression after Neoadjuvant Chemotherapy in Gastric Cancer, but Poor Survival of the Patient? Role of MHC Class I Alterations. Cancers. 2023; 15(3):771. https://doi.org/10.3390/cancers15030771
Chicago/Turabian StyleHiltner, Theresa, Noémi Szörenyi, Meike Kohlruss, Alexander Hapfelmeier, Anna-Lina Herz, Julia Slotta-Huspenina, Moritz Jesinghaus, Alexander Novotny, Sebastian Lange, Katja Ott, and et al. 2023. "Significant Tumor Regression after Neoadjuvant Chemotherapy in Gastric Cancer, but Poor Survival of the Patient? Role of MHC Class I Alterations" Cancers 15, no. 3: 771. https://doi.org/10.3390/cancers15030771
APA StyleHiltner, T., Szörenyi, N., Kohlruss, M., Hapfelmeier, A., Herz, A. -L., Slotta-Huspenina, J., Jesinghaus, M., Novotny, A., Lange, S., Ott, K., Weichert, W., & Keller, G. (2023). Significant Tumor Regression after Neoadjuvant Chemotherapy in Gastric Cancer, but Poor Survival of the Patient? Role of MHC Class I Alterations. Cancers, 15(3), 771. https://doi.org/10.3390/cancers15030771