Treatment Strategies for Non-Small Cell Lung Cancer with Common EGFR Mutations: A Review of the History of EGFR TKIs Approval and Emerging Data
Abstract
:Simple Summary
Abstract
1. Introduction
2. Exploring the Use of EGFR TKIs
2.1. EGFR TKIs versus Platinum-Doublet Chemotherapy
2.2. Second- and Third-Generation EGFR TKIs versus First-Generation EGFR TKIs
2.3. Second-Generation EGFR TKIs Following First-Generation EGFR TKI Failure
2.4. Third-Generation EGFR TKIs Following First and Second-Generation EGFR TKI Failure
2.5. EGFR TKIs in Combination with Anti-Vascular Endothelial Growth Factors
2.6. EGFR TKIs in Combination with Chemotherapy
2.7. EGFR TKIs in Combination with Immunotherapy
3. Mechanisms of Resistance to EGFR TKIs
4. Therapy Following EGFR TKI
5. Novel EGFR TKIs and Targeted Therapies
6. Special Considerations: Brain, Liver, and Bone Metastases
7. Treatment Sequencing: A Suggested Approach
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- D’Angelo, S.P.; Pietanza, M.C.; Johnson, M.L.; Riely, G.J.; Miller, V.A.; Sima, C.S.; Zakowski, M.F.; Rusch, V.W.; Ladanyi, M.; Kris, M.G. Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. J. Clin. Oncol. 2011, 29, 2066–2070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Au, J.S.; Thongprasert, S.; Srinivasan, S.; Tsai, C.M.; Khoa, M.T.; Heeroma, K.; Itoh, Y.; Cornelio, G.; Yang, P.C. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J. Thorac. Oncol. 2014, 9, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.; Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012, 13, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef]
- Wu, Y.L.; Zhou, C.; Hu, C.P.; Feng, J.; Lu, S.; Huang, Y.; Li, W.; Hou, M.; Shi, J.H.; Lee, K.Y.; et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): An open-label, randomised phase 3 trial. Lancet Oncol. 2014, 15, 213–222. [Google Scholar] [CrossRef]
- Yang, J.C.; Wu, Y.L.; Schuler, M.; Sebastian, M.; Popat, S.; Yamamoto, N.; Zhou, C.; Hu, C.P.; O’Byrne, K.; Feng, J.; et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015, 16, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef]
- Wu, Y.L.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Tsuji, F.; Linke, R.; Rosell, R.; Corral, J.; et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 1454–1466. [Google Scholar] [CrossRef]
- Sequist, L.V.; Yang, J.C.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.M.; Boyer, M.; et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 2013, 31, 3327–3334. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.C.; Schuler, M.; Popat, S.; Miura, S.; Heeke, S.; Park, K.; Marten, A.; Kim, E.S. Afatinib for the Treatment of NSCLC Harboring Uncommon EGFR Mutations: A Database of 693 Cases. J. Thorac. Oncol. 2020, 15, 803–815. [Google Scholar] [CrossRef]
- Yang, J.C.; Schuler, M.; Popat, S.; Miura, S.; Park, K.; Passaro, A.; De Marinis, F.; Solca, F.; Marten, A.; Kim, E.S. Afatinib for the Treatment of Non-Small Cell Lung Cancer Harboring Uncommon EGFR Mutations: An Updated Database of 1023 Cases Brief Report. Front. Oncol. 2022, 12, 834704. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Mok, T.; Peters, S.; Popat, S.; Ahn, M.J.; De Marinis, F. Recent Advances on the Role of EGFR Tyrosine Kinase Inhibitors in the Management of NSCLC with Uncommon, Non Exon 20 Insertions, EGFR Mutations. J. Thorac. Oncol. 2021, 16, 764–773. [Google Scholar] [CrossRef]
- Cho, J.H.; Lim, S.H.; An, H.J.; Kim, K.H.; Park, K.U.; Kang, E.J.; Choi, Y.H.; Ahn, M.S.; Lee, M.H.; Sun, J.M.; et al. Osimertinib for Patients with Non-Small-Cell Lung Cancer Harboring Uncommon EGFR Mutations: A Multicenter, Open-Label, Phase II Trial (KCSG-LU15-09). J. Clin. Oncol. 2020, 38, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Yang, X. Osimertinib-Centered Therapy Against Uncommon Epidermal Growth Factor Receptor-Mutated Non-Small-Cell Lung Cancer—A Mini Review. Front. Oncol. 2022, 12, 834585. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Zhou, C.; Liam, C.K.; Wu, G.; Liu, X.; Zhong, Z.; Lu, S.; Cheng, Y.; Han, B.; Chen, L.; et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: Analyses from the phase III, randomized, open-label, ENSURE study. Ann. Oncol. 2015, 26, 1883–1889. [Google Scholar] [CrossRef]
- Mok, T.S.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Lee, M.; Linke, R.; Rosell, R.; Corral, J.; et al. Improvement in Overall Survival in a Randomized Study That Compared Dacomitinib with Gefitinib in Patients with Advanced Non-Small-Cell Lung Cancer and EGFR-Activating Mutations. J. Clin. Oncol. 2018, 36, 2244–2250. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Tan, E.H.; O’Byrne, K.; Zhang, L.; Hirsh, V.; Boyer, M.; Yang, J.C.; Mok, T.; Lee, K.H.; Lu, S.; et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: Overall survival data from the phase IIb LUX-Lung 7 trial. Ann. Oncol. 2017, 28, 270–277. [Google Scholar] [CrossRef]
- Park, K.; Tan, E.-H.; O’Byrne, K.; Zhang, L.; Boyer, M.; Mok, T.; Hirsh, V.; Yang, J.C.-H.; Lee, K.H.; Lu, S.; et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016, 17, 577–589. [Google Scholar] [CrossRef]
- Morgillo, F.; Della Corte, C.M.; Fasano, M.; Ciardiello, F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open 2016, 1, e000060. [Google Scholar] [CrossRef]
- Hama, R.; Sakaguchi, K. The Gefitinib Story. Available online: https://npojip.org/english/The-gefitinib-story.pdf (accessed on 3 January 2023).
- Shepherd, F.A.; Rodrigues Pereira, J.; Ciuleanu, T.; Tan, E.H.; Hirsh, V.; Thongprasert, S.; Campos, D.; Maoleekoonpiroj, S.; Smylie, M.; Martins, R.; et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 2005, 353, 123–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.H.; Johnson, J.R.; Chen, Y.F.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Erlotinib (Tarceva) tablets. Oncologist 2005, 10, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Drugs.com. Tarceva FDA Approval History. Available online: https://www.drugs.com/history/tarceva.html (accessed on 11 April 2021).
- Kazandjian, D.; Blumenthal, G.M.; Yuan, W.; He, K.; Keegan, P.; Pazdur, R. FDA Approval of Gefitinib for the Treatment of Patients with Metastatic EGFR Mutation-Positive Non-Small Cell Lung Cancer. Clin. Cancer Res. 2016, 22, 1307–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuoka, M.; Wu, Y.L.; Thongprasert, S.; Sunpaweravong, P.; Leong, S.S.; Sriuranpong, V.; Chao, T.Y.; Nakagawa, K.; Chu, D.T.; Saijo, N.; et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J. Clin. Oncol. 2011, 29, 2866–2874. [Google Scholar] [CrossRef]
- Inoue, A.; Kobayashi, K.; Maemondo, M.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Updated overall survival results from a randomized phase III trial comparing gefitinib with carboplatin-paclitaxel for chemo-naive non-small cell lung cancer with sensitive EGFR gene mutations (NEJ002). Ann. Oncol. 2013, 24, 54–59. [Google Scholar] [CrossRef]
- Mitsudomi, T.; Morita, S.; Yatabe, Y.; Negoro, S.; Okamoto, I.; Tsurutani, J.; Seto, T.; Satouchi, M.; Tada, H.; Hirashima, T.; et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): An open label, randomised phase 3 trial. Lancet Oncol. 2010, 11, 121–128. [Google Scholar] [CrossRef]
- Yoshioka, H.; Shimokawa, M.; Seto, T.; Morita, S.; Yatabe, Y.; Okamoto, I.; Tsurutani, J.; Satouchi, M.; Hirashima, T.; Atagi, S.; et al. Final overall survival results of WJTOG3405, a randomized phase III trial comparing gefitinib versus cisplatin with docetaxel as the first-line treatment for patients with stage IIIB/IV or postoperative recurrent EGFR mutation-positive non-small-cell lung cancer. Ann. Oncol. 2019, 30, 1978–1984. [Google Scholar] [CrossRef] [Green Version]
- Douillard, J.Y.; Ostoros, G.; Cobo, M.; Ciuleanu, T.; McCormack, R.; Webster, A.; Milenkova, T. First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: A phase-IV, open-label, single-arm study. Br. J. Cancer 2014, 110, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Maemondo, M.; Inoue, A.; Kobayashi, K.; Sugawara, S.; Oizumi, S.; Isobe, H.; Gemma, A.; Harada, M.; Yoshizawa, H.; Kinoshita, I.; et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 2010, 362, 2380–2388. [Google Scholar] [CrossRef] [Green Version]
- Drugs.com. Iressa FDA Approval History. Available online: https://www.drugs.com/history/iressa.html (accessed on 1 September 2022).
- Drugs.com. Gilotrif FDA Approval History. Available online: https://www.drugs.com/newdrugs/fda-approves-gilotrif-late-stage-non-small-cell-lung-cancer-3851.html (accessed on 11 April 2022).
- Yang, J.C.; Sequist, L.V.; Geater, S.L.; Tsai, C.M.; Mok, T.S.; Schuler, M.; Yamamoto, N.; Yu, C.J.; Ou, S.H.; Zhou, C.; et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: A combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 2015, 16, 830–838. [Google Scholar] [CrossRef]
- Halmos, B.; Tan, E.H.; Soo, R.A.; Cadranel, J.; Lee, M.K.; Foucher, P.; Hsia, T.C.; Hochmair, M.; Griesinger, F.; Hida, T.; et al. Impact of afatinib dose modification on safety and effectiveness in patients with EGFR mutation-positive advanced NSCLC: Results from a global real-world study (RealGiDo). Lung Cancer J. IASLC 2019, 127, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drugs.com. Tagrisso FDA Approval History. Available online: https://www.drugs.com/history/tagrisso.html (accessed on 13 April 2021).
- Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.; et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadimitrakopoulou, V.A.; Mok, T.S.; Han, J.Y.; Ahn, M.J.; Delmonte, A.; Ramalingam, S.S.; Kim, S.W.; Shepherd, F.A.; Laskin, J.; He, Y.; et al. Osimertinib versus platinum-pemetrexed for patients with EGFR T790M advanced NSCLC and progression on a prior EGFR-tyrosine kinase inhibitor: AURA3 overall survival analysis. Ann. Oncol. 2020, 31, 1536–1544. [Google Scholar] [CrossRef] [PubMed]
- Pluzanski, A.; Krzakowski, M.; Kowalski, D.; Dziadziuszko, R. Real-world clinical outcomes of first-generation and second-generation epidermal growth factor receptor tyrosine kinase inhibitors in a large cohort of European non-small-cell lung cancer patients. ESMO Open 2020, 5, e001011. [Google Scholar] [CrossRef] [PubMed]
- Drugs.com. Vizimpro FDA Approval History. Available online: https://www.drugs.com/history/vizimpro.html (accessed on 13 April 2021).
- US Food and Drug Administration. FDA Approves Dacomitinib for Metastatic Non-Small Cell Lung Cancer. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-dacomitinib-metastatic-non-small-cell-lung-cancer-0 (accessed on 1 September 2022).
- Katakami, N.; Atagi, S.; Goto, K.; Hida, T.; Horai, T.; Inoue, A.; Ichinose, Y.; Koboyashi, K.; Takeda, K.; Kiura, K.; et al. LUX-Lung 4: A phase II trial of afatinib in patients with advanced non-small-cell lung cancer who progressed during prior treatment with erlotinib, gefitinib, or both. J. Clin. Oncol. 2013, 31, 3335–3341. [Google Scholar] [CrossRef] [PubMed]
- Janne, P.A.; Yang, J.C.; Kim, D.W.; Planchard, D.; Ohe, Y.; Ramalingam, S.S.; Ahn, M.J.; Kim, S.W.; Su, W.C.; Horn, L.; et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N. Engl. J. Med. 2015, 372, 1689–1699. [Google Scholar] [CrossRef]
- Goss, G.; Tsai, C.M.; Shepherd, F.A.; Bazhenova, L.; Lee, J.S.; Chang, G.C.; Crino, L.; Satouchi, M.; Chu, Q.; Hida, T.; et al. Osimertinib for pretreated EGFR Thr790Met-positive advanced non-small-cell lung cancer (AURA2): A multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2016, 17, 1643–1652. [Google Scholar] [CrossRef]
- Hochmair, M.J.; Morabito, A.; Hao, D.; Yang, C.T.; Soo, R.A.; Yang, J.C.; Gucalp, R.; Halmos, B.; Marten, A.; Cufer, T. Sequential afatinib and osimertinib in patients with EGFR mutation-positive non-small-cell lung cancer: Final analysis of the GioTag study. Future Oncol. 2020, 16, 2799–2808. [Google Scholar] [CrossRef]
- Kim, T.; Jang, T.W.; Choi, C.M.; Kim, M.H.; Lee, S.Y.; Park, C.K.; Chang, Y.S.; Lee, K.Y.; Kim, S.J.; Yang, S.H.; et al. Sequential treatment of afatinib and osimertinib or other regimens in patients with advanced non-small-cell lung cancer harboring EGFR mutations: Results from a real-world study in South Korea. Cancer Med. 2021, 10, 5809–5822. [Google Scholar] [CrossRef]
- Byers, L.A.; Heymach, J.V. Dual targeting of the vascular endothelial growth factor and epidermal growth factor receptor pathways: Rationale and clinical applications for non-small-cell lung cancer. Clin. Lung Cancer 2007, 8 (Suppl. 2), S79–S85. [Google Scholar] [CrossRef]
- Saito, H.; Fukuhara, T.; Furuya, N.; Watanabe, K.; Sugawara, S.; Iwasawa, S.; Tsunezuka, Y.; Yamaguchi, O.; Okada, M.; Yoshimori, K.; et al. Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer (NEJ026): Interim analysis of an open-label, randomised, multicentre, phase 3 trial. Lancet Oncol. 2019, 20, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Garon, E.B.; Seto, T.; Nishio, M.; Ponce Aix, S.; Paz-Ares, L.; Chiu, C.H.; Park, K.; Novello, S.; Nadal, E.; et al. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 1655–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ninomiya, T.; Nogami, N.; Kozuki, T.; Harada, D.; Kubo, T.; Ohashi, K.; Kuyama, S.; Kudo, K.; Bessho, A.; Fukamatsu, N.; et al. A phase I trial of afatinib and bevacizumab in chemo-naive patients with advanced non-small-cell lung cancer harboring EGFR mutations: Okayama Lung Cancer Study Group Trial 1404. Lung Cancer J. IASLC 2018, 115, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.C.; Huang, C.Y.; Wang, C.C.; Kuo, S.C.; Chu, C.H.; Tung, P.H.; Huang, A.C.; Wang, C.L.; Chiu, L.C.; Fang, Y.F.; et al. The Combination of Afatinib and Bevacizumab in Untreated EGFR-Mutated Advanced Lung Adenocarcinoma: A Multicenter Observational Study. Pharmaceuticals 2020, 13, 331. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.A.; Schoenfeld, A.J.; Makhnin, A.; Kim, R.; Rizvi, H.; Tsui, D.; Falcon, C.; Houck-Loomis, B.; Meng, F.; Yang, J.L.; et al. Effect of Osimertinib and Bevacizumab on Progression-Free Survival for Patients with Metastatic EGFR-Mutant Lung Cancers: A Phase 1/2 Single-Group Open-Label Trial. JAMA Oncol. 2020, 6, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, H.; Toi, Y.; Hayashi, H.; Fujimoto, D.; Tachihara, M.; Furuya, N.; Otani, S.; Shimizu, J.; Katakami, N.; Azuma, K.; et al. Efficacy of Osimertinib Plus Bevacizumab vs Osimertinib in Patients with EGFR T790M-Mutated Non-Small Cell Lung Cancer Previously Treated with Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor: West Japan Oncology Group 8715L Phase 2 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 386–394. [Google Scholar] [CrossRef]
- Soo, R.A.; Han, J.Y.; Dafni, U.; Cho, B.C.; Yeo, C.M.; Nadal, E.; Carcereny, E.; de Castro, J.; Sala, M.A.; Bernabe, R.; et al. A randomised phase II study of osimertinib and bevacizumab versus osimertinib alone as second-line targeted treatment in advanced NSCLC with confirmed EGFR and acquired T790M mutations: The European Thoracic Oncology Platform (ETOP 10-16) BOOSTER trial. Ann. Oncol. 2022, 33, 181–192. [Google Scholar] [CrossRef]
- Kenmotsu, H.; Wakuda, K.; Mori, K.; Kato, T.; Sugawara, S.; Kirita, K.; Yoneshima, Y.; Azuma, K.; Nishino, K.; Teraoka, S.; et al. Randomized Phase 2 Study of Osimertinib Plus Bevacizumab Versus Osimertinib for Untreated Patients with Nonsquamous NSCLC Harboring EGFR Mutations: WJOG9717L Study. J. Thorac. Oncol. 2022, 17, 1098–1108. [Google Scholar] [CrossRef]
- Janne, P.A.; Wang, X.; Socinski, M.A.; Crawford, J.; Stinchcombe, T.E.; Gu, L.; Capelletti, M.; Edelman, M.J.; Villalona-Calero, M.A.; Kratzke, R.; et al. Randomized phase II trial of erlotinib alone or with carboplatin and paclitaxel in patients who were never or light former smokers with advanced lung adenocarcinoma: CALGB 30406 trial. J. Clin. Oncol. 2012, 30, 2063–2069. [Google Scholar] [CrossRef]
- Soria, J.C.; Wu, Y.L.; Nakagawa, K.; Kim, S.W.; Yang, J.J.; Ahn, M.J.; Wang, J.; Yang, J.C.; Lu, Y.; Atagi, S.; et al. Gefitinib plus chemotherapy versus placebo plus chemotherapy in EGFR-mutation-positive non-small-cell lung cancer after progression on first-line gefitinib (IMPRESS): A phase 3 randomised trial. Lancet Oncol. 2015, 16, 990–998. [Google Scholar] [CrossRef]
- Noronha, V.; Patil, V.M.; Joshi, A.; Menon, N.; Chougule, A.; Mahajan, A.; Janu, A.; Purandare, N.; Kumar, R.; More, S.; et al. Gefitinib Versus Gefitinib Plus Pemetrexed and Carboplatin Chemotherapy in EGFR-Mutated Lung Cancer. J. Clin. Oncol. 2020, 38, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Hosomi, Y.; Morita, S.; Sugawara, S.; Kato, T.; Fukuhara, T.; Gemma, A.; Takahashi, K.; Fujita, Y.; Harada, T.; Minato, K.; et al. Gefitinib Alone Versus Gefitinib Plus Chemotherapy for Non-Small-Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor: NEJ009 Study. J. Clin. Oncol. 2020, 38, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Schuler, M.; Yang, J.C.; Park, K.; Kim, J.H.; Bennouna, J.; Chen, Y.M.; Chouaid, C.; De Marinis, F.; Feng, J.F.; Grossi, F.; et al. Afatinib beyond progression in patients with non-small-cell lung cancer following chemotherapy, erlotinib/gefitinib and afatinib: Phase III randomized LUX-Lung 5 trial. Ann. Oncol. 2016, 27, 417–423. [Google Scholar] [CrossRef] [PubMed]
- White, M.N.; Piotrowska, Z.; Stirling, K.; Liu, S.V.; Banwait, M.K.; Cunanan, K.; Sequist, L.V.; Wakelee, H.A.; Hausrath, D.; Neal, J.W. Combining Osimertinib with Chemotherapy in EGFR-Mutant NSCLC at Progression. Clin. Lung Cancer 2021, 22, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Feng, P.H.; Karaseva, N.; Kim, S.W.; Kim, T.M.; Lee, C.K.; Poltoratskiy, A.; Yanagitani, N.; Powar, S.; Huang, X.; et al. 1401P Osimertinib plus platinum/pemetrexed in newly-diagnosed EGFR mutation (EGFRm)-positive advanced NSCLC: Safety run-in results from the FLAURA2 study. Ann. Oncol. 2020, 31, S888. [Google Scholar] [CrossRef]
- Creelan, B.C.; Yeh, T.C.; Kim, S.W.; Nogami, N.; Kim, D.W.; Chow, L.Q.M.; Kanda, S.; Taylor, R.; Tang, W.; Tang, M.; et al. A Phase 1 study of gefitinib combined with durvalumab in EGFR TKI-naive patients with EGFR mutation-positive locally advanced/metastatic non-small-cell lung cancer. Br. J. Cancer 2021, 124, 383–390. [Google Scholar] [CrossRef]
- Gettinger, S.; Hellmann, M.D.; Chow, L.Q.M.; Borghaei, H.; Antonia, S.; Brahmer, J.R.; Goldman, J.W.; Gerber, D.E.; Juergens, R.A.; Shepherd, F.A.; et al. Nivolumab Plus Erlotinib in Patients with EGFR-Mutant Advanced NSCLC. J. Thorac. Oncol. 2018, 13, 1363–1372. [Google Scholar] [CrossRef] [Green Version]
- Rudin, C.; Cervantes, A.; Dowlati, A.; Besse, B.; Ma, B.; Costa, D.; Schmid, P.; Heist, R.; Villaflor, V.; Sarkar, I.; et al. MA15.02 Long-Term Safety and Clinical Activity Results from a Phase Ib Study of Erlotinib Plus Atezolizumab in Advanced NSCLC. J. Thorac. Oncol. 2018, 13, S407. [Google Scholar] [CrossRef] [Green Version]
- Oxnard, G.R.; Yang, J.C.; Yu, H.; Kim, S.W.; Saka, H.; Horn, L.; Goto, K.; Ohe, Y.; Mann, H.; Thress, K.S.; et al. TATTON: A multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer. Ann. Oncol. 2020, 31, 507–516. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.C.; Shepherd, F.A.; Kim, D.W.; Lee, G.W.; Lee, J.S.; Chang, G.C.; Lee, S.S.; Wei, Y.F.; Lee, Y.G.; Laus, G.; et al. Osimertinib Plus Durvalumab versus Osimertinib Monotherapy in EGFR T790M-Positive NSCLC following Previous EGFR TKI Therapy: CAURAL Brief Report. J. Thorac. Oncol. 2019, 14, 933–939. [Google Scholar] [CrossRef]
- Gainor, J.F.; Shaw, A.T. Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J. Clin. Oncol. 2013, 31, 3987–3996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackman, D.; Pao, W.; Riely, G.J.; Engelman, J.A.; Kris, M.G.; Janne, P.A.; Lynch, T.; Johnson, B.E.; Miller, V.A. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J. Clin. Oncol. 2010, 28, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.A.; Arcila, M.E.; Rekhtman, N.; Sima, C.S.; Zakowski, M.F.; Pao, W.; Kris, M.G.; Miller, V.A.; Ladanyi, M.; Riely, G.J. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res. 2013, 19, 2240–2247. [Google Scholar] [CrossRef] [Green Version]
- Sequist, L.V.; Waltman, B.A.; Dias-Santagata, D.; Digumarthy, S.; Turke, A.B.; Fidias, P.; Bergethon, K.; Shaw, A.T.; Gettinger, S.; Cosper, A.K.; et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 2011, 3, 75ra26. [Google Scholar] [CrossRef] [Green Version]
- Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. USA 2008, 105, 2070–2075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyooka, S.; Kiura, K.; Mitsudomi, T. EGFR mutation and response of lung cancer to gefitinib. N. Engl. J. Med. 2005, 352, 2136. [Google Scholar] [CrossRef]
- Tanaka, K.; Nosaki, K.; Otsubo, K.; Azuma, K.; Sakata, S.; Ouchi, H.; Morinaga, R.; Wataya, H.; Fujii, A.; Nakagaki, N.; et al. Acquisition of the T790M resistance mutation during afatinib treatment in EGFR tyrosine kinase inhibitor-naive patients with non-small cell lung cancer harboring EGFR mutations. Oncotarget 2017, 8, 68123–68130. [Google Scholar] [CrossRef]
- Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Janne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2005, 352, 786–792. [Google Scholar] [CrossRef]
- Wu, S.G.; Liu, Y.N.; Tsai, M.F.; Chang, Y.L.; Yu, C.J.; Yang, P.C.; Yang, J.C.; Wen, Y.F.; Shih, J.Y. The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget 2016, 7, 12404–12413. [Google Scholar] [CrossRef] [Green Version]
- Jotte, R.M.; Spigel, D.R. Advances in molecular-based personalized non-small-cell lung cancer therapy: Targeting epidermal growth factor receptor and mechanisms of resistance. Cancer Med. 2015, 4, 1621–1632. [Google Scholar] [CrossRef]
- Balak, M.N.; Gong, Y.; Riely, G.J.; Somwar, R.; Li, A.R.; Zakowski, M.F.; Chiang, A.; Yang, G.; Ouerfelli, O.; Kris, M.G.; et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin. Cancer Res. 2006, 12, 6494–6501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Shao, Y.W.; Xia, Y. Responsiveness to Full-Dose Afatinib in a Patient with Lung Adenocarcinoma Harboring EGFR S768I and V769L Mutations. J. Thorac. Oncol. 2019, 14, e25–e27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonetti, A.; Sharma, S.; Minari, R.; Perego, P.; Giovannetti, E.; Tiseo, M. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 2019, 121, 725–737. [Google Scholar] [CrossRef]
- Schoenfeld, A.J.; Yu, H.A. The Evolving Landscape of Resistance to Osimertinib. J. Thorac. Oncol. 2020, 15, 18–21. [Google Scholar] [CrossRef]
- Thress, K.S.; Paweletz, C.P.; Felip, E.; Cho, B.C.; Stetson, D.; Dougherty, B.; Lai, Z.; Markovets, A.; Vivancos, A.; Kuang, Y.; et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 2015, 21, 560–562. [Google Scholar] [CrossRef] [Green Version]
- Ou, S.I.; Cui, J.; Schrock, A.B.; Goldberg, M.E.; Zhu, V.W.; Albacker, L.; Stephens, P.J.; Miller, V.A.; Ali, S.M. Emergence of novel and dominant acquired EGFR solvent-front mutations at Gly796 (G796S/R) together with C797S/R and L792F/H mutations in one EGFR (L858R/T790M) NSCLC patient who progressed on osimertinib. Lung Cancer J. IASLC 2017, 108, 228–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, X.; Puri, S.; Negrao, M.V.; Nilsson, M.B.; Robichaux, J.; Boyle, T.; Hicks, J.K.; Lovinger, K.L.; Roarty, E.; Rinsurongkawong, W.; et al. Landscape of EGFR-Dependent and -Independent Resistance Mechanisms to Osimertinib and Continuation Therapy Beyond Progression in EGFR-Mutant NSCLC. Clin. Cancer Res. 2018, 24, 6195–6203. [Google Scholar] [CrossRef] [Green Version]
- Ricordel, C.; Friboulet, L.; Facchinetti, F.; Soria, J.C. Molecular mechanisms of acquired resistance to third-generation EGFR-TKIs in EGFR T790M-mutant lung cancer. Ann. Oncol. 2019, 30, 858. [Google Scholar] [CrossRef] [Green Version]
- Suzawa, K.; Offin, M.; Schoenfeld, A.J.; Plodkowski, A.J.; Odintsov, I.; Lu, D.; Lockwood, W.W.; Arcila, M.E.; Rudin, C.M.; Drilon, A.; et al. Acquired MET Exon 14 Alteration Drives Secondary Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in EGFR-Mutated Lung Cancer. JCO Precis. Oncol. 2019, 3, 19. [Google Scholar] [CrossRef]
- Romaniello, D.; Marrocco, I.; Belugali Nataraj, N.; Ferrer, I.; Drago-Garcia, D.; Vaknin, I.; Oren, R.; Lindzen, M.; Ghosh, S.; Kreitman, M.; et al. Targeting HER3, a Catalytically Defective Receptor Tyrosine Kinase, Prevents Resistance of Lung Cancer to a Third-Generation EGFR Kinase Inhibitor. Cancers 2020, 12, 2394. [Google Scholar] [CrossRef]
- Shields, M.D.; Hicks, J.K.; Boyle, T.A.; Haura, E.B.; Creelan, B.C. Selpercatinib Overcomes CCDC6-RET-Mediated Resistance to Osimertinib. J. Thorac. Oncol. 2021, 16, e15–e17. [Google Scholar] [CrossRef] [PubMed]
- Marcoux, N.; Gettinger, S.N.; O’Kane, G.; Arbour, K.C.; Neal, J.W.; Husain, H.; Evans, T.L.; Brahmer, J.R.; Muzikansky, A.; Bonomi, P.D.; et al. EGFR-Mutant Adenocarcinomas That Transform to Small-Cell Lung Cancer and Other Neuroendocrine Carcinomas: Clinical Outcomes. J. Clin. Oncol. 2019, 37, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Fang, W.; Zhan, J.; Hong, S.; Tang, Y.; Kang, S.; Zhang, Y.; He, X.; Zhou, T.; Qin, T.; et al. Upregulation of PD-L1 by EGFR Activation Mediates the Immune Escape in EGFR-Driven NSCLC: Implication for Optional Immune Targeted Therapy for NSCLC Patients with EGFR Mutation. J. Thorac. Oncol. 2015, 10, 910–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suda, K.; Murakami, I.; Sakai, K.; Mizuuchi, H.; Shimizu, S.; Sato, K.; Tomizawa, K.; Tomida, S.; Yatabe, Y.; Nishio, K.; et al. Small cell lung cancer transformation and T790M mutation: Complimentary roles in acquired resistance to kinase inhibitors in lung cancer. Sci. Rep. 2015, 5, 14447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offin, M.; Chan, J.M.; Tenet, M.; Rizvi, H.A.; Shen, R.; Riely, G.J.; Rekhtman, N.; Daneshbod, Y.; Quintanal-Villalonga, A.; Penson, A.; et al. Concurrent RB1 and TP53 Alterations Define a Subset of EGFR-Mutant Lung Cancers at risk for Histologic Transformation and Inferior Clinical Outcomes. J. Thorac. Oncol. 2019, 14, 1784–1793. [Google Scholar] [CrossRef] [PubMed]
- Raoof, S.; Mulford, I.J.; Frisco-Cabanos, H.; Nangia, V.; Timonina, D.; Labrot, E.; Hafeez, N.; Bilton, S.J.; Drier, Y.; Ji, F.; et al. Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer. Oncogene 2019, 38, 6399–6413. [Google Scholar] [CrossRef]
- Tulchinsky, E.; Demidov, O.; Kriajevska, M.; Barlev, N.A.; Imyanitov, E. EMT: A mechanism for escape from EGFR-targeted therapy in lung cancer. Biochim. Biophys. Acta Rev. Cancer 2019, 1871, 29–39. [Google Scholar] [CrossRef]
- John, T.; Akamatsu, H.; Delmonte, A.; Su, W.C.; Lee, J.S.; Chang, G.C.; Huang, X.; Jenkins, S.; Wu, Y.L. EGFR mutation analysis for prospective patient selection in AURA3 phase III trial of osimertinib versus platinum-pemetrexed in patients with EGFR T790M-positive advanced non-small-cell lung cancer. Lung Cancer J. IASLC 2018, 126, 133–138. [Google Scholar] [CrossRef]
- Yap, T.A.; Macklin-Doherty, A.; Popat, S. Continuing EGFR inhibition beyond progression in advanced non-small cell lung cancer. Eur. J. Cancer 2017, 70, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Tanai, C.; Yoh, K.; Hosomi, Y.; Sakai, H.; Kato, T.; Kaburagi, T.; Nishio, M.; Kim, Y.H.; Inoue, A.; et al. Continuing EGFR-TKI beyond radiological progression in patients with advanced or recurrent, EGFR mutation-positive non-small-cell lung cancer: An observational study. ESMO Open 2017, 2, e000214. [Google Scholar] [CrossRef] [PubMed]
- NCCN Clinical Practice Guidelines in Oncology. Non-Small Cell Lung Cancer NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) 2021, Version 4.2021—March 3, 2021. J. Natl. Compr. Cancer Netw. JNCCN 2021, 2, 94–123. [Google Scholar]
- Gandhi, L.; Rodriguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Ciuleanu, T.E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gumus, M.; Mazieres, J.; Hermes, B.; Cay Senler, F.; Csoszi, T.; Fulop, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- West, H.; McCleod, M.; Hussein, M.; Morabito, A.; Rittmeyer, A.; Conter, H.J.; Kopp, H.G.; Daniel, D.; McCune, S.; Mekhail, T.; et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 924–937. [Google Scholar] [CrossRef]
- Socinski, M.A.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodriguez-Abreu, D.; Moro-Sibilot, D.; Thomas, C.A.; Barlesi, F.; et al. Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N. Engl. J. Med. 2018, 378, 2288–2301. [Google Scholar] [CrossRef]
- Choudhury, N.J.; Makhnin, A.; Tobi, Y.Y.; Daly, R.M.; Preeshagul, I.R.; Iqbal, A.N.; Ahn, L.S.; Hayes, S.A.; Heller, G.; Kris, M.G.; et al. Pilot Study of Dacomitinib for Patients with Metastatic EGFR-Mutant Lung Cancers with Disease Progression After Initial Treatment with Osimertinib. JCO Precis. Oncol. 2021, 5, 695–700. [Google Scholar] [CrossRef]
- Nogami, N.; Barlesi, F.; Socinski, M.A.; Reck, M.; Thomas, C.A.; Cappuzzo, F.; Mok, T.S.K.; Finley, G.; Aerts, J.G.; Orlandi, F.; et al. IMpower150 Final Exploratory Analyses for Atezolizumab Plus Bevacizumab and Chemotherapy in Key NSCLC Patient Subgroups with EGFR Mutations or Metastases in the Liver or Brain. J. Thorac. Oncol. 2022, 17, 309–323. [Google Scholar] [CrossRef]
- Reck, M.; Mok, T.S.K.; Nishio, M.; Jotte, R.M.; Cappuzzo, F.; Orlandi, F.; Stroyakovskiy, D.; Nogami, N.; Rodriguez-Abreu, D.; Moro-Sibilot, D.; et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): Key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 2019, 7, 387–401. [Google Scholar] [CrossRef]
- Lu, S.; Wu, L.; Jian, H.; Cheng, Y.; Wang, Q.; Fang, J.; Wang, Z.; Hu, Y.; Sun, M.; Han, L.; et al. VP9-2021: ORIENT-31: Phase III study of sintilimab with or without IBI305 plus chemotherapy in patients with EGFR mutated nonsquamous NSCLC who progressed after EGFR-TKI therapy. Ann. Oncol. 2022, 33, 112–113. [Google Scholar] [CrossRef]
- Hellmann, M.D.; Garon, E.B.; Gandhi, L.; Hui, R.; Zhang, J.; Rangwala, R.; Rizvi, N.A. MINI03.05 Efficacy of Pembrolizumab in Key Subgroups of Patients with Advanced NSCLC. J. Thorac. Oncol. 2015, 10, S261–S406. [Google Scholar] [CrossRef]
- Garassino, M.C.; Cho, B.C.; Kim, J.H.; Mazieres, J.; Vansteenkiste, J.; Lena, H.; Jaime, J.C.; Gray, J.E.; Powderly, J.; Chouaid, C.; et al. Final overall survival and safety update for durvalumab in third- or later-line advanced NSCLC: The phase II ATLANTIC study. Lung Cancer J. IASLC 2020, 147, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Garassino, M.C.; Cho, B.-C.; Kim, J.-H.; Mazières, J.; Vansteenkiste, J.; Lena, H.; Corral Jaime, J.; Gray, J.E.; Powderly, J.; Chouaid, C.; et al. Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): An open-label, single-arm, phase 2 study. Lancet Oncol. 2018, 19, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.A.; Ambrose, H.; Baik, C.; Cho, B.C.; Cocco, E.; Goldberg, S.B.; Goldman, J.W.; Kraljevic, S.; De Langen, A.J.; Okamoto, I.; et al. 1239P ORCHARD osimertinib + savolitinib interim analysis: A biomarker-directed phase II platform study in patients (pts) with advanced non-small cell lung cancer (NSCLC) whose disease has progressed on first-line (1L) osimertinib. Ann. Oncol. 2021, 32, S978–S979. [Google Scholar] [CrossRef]
- Sequist, L.V.; Han, J.Y.; Ahn, M.J.; Cho, B.C.; Yu, H.; Kim, S.W.; Yang, J.C.; Lee, J.S.; Su, W.C.; Kowalski, D.; et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: Interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 2020, 21, 373–386. [Google Scholar] [CrossRef]
- Leighl, N.B.; Shu, C.A.; Minchom, A.; Felip, E.; Cousin, S.; Cho, B.C.; Park, K.; Han, J.Y.; Boyer, M.; Lee, C.K.; et al. 1192MO Amivantamab monotherapy and in combination with lazertinib in post-osimertinib EGFR-mutant NSCLC: Analysis from the CHRYSALIS study. Ann. Oncol. 2021, 32, S951–S952. [Google Scholar] [CrossRef]
- Shu, C.A.; Goto, K.; Ohe, Y.; Besse, B.; Lee, S.-H.; Wang, Y.; Griesinger, F.; Yang, J.C.-H.; Felip, E.; Sanborn, R.E.; et al. Amivantamab and lazertinib in patients with EGFR-mutant non–small cell lung (NSCLC) after progression on osimertinib and platinum-based chemotherapy: Updated results from CHRYSALIS-2. J. Clin. Oncol. 2022, 40, 9006. [Google Scholar] [CrossRef]
- Cho, B.C.; Felip, E.; Hayashi, H.; Thomas, M.; Lu, S.; Besse, B.; Sun, T.; Martinez, M.; Sethi, S.N.; Shreeve, S.M.; et al. MARIPOSA: Phase 3 study of first-line amivantamab + lazertinib versus osimertinib in EGFR-mutant non-small-cell lung cancer. Future Oncol. 2022, 18, 639–647. [Google Scholar] [CrossRef]
- Janne, P.A.; Baik, C.; Su, W.C.; Johnson, M.L.; Hayashi, H.; Nishio, M.; Kim, D.W.; Koczywas, M.; Gold, K.A.; Steuer, C.E.; et al. Efficacy and Safety of Patritumab Deruxtecan (HER3-DXd) in EGFR Inhibitor-Resistant, EGFR-Mutated Non-Small Cell Lung Cancer. Cancer Discov. 2022, 12, 74–89. [Google Scholar] [CrossRef]
- Garon, E.B.; Johnson, M.L.; Lisberg, A.E.; Spira, A.; Yamamoto, N.; Heist, R.S.; Sands, J.M.; Yoh, K.; Meric-Bernstam, F.; Kitazono, S.; et al. LBA49 Efficacy of datopotamab deruxtecan (Dato-DXd) in patients (pts) with advanced/metastatic (adv/met) non-small cell lung cancer (NSCLC) and actionable genomic alterations (AGAs): Preliminary results from the phase I TROPION-PanTumor01 study. Ann. Oncol. 2021, 32, S1326–S1327. [Google Scholar] [CrossRef]
- Beypinar, I.; Demir, H.; Araz, M.; Uysal, M. The relationship between EGFR mutation and metastasis pattern in lung adenocarcinoma. J. Oncol. Sci. 2019, 5, 65–69. [Google Scholar] [CrossRef]
- Rangachari, D.; Yamaguchi, N.; VanderLaan, P.A.; Folch, E.; Mahadevan, A.; Floyd, S.R.; Uhlmann, E.J.; Wong, E.T.; Dahlberg, S.E.; Huberman, M.S.; et al. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. Lung Cancer J. IASLC 2015, 88, 108–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiko, N.; Shimokawa, T.; Miyazaki, K.; Misumi, Y.; Agemi, Y.; Ishii, M.; Nakamura, Y.; Yamanaka, T.; Okamoto, H. Comparison of the efficacies of first-generation epidermal growth factor receptor tyrosine kinase inhibitors for brain metastasis in patients with advanced non-small-cell lung cancer harboring EGFR mutations. BMC Cancer 2018, 18, 1012. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, K.; Kanda, S.; Shiraishi, H.; Goto, K.; Itahashi, K.; Goto, Y.; Horinouchi, H.; Fujiwara, Y.; Nokihara, H.; Yamamoto, N.; et al. Difference in central nerve system metastasis during gefitinib or erlotinib therapy in patients with EGFR-mutated non-small cell lung cancer: A retrospective study. J. Thorac. Dis. 2019, 11, 1347–1354. [Google Scholar] [CrossRef]
- Liang, S.K.; Lee, M.R.; Liao, W.Y.; Ho, C.C.; Ko, J.C.; Shih, J.Y. Prognostic factors of afatinib as a first-line therapy for advanced EGFR mutation-positive lung adenocarcinoma: A real-world, large cohort study. Oncotarget 2018, 9, 23749–23760. [Google Scholar] [CrossRef]
- Bergonzini, C.; Leonetti, A.; Tiseo, M.; Giovannetti, E.; Peters, G.J. Is there a role for dacomitinib, a second-generation irreversible inhibitor of the epidermal-growth factor receptor tyrosine kinase, in advanced non-small cell lung cancer? Expert Opin. Pharmacother. 2020, 21, 1287–1298. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Pu, X.; Jiang, M.; Wang, J.; Li, J.; Li, K.; Xu, Y.; Xu, F.; Chen, B.; Wang, Q.; et al. Dacomitinib induces objective responses in metastatic brain lesions of patients with EGFR-mutant non-small-cell lung cancer: A brief report. Lung Cancer J. IASLC 2021, 152, 66–70. [Google Scholar] [CrossRef]
- Reungwetwattana, T.; Nakagawa, K.; Cho, B.C.; Cobo, M.; Cho, E.K.; Bertolini, A.; Bohnet, S.; Zhou, C.; Lee, K.H.; Nogami, N.; et al. CNS Response to Osimertinib Versus Standard Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2018, 36, 3290. [Google Scholar] [CrossRef]
- Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Han, J.Y.; Katakami, N.; Kim, H.R.; Hodge, R.; Kaur, P.; Brown, A.P.; Ghiorghiu, D.; et al. CNS Efficacy of Osimertinib in Patients with T790M-Positive Advanced Non-Small-Cell Lung Cancer: Data From a Randomized Phase III Trial (AURA3). J. Clin. Oncol. 2018, 36, 2702–2709. [Google Scholar] [CrossRef]
- Castanon, E.; Rolfo, C.; Vinal, D.; Lopez, I.; Fusco, J.P.; Santisteban, M.; Martin, P.; Zubiri, L.; Echeveste, J.I.; Gil-Bazo, I. Impact of epidermal growth factor receptor (EGFR) activating mutations and their targeted treatment in the prognosis of stage IV non-small cell lung cancer (NSCLC) patients harboring liver metastasis. J. Transl. Med. 2015, 13, 257. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Cheng, R.; Zhang, G.; Su, C.; Zhao, C.; Li, X.; Zhang, J.; Wu, F.; Chen, X.; Gao, G.; et al. Characterization of Liver Metastasis and Its Effect on Targeted Therapy in EGFR-mutant NSCLC: A Multicenter Study. Clin. Lung Cancer 2017, 18, 631–639.e632. [Google Scholar] [CrossRef] [PubMed]
- Walia, P.; Zhan, L.; Schmid, S.; Brown, M.C.; Khan, K.; Garcia, M.; Chowdhury, M.; Herman, J.; Sabouhanian, A.; Strom, E.; et al. P59.17 EGFR Mutation Status, Liver Metastasis, and Overall Survival in Advanced Lung Adenocarcinoma Patients. J. Thorac. Oncol. 2021, 16, S1154–S1155. [Google Scholar] [CrossRef]
- Gen, S.; Tanaka, I.; Morise, M.; Koyama, J.; Kodama, Y.; Matsui, A.; Miyazawa, A.; Hase, T.; Hibino, Y.; Yokoyama, T.; et al. Clinical efficacy of osimertinib in EGFR-mutant non-small cell lung cancer with distant metastasis. BMC Cancer 2022, 22, 654. [Google Scholar] [CrossRef] [PubMed]
- Kuijpers, C.; Hendriks, L.E.L.; Derks, J.L.; Dingemans, A.C.; Van Lindert, A.S.R.; Van den Heuvel, M.M.; Damhuis, R.A.; Willems, S.M. Association of molecular status and metastatic organs at diagnosis in patients with stage IV non-squamous non-small cell lung cancer. Lung Cancer J. IASLC 2018, 121, 76–81. [Google Scholar] [CrossRef]
- Zhang, G.; Cheng, R.; Zhang, Z.; Jiang, T.; Ren, S.; Ma, Z.; Zhao, S.; Zhou, C.; Zhang, J. Bisphosphonates enhance antitumor effect of EGFR-TKIs in patients with advanced EGFR mutant NSCLC and bone metastases. Sci. Rep. 2017, 7, 42979. [Google Scholar] [CrossRef] [Green Version]
- Remon, J.; Lopes, G. Upfront osimertinib—Winner takes it all? Nat. Rev. Clin. Oncol. 2020, 17, 202–203. [Google Scholar] [CrossRef]
- Passiglia, F.; Raez, L.E.; Rolfo, C. Moving osimertinib to first-line: The right “strategy” in the chessboard of epidermal growth factor receptor-mutated non-small cell lung cancer? J. Thorac. Dis. 2018, 10, S1076–S1080. [Google Scholar] [CrossRef] [Green Version]
- Haratake, N.; Misumi, T.; Yamanaka, T.; Seto, T. Optimizing Sequential Treatment with EGFR Tyrosine Kinase Inhibitor with a Simulation of the T790M Mutation Rate in EGFR–Mutated Lung Cancer. J. Thorac. Oncol. 2020, 1, 100085. [Google Scholar] [CrossRef]
- Hirsh, V.; Singh, J. Optimal sequencing strategies in the treatment of EGFR mutation-positive non-small cell lung cancer: Clinical benefits and cost-effectiveness. Am. J. Health Syst. Pharm. 2020, 77, 1466–1476. [Google Scholar] [CrossRef]
- Girard, N. Optimizing outcomes and treatment sequences in EGFR mutation-positive non-small-cell lung cancer: Recent updates. Future Oncol. 2019, 15, 2983–2997. [Google Scholar] [CrossRef] [Green Version]
- Roeper, J.; Falk, M.; Schatz, S.; Tiemann, M.; Sackmann, S.; Ukena, D.; Wessler, C.; Wiest, G.; Heukamp, L.; Friesinger, F. Risk of Not Receiving 2nd Line Therapy is High in EGFR mt+ pts: Real World Data of Certified Lung Cancer Centers on Treatment Sequence in EGFR mt+ pts. J. Thorac. Oncol. 2018, 13, S494–S495. [Google Scholar] [CrossRef]
- Chiang, A.; Fernandes, A.; Pavilack, M.; Wu, J.; Laliberte, F.; Duh, M.S.; Chehab, N.; Subramanian, J. Real World Biomarker Testing and Treatment Patterns in Patients with Advanced NSCLC Receiving EGFR-TKIs. J. Thorac. Oncol. 2018, 13, S410–S411. [Google Scholar] [CrossRef] [Green Version]
- Cuppens, K.; Lodewyckx, L.; Demedts, I.; Decoster, L.; Colinet, B.; Deschepper, K.; Janssens, A.; Galdermans, D.; Pieters, T.; Group, R.S. Real-World Treatment Patterns, Epidermal Growth Factor Receptor (EGFR) Testing and Outcomes in EGFR-Mutated Advanced Non-small Cell Lung Cancer Patients in Belgium: Results from the REVEAL Study. Drugs Real World Outcomes 2021, 8, 141–152. [Google Scholar] [CrossRef]
- Gray, J.E.; Thakrar, B.; Sun, P.; Maclachlan, S.; Chehab, N.; Potter, D. Treatment (tx) patterns in patients (pts) with lung cancer starting 1st or 2nd generation (1G/2G) EGFR-TKI: A US insurance claims database analysis. Ann. Oncol. 2018, 29, 156–157. [Google Scholar] [CrossRef]
- Ballard, P.; Yates, J.W.; Yang, Z.; Kim, D.W.; Yang, J.C.; Cantarini, M.; Pickup, K.; Jordan, A.; Hickey, M.; Grist, M.; et al. Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity. Clin. Cancer Res. 2016, 22, 5130–5140. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. FDA Broadens Afatinib Indication to Previously Untreated, Metastatic NSCLC with Other Non-Resistant EGFR Mutations. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-broadens-afatinib-indication-previously-untreated-metastatic-nsclc-other-non-resistant-egfr#:~:text=FDA%20initially%20approved%20afatinib%20in,progressing%20after%20platinum%2Dbased%20chemotherapy (accessed on 1 September 2022).
Drug(s) | Trial (NCT #) | Phase | Population Characteristics | Treatment Regimen /Cohorts | Outcomes | Side Effects | Rate of Discontinuation from Toxicity | FDA Approval Date |
---|---|---|---|---|---|---|---|---|
Erlotinib | EURTAC (NCT00446225) | III | N = 173 Stages IIIB/IV Adenocarcinoma only -Race: White (99%) -EGFR Mutations: ex19del and L858R -Asymptomatic brain metastases were allowed | Cohort A: Erlotinib 150 mg daily Cohort B: Platinum-based chemotherapy | ORR: 63.6% (A) vs. 17.8% (B) mPFS: 9.7 months (A) vs. 5.2 months (B) p < 0.0001 mOS: 19.3 months (A) vs. 19.5 months (B) p = 0.87 | Overall grade ≥3 AE: 45% (A) vs. 67% (B) | 13% (A) vs. 23% (B) | 14 May 2013 |
Gefitinib | IPASS (NCT00322452) | III | N = 1217 Stage IIIB/IV Adenocarcinoma only -Race: Asian (98%) -EGFR Mutations: ex19del, L858R, T790M, other -Excluded patients with untreated brain metastases | Cohort A: Gefitinib 250 mg daily Cohort B: Platinum-based chemotherapy | ORR: 84.8% (A) vs. 43.2% (B) mPFS: not reported; HR, 0.48 (95% CI, 0.34 to 0.67) for those with EGFR mutation mOS: 18.8 months (A) vs. 17.4 months (B) p = 0.109 | Overall grade ≥3 AE: not reported * | 6.9% (A) vs. 13.6% (B) | 13 July 2015 |
NEJ-002 (N/A–Japan) | III | N = 230 Stage IIIB/IV NSCLC -Race: Asian/Japanese (100%) -EGFR Mutations: ex19del, L858R, and other (6.1%) -Asymptomatic brain metastases were allowed | Cohort A: Gefitinib 250 mg daily Cohort B: Platinum-based chemotherapy | ORR: 73.7% (A) vs. 30.7% (B) mPFS: 10.8 months (A) vs. 5.4 months (B) p < 0.001 mOS: 27.7 months (A) vs. 26.6 months (B) p = 0.483 | Overall grade ≥3 AE: 41.2% (A) vs. 71.7% (B) | Not reported | ||
WJTOG3405 (N/A–Japan) | III | N = 118 Stage IIIB/IV NSCLC -Race: Asian/Japanese (100%) -EGFR Mutations: ex19del and L858R -Asymptomatic brain metastases were allowed | Cohort A: Gefitinib 250 mg daily Cohort B: Platinum-based chemotherapy | ORR: 62.1% (A) vs. 32.2% (B) mPFS: 9.2 months (A) vs. 6.3 months (B) p < 0.0001 mOS: 34.9 months (A) vs. 37.3 months (B) p = 0.2070 | Overall grade ≥3 AE: not reported * | Not Reported | ||
IFUM (NCT01203917) | IV | N = 106 Stage IIIA/B/IV NSCLC -Race: White (100%) -EGFR Mutations: ex19del, L858R. T790M, S768I -Inclusion of brain metastatic disease not mentioned | Single-Arm: Gefitinib 250 mg daily | ORR: 69.8% mPFS: 9.7 months mOS: 19.2 months | Overall grade ≥3 AE: 15% | 7.5% | ||
Afatinib | LUX-Lung 3 (NCT00949650) | III | N = 345 Stage IIIB/IV Adenocarcinoma only -Race: White (26.5%), Asian (71.7%), Other (1.7%) -EGFR Mutations: ex19del, L858R, Other (10.3%) -Asymptomatic stable brain metastases were allowed | Cohort A: Afatinib 40 mg daily Cohort B: Platinum-based chemotherapy | ORR: 56% (A) vs. 23% (B) mPFS: 11.1 months (A) vs. 6.9 months (B) p = 0.0004 mOS: 28.2 months (A) vs. 28.2 months (B) p = 0.39 mOS ex19del: 33.3 months (A) vs. 21.1 months (B) p = 0.0015 mOS L858R: 27.6 months (A) vs. 40.3 months (B) p = 0.29 | Overall grade ≥3 AE: 49% (A) vs. 48% (B) | 8% (A) vs. 12% (B) | Approval for EGFR exon 19 deletions or exon 21 (L858R): 23 July 2013 Expansion of indication to all non-resistant EGFR mutations: 12 January 2018 |
LUX-Lung 6 (NCT01121393) | III | N = 364 Stage IIIB/IV Adenocarcinoma only -Race: Asian 100% -EGFR Mutations: ex19del, L858R, other (11%) -Asymptomatic, stable brain metastases were allowed | Cohort A: Afatinib 40 mg daily Cohort B: Platinum-based chemotherapy | ORR: 66.9% (A) vs. 23% (B) mPFS: 13.7 months (A) vs. 5.6 months (B) p < 0.0001 mOS: 23.1 months (A) vs. 23.5 months (B) p = 0.61 mOS ex19del: 31.4 months (A) vs. 18.4 months (B) p = 0.023 mOS L858R: 19.6 months (A) vs. 24.3 months (B) p = 0.34 | Overall grade ≥3 AE: 36% (A) vs. 60.2% (B) | 5.9% (A) vs. 39.8% (B) | ||
LUX-Lung 7 | IIb | N = 319 Stage IIIB/IV Adenocarcinoma only -Race: Asian (59%), White (30%), Black (1%), not available (11%) -EGFR Mutations: ex19del and L858R -Active brain metastases (symptomatic or requiring treatment) excluded | Cohort A: Afatinib 40 mg daily with escalation to 50 mg daily if well tolerated after 4 weeks Cohort B: Gefitinib 250 mg daily | ORR: 70% (A) vs. 56% (B) mPFS: 11.0 months (A) vs. 10.9 months (B), HR 0.73 p < 0.017 mOS: 27.9 months (A) vs. 24.9 months (B) p = 0.258 | Overall grade ≥3 AE: 57% (A) vs. 52% (B) | 6% (A) vs. 6% (B) | ||
Dacomitinib | ARCHER 1050 (NCT01774721) | III | N = 452 Stage IIIB/IV NSCLC -Race: Asian (75%), Black (<1%), White (25%) -EGFR Mutations: ex19del, L858R -Brain or leptomeningeal metastases excluded | Cohort A: Dacomitinib 45 mg daily Cohort B: Gefitinib 250 mg daily | ORR: 75% (A) vs. 72% (B) mPFS: 14.7 months (A) vs. 9.2 months (B) p < 0.0001 mOS: 34.1 months (A) vs. 26.8 months (B) p = 0.438 | Overall grade ≥3 AE: 63% (A) vs. 41% (B) | 10% (A) vs. 7% (B) | 27 September 2018 |
Osimertinib | FLAURA (NCT02296125) | III | N = 556 Stage IIIB/IV NSCLC -Race: Asian (62%), White (36%), Other (1%) -EGFR Mutations: ex19del, L858R -Asymptomatic, stable brain metastases were allowed | Cohort A: Osimertinib 80 mg daily Cohort B: Gefitinib 250 mg daily or Erlotinib 150 mg daily | ORR: 80% (A) vs. 76% (B) mPFS: 18.9 months (A) vs. 10.2 months (B) p < 0.001 mOS: 38.6 months (A) vs. 31.8 months (B) p = 0.046 | Overall grade ≥3 AE: 42% (A) vs. 47% (B) | 15% (A) vs. 18% (B) | 18 April 2018 |
Erlotinib + ramucirumab | RELAY (NCT02411448) | III | N = 449 Stage IV NSCLC -Race: Asian (77%), White (22.3%), Other (1%) -EGFR Mutations: ex19del, L858R -Brain or leptomeningeal metastases excluded | Cohort A: Erlotinib 150 mg daily + ramucirumab 10 mg/kg once every 2 weeks Cohort B: Erlotinib 150 mg daily + placebo once every 2 weeks | ORR: 76% (A) vs. 75% (B) mPFS: 19.4 months (A) vs. 12.4 month p ≤ 0.0001 mOS: Not available | Overall grade ≥3 AE: 72% (A) vs. 54% (B) | 13% (A) vs. 11% (B) | 29 May 2020 |
Classification | Sub-Classification | Examples |
---|---|---|
Primary | Coexisting Activating Mutations/fusions | Uncommon EGFR Mutations: EGFR Exon 20 insertions or duplications, de novo EGFR T790M Other: MET amplifications, ALK fusions/EML4-ALK fusions |
Heterogeneity in TKI Response | Cellular apoptotic machinery heterogeneity/Baseline BIM protein expression differences | |
Secondary/ Acquired | EGFR-Dependent | EGFR T790M (“gatekeeper” mutation) Non-T790M EGFR Mutations: D761Y, S768I, V769L, C797X, L792X, G719A, G769X, L718Q, or G724S |
EGFR-Independent | Bypass Mechanisms: (A) Genetic alterations: MET exon 14 skipping mutation, ERBB2/HER2 mutations/amplification, HER3 upregulation, RET or FGFR3 fusions, PIK3CA/BRAF/KRAS mutations (B) Immune escape: PD-L1 upregulation Histologic Transformation: (A) Small Cell Lung Cancer (B) EMT |
Strategy | Drugs | Supporting Clinical Trial | Population | Intervention | ORR | PFS | OS |
---|---|---|---|---|---|---|---|
3rd Generation TKIs | Osimertinib | AURA 3 | Stages IIIB/IV Adenocarcinoma EGFR T790M after failure to 1st or 2nd generation TKIs N = 419 | Cohort A: Osimertinib 80 mg daily Cohort B: Pemetrexed 500 mg/m2 with either carboplatin AUC 5 or cisplatin 75 mg/m2 every 3 weeks | 71% (A) vs. 31% (B) p < 0.001 | 10.1 months (A) vs. 4.4 months (B), HR 0.30 p < 0.001 | 26.8 months (A) vs. 22.5 months (B) p = 0.277 |
Chemo-Immunotherapy +/− anti-VEGF therapy | Atezolizumab +/− Bevacizumab | IMpower150 | Stage IV non-squamous NSCLC. Those with EGFR mutations should have received and progressed or had unacceptable toxicities while on TKI N = 124/1202 EGFR positive | Cohort A: ABCP: Atezolizumab 1200 mg, bevacizumab 15 mg/Kg, carboplatin AUC 6, paclitaxel 200 mg/m2 every 3 weeks Cohort B: ACP: Atezolizumab 1200 mg, carboplatin AUC 6, paclitaxel 200 mg/m2 every 3 weeks Cohort C: BCP: Bevacizumab 15 mg/Kg, carboplatin AUC 6, paclitaxel 200 mg/m2 every 3 weeks | 70.6% (A) vs. 35.6% (B) vs. 41.9% (C) | 10.2 months (A) vs. 6.9 months (C) HR 0.61 CI 0.36–1.03 6.9 months (B) vs. 6.9 months (C), HR 1.14 CI 0.73–1.78 | 26.1 months (A) vs. 20.3 months (C), HR 0.91 CI 0.53–1.59 21.4 months (B) vs. 20.3 months (C), HR 1.16 CI 0.71–1.89 |
IMpower130 | Stage IV non-squamous NSCLC. Those with EGFR mutations should have received and progressed or had unacceptable toxicities while on TKI N = 44/724 with EGFR or ALK genomic aberrations | Cohort A: Atezolizumab 1200 mg, carboplatin AUC 6, and nab-paclitaxel 100 mg/m2 every 3 weeks Cohort B: Carboplatin AUC 6, and nab-paclitaxel 100 mg/m2 every 3 weeks | EGFR-cohort not reported | 7.0 months (A) vs. 6.0 months (B), HR 0.75 CI 0.36–1.54 | 14.4 months (A) vs. 10.0 months (B), HR 0.98 CI 0.41–2.31 | ||
Sintilimab +/− IBI305 | ORIENT-31 | EGFR-mutant non-squamous NSCLC who had progressed after EGFR TKI N = 444 | Cohort A: Sintilimab 200 mg, IBI305 15 mg/Kg, cisplatin 75 mg/m2, pemetrexed 500 mg/m2 every 3 weeks Cohort B: Sintilimab 200 mg, placebo, cisplatin 75 mg/m2, pemetrexed 500 mg/m2 every 3 weeks Cohort C: Placebo, cisplatin 75 mg/m2, pemetrexed 500 mg/m2 every 3 weeks | 43.9% (A) vs. 33.1% (B) vs. 25.2% (C) | 6.9 months (A) vs. 4.3 months (C) HR 0.464 p < 0.0001 5.6 months (B) vs. 4.3 months (C) HR 0.726 p = 0.0584 | NA | |
Immunotherapy | Pembrolizumab | KEYNOTE-001 | Advanced NSCLC N = 78/550 with common EGFR mutations | Pembrolizumab 2 or 10 mg/Kg every 3 weeks, or 10 mg/Kg every 2 weeks | 7.7% (all), 20% PD-L1 ≥50%, 8.7% PD-L1 1–49%, 0% <1% | NA | NA |
Durvalumab | ATLANTIC | Advanced NSCLC and disease progression after ≥2 systemic therapies N = 111/444 with EGFR or ALK mutations | Durvalumab 10 mg/Kg every 2 weeks | 3.6% (PD-L1 <25%) vs. 12.2% PD-L1 ≥25% | 1.9 months (PD-L1 <25%) vs. 1.9 months (PD-L1 ≥25%) | 9.9 months (PD-L1 <25%) vs. 13.3 months (PD-L1 ≥25%) | |
c-MET Agents | ORCHARD (Experimental Module 1) | Metastatic NSCLC with EGFR and MET alterations after progression on first line osimertinib N = 20 | Osimertinib 80 mg daily with savolitinib 300 or 600 mg daily | 41% | NA | NA | |
TATTON | Locally advanced or metastatic NSCLC with EGFR mutation and MET amplification after progression on EGFR TKIs Cohort B1: Previously treated with 3rd generation TKI N = 69 Cohort B2: No 3rd previous generation TKI T790M negative N = 51 Cohort B3: No 3rd previous generation TKI T790M positive N = 18 Cohort D: No previous 3rd generation TKI T790M negative N = 42 | Cohort B: Osimertinib 80 mg daily with savolitinib 300 mg (if ≤55 Kg) or 600 mg daily Cohort D: Osimertinib 80 mg daily with savolitinib 300 mg daily | All B: 48% B1: 30% B2: 65% B3: 67% D: 64% | All B: 7.6 months B1: 5.4 months B2: 9.0 months B3: 11.0 months D: 9.1 months | NA | ||
CHRYSALIS | Metastatic or unresectable NSCLC with EGFR mutation who progressed on osimertinib and were chemotherapy naïve N = 166 (121 cohort A, 45 cohort B) | Cohort A: Amivantamab 1050 mg (1400 mg for patients ≥80 kg) weekly Cohort B: Amivantamab 1050 mg (1400 mg for patients ≥80 kg) weekly with lazertinib 240 mg daily | Cohort A: 19% Cohort B: 36% | NA Cohort A median DOR: 5.9 months Cohort B median DOR: 9.6 months | NA | ||
CHRYSALIS 2 | Advanced or metastatic NSCLC with EGFR exon 19 deletion or L858R that progressed after osimertinib (1st or 2nd line) and platinum-based chemotherapy N = 162 | Amivantamab 1050 mg (1400 mg if ≥80 Kg) with lazertinib 240 mg daily | 36% | NA DOR: not reached | NA | ||
ADC | NCT03260491 | Locally advanced or metastatic EGFR-mutant NSCLC who fail prior TKI N = 57 Prior osimertinib and platinum-based chemotherapy: N = 44 | HER3-DXd (pertuzumab deruxtecan) 5.6 mg/kg every 3 weeks | All: 39% Prior osimertinib and platinum chemotherapy: 39% | All: 8.2 months Prior osimertinib and platinum chemotherapy: 8.2 months | NA | |
TROPION-PanTumor 01 | Advanced or metastatic NSCLC with Actionable Mutations who failed TKI and chemotherapy N = 34 EGFR-mutant: N = 29, 65% after osimertinib | Datopotamab deruxtecan 4 mg/Kg, 6 mg/Kg, or 8 mg/Kg | 35% | NA Median DOR: 9.5 months | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin-Acevedo, J.A.; Pellini, B.; Kimbrough, E.O.; Hicks, J.K.; Chiappori, A. Treatment Strategies for Non-Small Cell Lung Cancer with Common EGFR Mutations: A Review of the History of EGFR TKIs Approval and Emerging Data. Cancers 2023, 15, 629. https://doi.org/10.3390/cancers15030629
Marin-Acevedo JA, Pellini B, Kimbrough EO, Hicks JK, Chiappori A. Treatment Strategies for Non-Small Cell Lung Cancer with Common EGFR Mutations: A Review of the History of EGFR TKIs Approval and Emerging Data. Cancers. 2023; 15(3):629. https://doi.org/10.3390/cancers15030629
Chicago/Turabian StyleMarin-Acevedo, Julian A., Bruna Pellini, ErinMarie O. Kimbrough, J. Kevin Hicks, and Alberto Chiappori. 2023. "Treatment Strategies for Non-Small Cell Lung Cancer with Common EGFR Mutations: A Review of the History of EGFR TKIs Approval and Emerging Data" Cancers 15, no. 3: 629. https://doi.org/10.3390/cancers15030629
APA StyleMarin-Acevedo, J. A., Pellini, B., Kimbrough, E. O., Hicks, J. K., & Chiappori, A. (2023). Treatment Strategies for Non-Small Cell Lung Cancer with Common EGFR Mutations: A Review of the History of EGFR TKIs Approval and Emerging Data. Cancers, 15(3), 629. https://doi.org/10.3390/cancers15030629