Risk Group Stratification for Recurrence-Free Survival and Early Tumor Recurrence after Radiofrequency Ablation for Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Clinical and Laboratory Factors
2.3. Image Analysis
2.4. RFA Procedure and Follow-Up Protocol after Treatment
2.5. Outcome Assessment
2.6. Patient Risk Stratification According to Predictive Models and Nomograms
2.7. Statistical Analysis
3. Results
3.1. Predictive Model for RFS
3.2. Patient Risk Stratification for RFS and Their Comparisons
3.3. Predictive Model for Early Tumor Recurrence
3.4. Patient Risk Stratification for Early Tumor Recurrence and Their Comparisons
3.5. Diagnostic Performance of the Predictive Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Association for the Study of the Liver. Corrigendum to "EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2019, 70, 817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrero, J.A.; Kulik, L.M.; Sirlin, C.B.; Zhu, A.X.; Finn, R.S.; Abecassis, M.M.; Roberts, L.R.; Heimbach, J.K. Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2018, 68, 723–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nault, J.C.; Sutter, O.; Nahon, P.; Ganne-Carrie, N.; Seror, O. Percutaneous treatment of hepatocellular carcinoma: State of the art and innovations. J. Hepatol. 2018, 68, 783–797. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.; Ravetta, V.; Rosa, L.; Ghittoni, G.; Viera, F.T.; Garbagnati, F.; Silini, E.M.; Dionigi, P.; Calliada, F.; Quaretti, P.; et al. Repeated radiofrequency ablation for management of patients with cirrhosis with small hepatocellular carcinomas: A long-term cohort study. Hepatology 2011, 53, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Shiina, S.; Tateishi, R.; Arano, T.; Uchino, K.; Enooku, K.; Nakagawa, H.; Asaoka, Y.; Sato, T.; Masuzaki, R.; Kondo, Y.; et al. Radiofrequency ablation for hepatocellular carcinoma: 10-year outcome and prognostic factors. Am. J. Gastroenterol. 2012, 107, 569–577, quiz 578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.S.; Lim, H.K.; Rhim, H.; Lee, M.W.; Choi, D.; Lee, W.J.; Paik, S.W.; Koh, K.C.; Lee, J.H.; Choi, M.S.; et al. Ten-year outcomes of percutaneous radiofrequency ablation as first-line therapy of early hepatocellular carcinoma: Analysis of prognostic factors. J. Hepatol. 2013, 58, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Kang, D.; Lim, H.K.; Cho, J.; Sinn, D.H.; Kang, T.W.; Song, K.D.; Rhim, H.; Cha, D.I.; Lu, D.S.K. Updated 10-year outcomes of percutaneous radiofrequency ablation as first-line therapy for single hepatocellular carcinoma < 3 cm: Emphasis on association of local tumor progression and overall survival. Eur. Radiol. 2020, 30, 2391–2400. [Google Scholar] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- El-Serag, H.B. Hepatocellular carcinoma. N. Engl. J. Med. 2011, 365, 1118–1127. [Google Scholar] [CrossRef]
- Shen, S.L.; Fu, S.J.; Chen, B.; Kuang, M.; Li, S.Q.; Hua, Y.P.; Liang, L.J.; Guo, P.; Hao, Y.; Peng, B.G. Preoperative aspartate aminotransferase to platelet ratio is an independent prognostic factor for hepatitis B-induced hepatocellular carcinoma after hepatic resection. Ann. Surg. Oncol. 2014, 21, 3802–3809. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.H.; Lee, J.E.; Sinn, D.H.; Park, C.K. Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma. J. Hepatol. 2017, 67, 526–534. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Kim, D.W.; Park, Y.N.; Chung, Y.E.; Rhee, H.; Kim, M.J. Single Hepatocellular Carcinoma: Preoperative MR Imaging to Predict Early Recurrence after Curative Resection. Radiology 2015, 276, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Lee, J.M.; Lee, J.Y.; Kim, S.H.; Kim, J.H.; Yoon, J.H.; Kim, Y.J.; Lee, J.H.; Yu, S.J.; Han, J.K.; et al. Non-hypervascular hepatobiliary phase hypointense nodules on gadoxetic acid-enhanced MRI: Risk of HCC recurrence after radiofrequency ablation. J. Hepatol. 2015, 62, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kang, T.W.; Song, K.D.; Lee, M.W.; Rhim, H.; Lim, H.K.; Kim, S.Y.; Sinn, D.H.; Kim, J.M.; Kim, K.; et al. Effect of Microvascular Invasion Risk on Early Recurrence of Hepatocellular Carcinoma After Surgery and Radiofrequency Ablation. Ann. Surg. 2021, 273, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Lee, M.W.; Lee, D.H.; Lee, J.H.; Han, J.K. Evaluation of a serum tumour marker-based recurrence prediction model after radiofrequency ablation for hepatocellular carcinoma. Liver Int. 2020, 40, 1189–1200. [Google Scholar] [CrossRef]
- Lee, J.H.; Cho, Y.; Kim, H.Y.; Cho, E.J.; Lee, D.H.; Yu, S.J.; Lee, J.W.; Yi, N.J.; Lee, K.W.; Kim, S.H.; et al. Serum Tumor Markers Provide Refined Prognostication in Selecting Liver Transplantation Candidate for Hepatocellular Carcinoma Patients Beyond the Milan Criteria. Ann. Surg. 2016, 263, 842–850. [Google Scholar] [CrossRef]
- Kim, C.G.; Lee, H.W.; Choi, H.J.; Lee, J.I.; Lee, H.W.; Kim, S.U.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Han, K.H.; et al. Development and validation of a prognostic model for patients with hepatocellular carcinoma undergoing radiofrequency ablation. Cancer Med. 2019, 8, 5023–5032. [Google Scholar] [CrossRef]
- Hu, C.; Song, Y.; Zhang, J.; Dai, L.; Tang, C.; Li, M.; Liao, W.; Zhou, Y.; Xu, Y.; Zhang, Y.Y.; et al. Preoperative Gadoxetic Acid-Enhanced MRI Based Nomogram Improves Prediction of Early HCC Recurrence After Ablation Therapy. Front. Oncol. 2021, 11, 649682. [Google Scholar] [CrossRef]
- Pinato, D.J.; Sharma, R.; Allara, E.; Yen, C.; Arizumi, T.; Kubota, K.; Bettinger, D.; Jang, J.W.; Smirne, C.; Kim, Y.W.; et al. The ALBI grade provides objective hepatic reserve estimation across each BCLC stage of hepatocellular carcinoma. J. Hepatol. 2017, 66, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Cha, D.I.; Jang, K.M.; Kim, S.H.; Kim, Y.K.; Kim, H.; Ahn, S.H. Preoperative Prediction for Early Recurrence Can Be as Accurate as Postoperative Assessment in Single Hepatocellular Carcinoma Patients. Korean J. Radiol. 2020, 21, 402–412. [Google Scholar] [CrossRef]
- American College of Radiology CT/MRI LI-RADS® v2018. Available online: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS/CT-MRI-LI-RADS-v2018 (accessed on 6 February 2020).
- Lu, D.S.; Raman, S.S.; Limanond, P.; Aziz, D.; Economou, J.; Busuttil, R.; Sayre, J. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J. Vasc. Interv. Radiol. 2003, 14, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.W.; Lim, H.K.; Lee, M.W.; Kim, Y.S.; Rhim, H.; Lee, W.J.; Paik, Y.H.; Kim, M.J.; Ahn, J.H. Long-term Therapeutic Outcomes of Radiofrequency Ablation for Subcapsular versus Nonsubcapsular Hepatocellular Carcinoma: A Propensity Score Matched Study. Radiology 2016, 280, 300–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.Y.; Kim, M.J.; Kim, K.A.; Jeong, H.T.; Park, Y.N. Hyperintense HCC on hepatobiliary phase images of gadoxetic acid-enhanced MRI: Correlation with clinical and pathological features. Eur. J. Radiol. 2012, 81, 3877–3882. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.W.; Kim, J.M.; Rhim, H.; Lee, M.W.; Kim, Y.S.; Lim, H.K.; Choi, D.; Song, K.D.; Kwon, C.H.; Joh, J.W.; et al. Small Hepatocellular Carcinoma: Radiofrequency Ablation versus Nonanatomic Resection--Propensity Score Analyses of Long-term Outcomes. Radiology 2015, 275, 908–919. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Solbiati, L.; Brace, C.L.; Breen, D.J.; Callstrom, M.R.; Charboneau, J.W.; Chen, M.H.; Choi, B.I.; de Baere, T.; Dodd, G.D., 3rd; et al. Image-guided tumor ablation: Standardization of terminology and reporting criteria--a 10-year update. Radiology 2014, 273, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Cha, D.I.; Lee, M.W.; Jeong, W.K.; Ahn, S.H.; Kang, T.W.; Song, K.D.; Min, J.H.; Rhim, H.; Lim, H.K. Rim-arterial enhancing primary hepatic tumors with other targetoid appearance show early recurrence after radiofrequency ablation. Eur. Radiol. 2021, 31, 6555–6567. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.I.; Turin, T.C. Variable selection strategies and its importance in clinical prediction modelling. Fam. Med. Community Health 2020, 8, e000262. [Google Scholar] [CrossRef] [Green Version]
- Han, K.; Jung, I. Restricted Mean Survival Time for Survival Analysis: A Quick Guide for Clinical Researchers. Korean J. Radiol. 2022, 23, 495–499. [Google Scholar] [CrossRef]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef]
- Ehman, E.C.; Behr, S.C.; Umetsu, S.E.; Fidelman, N.; Yeh, B.M.; Ferrell, L.D.; Hope, T.A. Rate of observation and inter-observer agreement for LI-RADS major features at CT and MRI in 184 pathology proven hepatocellular carcinomas. Abdom. Radiol. 2016, 41, 963–969. [Google Scholar] [CrossRef]
- Min, J.H.; Lee, M.W.; Park, H.S.; Lee, D.H.; Park, H.J.; Lim, S.; Choi, S.-Y.; Lee, J.; Lee, J.E.; Ha, S.Y. Interobserver variability and diagnostic performance of gadoxetic acid–enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma. Radiology 2020, 297, 573–581. [Google Scholar] [CrossRef] [PubMed]
RFS | Early Tumor Recurrence | |||
---|---|---|---|---|
No Event (n = 55) | Event (n = 97) | No Event (n = 98) | Early Recur (n = 54) | |
Age (year) * | 56 (33–77) | 57 (31–78) | 55 (33–78) | 59.5 (31–77) |
Sex (male) | 12 (21.8) | 23 (23.7) | 23 (23.5) | 12 (22.2) |
Cause of liver disease | ||||
HBV | 47 (85.5) | 78 (80.4) | 81 (82.7) | 44 (81.5) |
HCV | 2 (3.6) | 12 (12.4) | 9 (9.2) | 5 (9.3) |
Alcohol | 1 (1.8) | 1 (1) | 1 (1) | 1 (1.9) |
Others | 5 (9.1) | 6 (6.2) | 7 (7.1) | 4 (7.4) |
ALBI grade | ||||
1 | 44 (80) | 61 (62.9) | 75 (76.5) | 30 (55.6) |
2 | 11 (20) | 36 (37.1) | 23 (23.5) | 24 (44.4) |
APRI * | 0.632 (0.22–3) | 0.970 (0.207–6.618) | 0.857 (0.207–3.969) | 0.962 (0.302–6.618) |
Child-Pugh classification | ||||
A | 52 (94.5) | 84 (86.6) | 91 (92.9) | 45 (83.3) |
B | 3 (5.5) | 13 (13.4) | 7 (7.1) | 9 (16.7) |
AFP (ng/mL) * | 6.6 (1.3–1426.0) | 14.1 (1.3–2204.6) | 8.65 (1.3–1426.0) | 17.9 (1.3–2204.6) |
PIVKA-II (mAU/mL) * | 20 (9–103) | 22 (9–11,078) | 20 (9–1200) | 25 (11–11078) |
MoRAL score > 68 | 18 (32.7) | 49 (50.5) | 33 (33.7) | 34 (63) |
Tumor size (cm) * | 1.6 (1–2.7) | 1.7 (1–2.9) | 1.6 (1–2.9) | 1.7 (1–2.6) |
Tumor location | ||||
Peri-portal vein | 2 (3.6) | 5 (5.2) | 4 (4.1) | 3 (5.6) |
Peri-hepatic vein | 2 (3.6) | 9 (9.3) | 7 (7.1) | 4 (7.4) |
Subcapsular | 17 (30.9) | 40 (41.2) | 37 (37.8) | 20 (37) |
Non-subcapsular | 38 (69.1) | 57 (58.8) | 61 (62.2) | 34 (63) |
Non-rim hyperenhancement | 41 (74.5) | 86 (88.7) | 78 (79.6) | 49 (90.7) |
Washout appearance | 29 (52.7) | 48 (49.5) | 46 (46.9) | 31 (57.4) |
Enhancing capsule | 22 (40) | 41 (42.3) | 37 (37.8) | 26 (48.1) |
LR-M | 13 (23.6) | 18 (18.6) | 22 (22.4) | 9 (16.7) |
LI-RADS category | ||||
3 | 14 (25.5) | 23 (23.7) | 26 (26.5) | 11 (20.4) |
4 | 6 (10.9) | 17 (17.5) | 14 (14.3) | 9 (16.7) |
5 | 22 (40) | 39 (40.2) | 36 (36.7) | 25 (46.3) |
M | 13 (23.6) | 18 (18.6) | 22 (22.4) | 9 (16.7) |
Peri-tumoral enhancement | 14 (25.5) | 35 (36.1) | 29 (29.6) | 20 (37) |
Non-smooth margin | 22 (40) | 32 (33) | 38 (38.8) | 16 (29.6) |
Peritumoral hypointensity | 3 (5.5) | 9 (9.3) | 7 (7.1) | 5 (9.3) |
Low SI on HBP (reference = iso/high) | 50 (90.9) | 93 (95.9) | 98 (91.8) | 53 (98.1) |
MVI-high risk group | 3 (5.5) | 13 (13.4) | 8 (8.2) | 8 (14.8) |
Variables | Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age | 1.014 | 0.993–1.036 | 0.191 | 1.035 | 1.011–1.059 | 0.003 |
Male (reference = female) | 1.173 | 0.735–1.874 | 0.503 | |||
Cause of liver disease (reference = HBV) | ||||||
HCV | 1.865 | 1.009–3.448 | 0.047 | |||
Alcohol | 1.097 | 0.152–7.921 | 0.927 | |||
Others | 1.036 | 0.451–2.38 | 0.934 | |||
ALBI grade 2 (ref = 1) | 2.026 | 1.334–3.078 | 0.001 | 1.800 | 1.056–3.069 | 0.031 |
APRI | 1.274 | 1.056–1.536 | 0.011 | 1.308 | 1.04–1.646 | 0.022 |
Child-Pugh classification B (reference = A) | 1.959 | 1.086–3.536 | 0.026 | 1.897 | 0.932–3.863 | 0.078 |
MoRAL score > 68 | 1.694 | 1.136–2.525 | 0.010 | 1.983 | 1.315–2.992 | 0.001 |
Tumor size | 1.549 | 1.004–2.389 | 0.048 | |||
Peri-portal vein | 1.302 | 0.529–3.206 | 0.565 | |||
Peri-hepatic vein | 1.379 | 0.694–2.741 | 0.359 | |||
Subcapsular (reference = non-subcapsular) | 1.306 | 0.871–1.958 | 0.196 | 1.551 | 1.005–2.391 | 0.047 |
Non-rim hyperenhancement | 1.815 | 0.968–3.401 | 0.063 | 2.533 | 1.316–4.872 | 0.005 |
Washout appearance | 0.953 | 0.639–1.423 | 0.815 | |||
Enhancing capsule | 1.282 | 0.856–1.92 | 0.228 | 1.801 | 1.167–2.781 | 0.008 |
LR-M features | 0.839 | 0.503–1.401 | 0.502 | |||
Non-smooth margin | 0.81 | 0.53–1.237 | 0.329 | |||
Low SI on HBP (reference = iso/high) | 1.719 | 0.631–4.68 | 0.289 | 2.672 | 0.927–7.703 | 0.069 |
MVI-high risk group | 1.925 | 1.072–3.459 | 0.028 | 2.470 | 1.287–4.743 | 0.007 |
Time (Months) | Overall | Low | Intermediate | High | p-Value | High | Intermediate | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMST | 95% CI | RMST | 95% CI | RMST | 95% CI | RMST | 95% CI | Intermediate | Low | Low | ||
3 | 2.990 | 2.971–3.009 | 3.000 | - | 3.000 | - | 2.961 | 2.884–3.037 | 0.311 | 0.311 | - | |
6 | 5.900 | 5.820–5.981 | 5.937 | 5.815–6.059 | 5.972 | 5.919–6.026 | 5.721 | 5.452–5.990 | 0.072 | 0.152 | 0.602 | |
9 | 8.699 | 8.517–8.882 | 8.858 | 8.583–9.133 | 8.877 | 8.736–9.018 | 8.192 | 7.610–8.774 | 0.025 | 0.043 | 0.904 | |
12 | 11.318 | 11.008–11.629 | 11.734 | 11.301–12.168 | 11.580 | 11.278–11.882 | 10.392 | 9.467–11.317 | 0.017 | 0.010 | 0.567 | |
15 | 13.759 | 13.296–14.221 | 14.572 | 13.948–15.197 | 14.080 | 13.575–14.586 | 12.325 | 11.025–13.625 | 0.014 | 0.002 | 0.231 | |
18 | 16.015 | 15.384–16.646 | 17.362 | 16.531–18.193 | 16.402 | 15.661–17.143 | 13.93 | 12.264–15.596 | 0.008 | <0.001 | 0.091 | |
21 | 18.079 | 17.269–18.89 | 20.116 | 19.056–21.177 | 18.549 | 17.555–19.543 | 15.156 | 13.155–17.158 | 0.003 | <0.001 | 0.035 | |
24 | 20.025 | 19.024–21.026 | 22.865 | 21.561–24.169 | 20.567 | 19.304–21.829 | 16.173 | 13.842–18.503 | 0.001 | <0.001 | 0.013 | |
36 | 26.67 | 24.871–28.47 | 32.678 | 30.197–35.158 | 27.640 | 30.197–35.158 | 18.797 | 15.362–22.233 | <0.001 | <0.001 | 0.004 | |
48 | 32.379 | 29.752–35.006 | 41.993 | 38.087–45.9 | 33.613 | 30.057–37.169 | 20.344 | 15.971–24.717 | <0.001 | <0.001 | 0.002 | |
60 | 37.319 | 33.877–40.760 | 50.866 | 45.423–56.31 | 38.509 | 33.852–43.165 | 21.349 | 16.221–26.477 | <0.001 | <0.001 | 0.001 |
Variables | Univariable Analysis | Multivariable Analysis | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p Value | HR | 95% CI | p Value | |
Age | 1.02 | 0.993–1.047 | 0.152 | 1.033 | 1.006–1.062 | 0.018 |
Male (reference = female) | 0.961 | 0.506–1.826 | 0.904 | |||
Cause of liver disease (reference = HBV) | ||||||
HCV | 0.946 | 0.375–2.385 | 0.906 | |||
Alcohol | 1.364 | 0.188–9.911 | 0.759 | |||
Others | 0.994 | 0.357–2.768 | 0.992 | |||
ALBI grade 2 (ref = 1) | 2.051 | 1.198–3.511 | 0.009 | 2.36 | 1.369–4.069 | 0.002 |
APRI | 1.119 | 0.859–1.459 | 0.405 | |||
Child-Pugh classification B (reference = A) | 1.827 | 0.893–3.741 | 0.099 | |||
MoRAL score > 68 | 2.691 | 1.548–4.680 | <0.001 | 2.985 | 1.704–5.229 | <0.001 |
Tumor size | 1.393 | 0.788–2.464 | 0.254 | |||
Peri-portal vein | 1.469 | 0.458–4.706 | 0.518 | |||
Peri-hepatic vein | 1.050 | 0.379–2.909 | 0.924 | |||
Subcapsular (reference = non-subcapsular) | 1.022 | 0.589–1.776 | 0.937 | |||
Non-rim arterial hyperenhancement | 2.205 | 0.878–5.534 | 0.092 | 3.067 | 1.204–7.811 | 0.019 |
Washout appearance | 1.46 | 0.851–2.504 | 0.169 | |||
Enhancing capsule | 1.425 | 0.835–2.431 | 0.194 | 1.738 | 0.998–3.026 | 0.051 |
LR-M features | 0.737 | 0.360–1.508 | 0.403 | |||
Non-smooth margin | 0.743 | 0.414–1.332 | 0.319 | |||
Low SI on HBP (reference = iso/high) | 4.134 | 0.571–29.901 | 0.160 | 3.607 | 0.492–26.454 | 0.207 |
MVI-high risk group | 1.816 | 0.857–3.850 | 0.119 | 2.412 | 1.109–5.245 | 0.026 |
Time (Months) | Overall | Low | Intermediate | High | p-Value | High | Intermediate | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMST | 95% CI | RMST | 95% CI | RMST | 95% CI | RMST | 95% CI | Intermediate | Low | Low | ||
3 | 2.990 | 2.971–3.009 | 3.000 | - | 3.000 | - | 2.961 | 2.884–3.037 | 0.311 | 0.311 | - | |
6 | 5.908 | 5.829–5.987 | 5.931 | 5.799–6.064 | 5.973 | 5.922–6.025 | 5.750 | 5.484–6.016 | 0.106 | 0.231 | 0.563 | |
9 | 8.728 | 8.553–8.903 | 8.846 | 8.548–9.144 | 8.929 | 8.803–9.055 | 8.203 | 7.647–8.758 | 0.012 | 0.045 | 0.614 | |
12 | 11.373 | 11.076–11.67 | 11.714 | 11.245–12.184 | 11.763 | 11.530–11.997 | 10.247 | 9.344–11.151 | 0.001 | 0.005 | 0.855 | |
15 | 13.844 | 13.400–14.288 | 14.543 | 13.871–15.214 | 14.390 | 13.993–14.787 | 12.066 | 10.775–13.356 | 0.001 | 0.001 | 0.701 | |
18 | 16.136 | 15.529–16.744 | 17.371 | 16.484–18.259 | 16.810 | 16.209–17.412 | 13.597 | 11.929–15.266 | <0.001 | <0.001 | 0.305 | |
21 | 18.261 | 17.478–19.045 | 20.200 | 19.090–21.31 | 19.009 | 18.175–19.843 | 14.921 | 12.879–16.963 | <0.001 | <0.001 | 0.093 | |
24 | 20.277 | 19.306–21.247 | 23.029 | 21.694–24.363 | 21.077 | 19.987–22.167 | 16.079 | 13.67–18.488 | <0.001 | <0.001 | 0.026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, D.I.; Ahn, S.H.; Lee, M.W.; Jeong, W.K.; Song, K.D.; Kang, T.W.; Rhim, H. Risk Group Stratification for Recurrence-Free Survival and Early Tumor Recurrence after Radiofrequency Ablation for Hepatocellular Carcinoma. Cancers 2023, 15, 687. https://doi.org/10.3390/cancers15030687
Cha DI, Ahn SH, Lee MW, Jeong WK, Song KD, Kang TW, Rhim H. Risk Group Stratification for Recurrence-Free Survival and Early Tumor Recurrence after Radiofrequency Ablation for Hepatocellular Carcinoma. Cancers. 2023; 15(3):687. https://doi.org/10.3390/cancers15030687
Chicago/Turabian StyleCha, Dong Ik, Soo Hyun Ahn, Min Woo Lee, Woo Kyoung Jeong, Kyoung Doo Song, Tae Wook Kang, and Hyunchul Rhim. 2023. "Risk Group Stratification for Recurrence-Free Survival and Early Tumor Recurrence after Radiofrequency Ablation for Hepatocellular Carcinoma" Cancers 15, no. 3: 687. https://doi.org/10.3390/cancers15030687
APA StyleCha, D. I., Ahn, S. H., Lee, M. W., Jeong, W. K., Song, K. D., Kang, T. W., & Rhim, H. (2023). Risk Group Stratification for Recurrence-Free Survival and Early Tumor Recurrence after Radiofrequency Ablation for Hepatocellular Carcinoma. Cancers, 15(3), 687. https://doi.org/10.3390/cancers15030687