Impaired Expression of the Salvador Homolog-1 Gene Is Associated with the Development and Progression of Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Collection of Tissue Specimens
2.2. Cell Culture
2.3. Total RNA Extraction, Reverse Transcription, and Real-Time Quantitative PCR
2.4. Immunohistochemistry and Immunoreactivity Evaluation
2.5. Database Analysis
2.6. Statistical Analysis
3. Results
3.1. Downregulated Expression of SAV1 mRNA in CRC Tissues and Cell Lines
3.2. Heterogeneous Cytoplasmic Immunoreactivity of SAV1 in CRC Tissues and the Association of Its Decreased Levels with Poorer Clinicopathological Parameters
3.3. Overall Patient Survival Is Not Related to the Level of SAV1 Expression in CRC Tissues
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sebio, A.; Lenz, H.J. Molecular Pathways: Hippo Signaling, a Critical Tumor Suppressor. Clin. Cancer Res. 2015, 21, 5002–5007. [Google Scholar] [CrossRef]
- Mo, J.S.; Park, H.W.; Guan, K.L. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 2014, 15, 642–656. [Google Scholar] [CrossRef]
- Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell. 2010, 19, 491–505. [Google Scholar] [CrossRef]
- Bao, Y.; Hata, Y.; Ikeda, M.; Withanage, K. Mammalian Hippo pathway: From development to cancer and beyond. J. Biochem. 2011, 149, 361–379. [Google Scholar] [CrossRef]
- Liang, K.; Zhou, G.; Zhang, Q.; Li, J.; Zhang, C. Expression of hippo pathway in colorectal cancer. Saudi J. Gastroenterol. 2014, 20, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicki, P.M.; Rybarczyk, A. The Hippo pathway in colorectal cancer. Folia Histochem. Cytobiol. 2015, 53, 105–119. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- de Amorim, Í.S.S.; de Sousa Rodrigues, M.M.; Mencalha, A.L. The tumor suppressor role of salvador family WW domain-containing protein 1 (SAV1): One of the key pieces of the tumor puzzle. J. Cancer Res. Clin. Oncol. 2021, 147, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- Donninger, H.; Allen, N.; Henson, A.; Pogue, J.; Williams, A.; Gordon, L.; Kassler, S.; Dunwell, T.; Latif, F.; Clark, G.J. Salvador protein is a tumor suppressor effector of RASSF1A with hippo pathway-independent functions. J. Biol. Chem. 2011, 286, 18483–18491. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, T.S.; Yang, T.H.; Koo, B.K.; Oh, S.P.; Lee, K.P.; Oh, H.J.; Lee, S.H.; Kong, Y.Y.; Kim, J.M.; et al. A crucial role of WW45 in developing epithelial tissues in the mouse. EMBO J. 2008, 27, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.P.; Lee, J.H.; Kim, T.S.; Kim, T.H.; Park, H.D.; Byun, J.S.; Kim, M.C.; Jeong, W.I.; Calvisi, D.F.; Kim, J.M.; et al. The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc. Natl. Acad. Sci. USA 2010, 107, 8248–8253. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, N.; Zheng, Y.; de Wilde, R.F.; Maitra, A.; Pan, D. The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes. Dev. 2010, 24, 2383–2388. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Y.; Li, P.P.; Wang, R.; Zhu, Y.; Zheng, F.; Li, L.; Cui, J.J.; Wang, L.W. Expression profile and prognostic value of SAV1 in patients with pancreatic ductal adenocarcinoma. Tumour Biol. 2016, 37, 16207–16213. [Google Scholar] [CrossRef] [PubMed]
- de Amorim, Í.S.S.; Dias, I.X.; Pinheiro, D.; de Carvalho, S.N.; Nicolau-Neto, P.; Rodrigues, J.A.; Siqueira, P.B.; Oliveira, M.D.S.; Panis, C.; da Fonseca, A.S. Profiles of Expression of SAV1 in Normoxia or Hypoxia Microenviroment are Associated with Breast Cancer Prognosis. Arch. Med. Res. 2023, 54, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, K.; Nakada, C.; Mashio, M.; Narimatsu, T.; Yoshimoto, T.; Tanigawa, M.; Tsukamoto, Y.; Hijiya, N.; Takeuchi, I.; Nomura, T.; et al. Downregulation of SAV1 plays a role in pathogenesis of high-grade clear cell renal cell carcinoma. BMC Cancer 2011, 11, 523. [Google Scholar] [CrossRef]
- Jiang, J.; Chang, W.; Fu, Y.; Gao, Y.; Zhao, C.; Zhang, X.; Zhang, S. SAV1 represses the development of human colorectal cancer by regulating the Akt-mTOR pathway in a YAP-dependent manner. Cell Prolif. 2017, 50, e12351. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Chang, W.; Fu, Y.; Gao, Y.; Zhao, C.; Zhang, X.; Zhang, S. SAV1, regulated by microRNA-21, suppresses tumor growth in colorectal cancer. Biochem. Cell Biol. 2019, 97, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Flatmark, K.; Maelandsmo, G.M.; Martinsen, M.; Rasmussen, H.; Fodstad, Ø. Twelve colorectal cancer cell lines exhibit highly variable growth and metastatic capacities in an orthotopic model in nude mice. Eur. J. Cancer 2004, 40, 1593–1598. [Google Scholar] [CrossRef]
- Kowalczyk, A.E.; Krazinski, B.E.; Godlewski, J.; Kiewisz, J.; Kwiatkowski, P.; Sliwinska-Jewsiewicka, A.; Kiezun, J.; Wierzbicki, P.M.; Bodek, G.; Sulik, M.; et al. Altered expression of the PLAGL1 (ZAC1/LOT1) gene in colorectal cancer: Correlations to the clinicopathological parameters. Int. J. Oncol. 2015, 47, 951–962. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Kowalczyk, A.E.; Godlewski, J.; Krazinski, B.E.; Kiewisz, J.; Sliwinska-Jewsiewicka, A.; Kwiatkowski, P.; Pula, B.; Dziegiel, P.; Janiszewski, J.; Wierzbicki, P.M.; et al. Divergent expression patterns of SATB1 mRNA and SATB1 protein in colorectal cancer and normal tissues. Tumour. Biol. 2015, 36, 4441–4452. [Google Scholar] [CrossRef] [PubMed]
- Remmele, W.; Stegner, H.E. Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer. Pathologe 1987, 8, 138–140. [Google Scholar] [PubMed]
- Broad Institute TCGA Genome Data Analysis Center. Analysis Overview for Colorectal Adenocarcinoma (Primary Solid Tumor Cohort)—28 January 2016; Broad Institute of MIT and Harvard: Cambridge, MA, USA, 2016. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The CBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.X.; Meng, Z.; Plouffe, S.W.; Guan, K.L. Hippo pathway regulation of gastrointestinal tissues. Annu. Rev. Physiol. 2015, 77, 201–227. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.W.; Meng, Z.; Guan, K.L. The Hippo pathway in intestinal regeneration and disease. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 324–337. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Shi, K.; Zhou, Q.B.; Zeng, X.Y.; Liu, J.; Yang, S.X.; Wang, Q.S.; Li, Z.; Wang, G.X.; Song, J.M.; et al. MiR-590-3p promotes proliferation and metastasis of colorectal cancer via Hippo pathway. Oncotarget 2017, 8, 58061–58071. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Q.; Yuan, W.; Li, X.; Chen, C.; Guo, Y.; Shao, B.; Dang, Q.; Zhou, Q.; Wang, Q.; et al. MiR-103a-3p promotes tumour glycolysis in colorectal cancer via hippo/YAP1/HIF1A axis. J. Exp. Clin. Cancer Res. 2020, 39, 250. [Google Scholar] [CrossRef]
- Won, G.W.; Park, S.H.; Park, J.; Lee, Y.; Lee, Y.H. Mammalian Hippo kinase pathway is downregulated by BCL-2 via protein degradation. Biochem. Biophys. Res. Commun. 2019, 512, 87–92. [Google Scholar] [CrossRef]
- Ramesh, P.; Medema, J.P. BCL-2 family deregulation in colorectal cancer: Potential for BH3 mimetics in therapy. Apoptosis 2020, 25, 305–320. [Google Scholar] [CrossRef]
- Wang, L.; Wang, M.; Hu, C.; Li, P.; Qiao, Y.; Xia, Y.; Liu, L.; Jiang, X. Protein salvador homolog 1 acts as a tumor suppressor and is modulated by hypermethylation in pancreatic ductal adenocarcinoma. Oncotarget 2017, 8, 62953–62961. [Google Scholar] [CrossRef]
- Hill, V.K.; Dunwell, T.L.; Catchpoole, D.; Krex, D.; Brini, A.T.; Griffiths, M.; Craddock, C.; Maher, E.R.; Latif, F. Frequent epigenetic inactivation of KIBRA, an upstream member of the Salvador/Warts/Hippo (SWH) tumor suppressor network, is associated with specific genetic event in B-cell acute lymphocytic leukemia. Epigenetics 2011, 6, 326–332. [Google Scholar] [CrossRef]
- Seidel, C.; Schagdarsurengin, U.; Blümke, K.; Würl, P.; Pfeifer, G.P.; Hauptmann, S.; Taubert, H.; Dammann, R. Frequent hypermethylation of MST1 and MST2 in soft tissue sarcoma. Mol. Carcinog. 2007, 46, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, C.; Wu, X.; Li, A.X.; Liu, L.; Tsark, W.; Dammann, R.; Shen, H.; Vonderfecht, S.L.; Pfeifer, G.P. Analysis of Liver Tumor-Prone Mouse Models of the Hippo Kinase Scaffold Proteins RASSF1A and SAV1. Cancer Res. 2016, 76, 2824–2835. [Google Scholar] [CrossRef] [PubMed]
- Yoo, N.J.; Soung, Y.H.; Lee, J.W.; Park, W.S.; Kim, S.Y.; Nam, S.W.; Han, J.H.; Kim, S.H.; Lee, J.Y.; Lee, S.H. Mutational analysis of salvador gene in human carcinomas. APMIS 2003, 111, 595–598. [Google Scholar] [CrossRef] [PubMed]
- Mehra, R.; Vats, P.; Cieslik, M.; Cao, X.; Su, F.; Shukla, S.; Udager, A.M.; Wang, R.; Pan, J.; Kasaian, K.; et al. Biallelic Alteration and Dysregulation of the Hippo Pathway in Mucinous Tubular and Spindle Cell Carcinoma of the Kidney. Cancer Discov. 2016, 6, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Park, B.H.; Lee, Y.H. Phosphorylation of SAV1 by mammalian ste20-like kinase promotes cell death. BMB Rep. 2011, 44, 584–589. [Google Scholar] [CrossRef]
- Callus, B.A.; Verhagen, A.M.; Vaux, D.L. Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C-terminal coiled-coil domains, leads to its stabilization and phosphorylation. FEBS J. 2006, 273, 4264–4276. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.P.; Zhu, J.S.; Zhang, Q.; Wang, X.Y. A breakdown of the Hippo pathway in gastric cancer. Hepatogastroenterology 2011, 58, 1611–16717. [Google Scholar] [CrossRef]
- Li, X.; Zhou, X.; Fan, Y.; Zhang, Y.; Zu, L.; Yao, F.; Zhou, Q. WW45, a Gli1 binding protein, negatively regulated Hedgehog signaling in lung cancer. Oncotarget 2016, 7, 68966–68975. [Google Scholar] [CrossRef]
- Kim, H.B.; Kim, M.; Park, Y.S.; Park, I.; Kim, T.; Yang, S.Y.; Cho, C.J.; Hwang, D.; Jung, J.H.; Markowitz, S.D.; et al. Prostaglandin E2 Activates YAP and a Positive-Signaling Loop to Promote Colon Regeneration After Colitis but Also Carcinogenesis in Mice. Gastroenterology 2017, 152, 616–630. [Google Scholar] [CrossRef] [PubMed]
Parameters | N | SAV1 mRNA RQ (CRC vs. Non-Cancerous Large Intestine) | SAV1 Cytoplasmic IRS (CRC vs. Non-Cancerous Large Intestine) | ||||
---|---|---|---|---|---|---|---|
RQ < 1 n (%) | RQ > 1 n (%) | p-Value | Downregulated n (%) | Upregulated or No Change n (%) | p-Value | ||
Total | 94 | 88 (93.6) | 6 (6.4) | 11 (11.7) | 83 (88.3) | ||
Sex | |||||||
Men | 57 | 53 (93.0) | 4 (7.0) | 1.0000 | 7 (12.3) | 50 (87.7) | 1.0000 |
Women | 37 | 35 (94.6) | 2 (5.4) | 4 (10.8) | 33 (89.2) | ||
Age (median = 67.5) | |||||||
<67.5 years | 47 | 42 (89.4) | 5 (10.6) | 0.2035 | 8 (17.0) | 39 (83.0) | 0.1979 |
>67.5 years | 47 | 46 (97.9) | 1 (2.1) | 3 (6.4) | 44 (93.6) | ||
Localization | |||||||
Cecum and ascending colon | 33 | 30 (90.9) | 3 (9.1) | 0.7184 | 6 (18.2) | 27 (81.8) | 0.3558 |
Transverse, descending, and sigmoid colon | 24 | 23 (95.8) | 1 (4.2) | 2 (8.3) | 22 (91.7) | ||
Rectum | 37 | 35 (94.6) | 2 (5.4) | 3 (8.1) | 34 (91.9) | ||
Depth of invasion (T status) | |||||||
T1 + T2 | 14 | 13 (92.9) | 1 (7.1) | 1.0000 | 1 (7.1) | 13 (92.9) | 1.0000 |
T3 + T4 | 80 | 75 (93.8) | 5 (6.2) | 10 (12.5) | 70 (87.5) | ||
Lymph node metastasis (N status) | |||||||
N0 | 51 | 48 (94.1) | 3 (5.9) | 1.0000 | 1 (2.0) | 50 (98.0) | 0.0022 |
N1 + N2 | 43 | 40 (93.0) | 3 (7.0) | 10 (23.3) | 33 (76.7) | ||
Metastasis (M status) | |||||||
M0 | 83 | 77 (92.8) | 6 (7.2) | 1.0000 | 11 (13.3) | 72 (86.7) | 0.3506 |
M1 | 11 | 11 (100.0) | 0 (0.0) | 0 (0.0) | 11 (100.0) | ||
TNM stage | |||||||
I + II | 48 | 45 (93.8) | 3 (6.2) | 1.0000 | 1 (2.1) | 47 (97.9) | 0.0034 |
III + IV | 46 | 43 (93.5) | 3 (6.5) | 10 (21.7) | 36 (78.3) | ||
Grade of differentiation | |||||||
G2 | 86 | 81 (94.2) | 5 (5.8) | 0.4226 | 8 (9.3) | 78 (90.7) | 0.0489 |
G3 | 8 | 7 (87.5) | 1 (12.5) | 3 (37.5) | 5 (62.5) |
Parameters | Overall Survival—Cox Regression | |||
---|---|---|---|---|
Univariate | Multivariate | |||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
SAV1 mRNA RQ (downregulated vs. upregulated) | 1.01 (0.31–3.27) | 0.9880 | ||
SAV1 IRS (downregulated vs. no change/upregulated) | 1.03 (0.41–2.64) | 0.9412 | ||
Sex (women vs. men) | 0.72 (0.38–1.37) | 0.3120 | ||
Age (>67.5 vs. <67.5 years) | 1.55 (0.84–2.89) | 0.1593 | ||
Localization | ||||
(rectum vs. transverse, descending, and sigmoid colon) | 1.15 (0.54–2.46) | 0.4798 | ||
(rectum vs. cecum and ascending colon) | 0.80 (0.39–1.65) | 0.3924 | ||
Depth of invasion (T status) (T3 + T4 vs. T1 + T2) | 2.82 (0.87–9.15) | 0.0834 | ||
Lymph node metastasis (N status) (N1 + N2 vs. N0) | 3.12 (1.63–5.98) | 0.0006 | 0.99 (0.26–3.85) | 0.9919 |
Metastasis (M status) (M1 vs. M0) | 6.39 (3.00–13.62) | <0.0001 | 3.68 (1.51–8.96) | 0.0041 |
TNM stage (III + IV vs. I + II) | 4.17 (2.08–8.37) | <0.0001 | 3.27 (0.70–15.34) | 0.1322 |
Grade of differentiation (G3 vs. G2) | 0.85 (0.26–2.74) | 0.7793 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalczyk, A.E.; Krazinski, B.E.; Piotrowska, A.; Grzegrzolka, J.; Godlewski, J.; Dziegiel, P.; Kmiec, Z. Impaired Expression of the Salvador Homolog-1 Gene Is Associated with the Development and Progression of Colorectal Cancer. Cancers 2023, 15, 5771. https://doi.org/10.3390/cancers15245771
Kowalczyk AE, Krazinski BE, Piotrowska A, Grzegrzolka J, Godlewski J, Dziegiel P, Kmiec Z. Impaired Expression of the Salvador Homolog-1 Gene Is Associated with the Development and Progression of Colorectal Cancer. Cancers. 2023; 15(24):5771. https://doi.org/10.3390/cancers15245771
Chicago/Turabian StyleKowalczyk, Anna Ewa, Bartlomiej Emil Krazinski, Aleksandra Piotrowska, Jedrzej Grzegrzolka, Janusz Godlewski, Piotr Dziegiel, and Zbigniew Kmiec. 2023. "Impaired Expression of the Salvador Homolog-1 Gene Is Associated with the Development and Progression of Colorectal Cancer" Cancers 15, no. 24: 5771. https://doi.org/10.3390/cancers15245771
APA StyleKowalczyk, A. E., Krazinski, B. E., Piotrowska, A., Grzegrzolka, J., Godlewski, J., Dziegiel, P., & Kmiec, Z. (2023). Impaired Expression of the Salvador Homolog-1 Gene Is Associated with the Development and Progression of Colorectal Cancer. Cancers, 15(24), 5771. https://doi.org/10.3390/cancers15245771