An Updated Review on the Emerging Role of Indocyanine Green (ICG) as a Sentinel Lymph Node Tracer in Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Studies Using ICG and BD as SLNB Tracers
Study | Country | Tracer | Type of Study | No. of Patients | Eligibility Criteria | Results | Reference |
---|---|---|---|---|---|---|---|
Coibion et al., 2022 | Belgium | ICG vs. BD | prospective randomized trial | 240 | cN0 early breast cancer | IR of ICG 100% IR of BD 97.5% Mean number of SLNs for ICG 3.6 and for BD 3 | [15] |
Lin et al., 2020 | Taiwan | ICG + BD | prospective observational study | 39 | cN0 early breast cancer | IR of ICG 97.5% IR of BD 70% Mean number of SLNs for ICG 2.1 and for BD 0.93 (p < 0.001) Obesity significantly reduces IR for ICG (in BMI < 30 IR 100% and in BMI > 30 IR 75%) | [22] |
Ng et al., 2022 | UK | ICG + BD | prospective observational study | 239 | all SLNB eligible patients (of whom 24 post-NAC and 35 post-NET) | IR of ICG 98.6% IR of BD 85.1% Nodal detection rate post-NAC 87.5% (21/24) and post-NET 100% (35/35) ICG is effective regardless of BMI | [21] |
Pinto el al. 2022 | Portugal | ICG + BD | prospective observational study | 37 | cN1 after NAC (towards SLNB-TAD with ultrasound guided excision of the clipped node) | IR of ICG 89.2% IR of BD 85.5% | [20] |
Qin et al., 2019 | China | ICG + BD, BD, BD + CNP | prospective randomized trial | 180 | cTis-3N0 | IR of ICG + BD 100% IR of BD 96.7% IR of BD + CN 98.3% (p = 0.362) Mean number of SLNs for ICG + BD 3.4, for BD 1.7 and for BD + CN 2.4 (p < 0.001) | [17] |
Shen et al., 2018 | China | ICG + BD vs. BD | prospective non-randomized trial | 523 | cT1-2N0 | IR of ICG 99.2% IR of BD 93.3% (p < 0.001) Mean number of SLNs for ICG + BD 3.7 and for BD 3.2 (p = 0.004) | [24] |
Takemoto et al., 2018 | Japan | ICG + BD vs. ICG | retrospective study | 202 | cT1-2N0 | IR of ICG + BD 96.4% IR of BD 83.7% IR of ICG signficantly lower for BMI > 25 | [30] |
Wang et al., 2021 | China | ICG + BD | prospective single-arm study | 60 | cN0 early breast cancer | IR of ICG + BD 100% IR of BD 87% Mean number of SLNs for ICG + BD 3, for BD 2 (p < 0.05) | [18] |
Wang et al., 2021 | China | ICG + BD | retrospective study | 1061 | cTis-3N0 | IR of ICG + BD 99.6% 94.1% of positive nodes could be identified with ICG + BD Ipsilateral axillary recurrence 0.64% in patients with negative SLNs after 5.6 years of follow up | [28] |
Wang et al., 2020 | China | ICG + BD | prospective non-randomized trial | 70 | cT1-3N0 | IR of ICG 100% IR of BD 93% Mean number of SLNs for ICG 3.5, for BD 2.4 (p < 0.05) | [19] |
Xu et al., 2022 | China | ICG + BD | retrospective study | 156 | cN0 stage I, II breast cancer | IR of ICG + BD 97.4% IR of BD 84.6% IR of ICG 92.9% FNR of ICG + BD 7.3%, BD 10.9% and ICG 9.1% | [27] |
Xu et al., 2022 | China | ICG + BD | retrospective study | 127 | breast-conserving patients who underwent SLNB and met the criteria of Z0011 trial | 53/127 patients had SLNs with ICG(+)/MB(−) phenotype 16/127 patients had metastatic SLNs with ICG(+)/MB(−) phenotype | [26] |
Yang et al., 2023 | China | ICG + BD vs. BD | retrospective study | 300 | cT1-2N0 | IR of ICG + BD 98.5% IR of BD 91.5% (p = 0.007) Mean number of SLNs for ICG + BD 3.1, for ICG 3 and for BD 2.6 (p < 0.05) | [29] |
Yang et al., 2023 | China | ICG + BD | retrospective study | 1574 | cTis-2N0 | IR of ICG + BD 99.7% Postoperative regional lymph node recurrence rate is 0.7% in patients with negative SLNs (4.7 years of follow up) | [25] |
Yuan et al., 2019 | China | ICG + BD | observational study | 312 | cT1-3N0 | IR of ICG + BD 100% IR of ICG 93.1% IR of BD 89.5% FNR of ICG + BD, ICG and BD are 11.2%, 11.1% and 16.7%, respectively | [23] |
Zhang et al., 2021 | China | ICG + BD vs. BD | randomized controlled trial | 415 | cT1-2N0 | IR of ICG + BD 96.9% IR of BD 89.7% FNR of ICG + BD and BD is 7.3% and 10.5%, respectively (p > 0.05) | [16] |
3. Studies Using ICG and RI as SLNB Tracers
Study | Country | Tracer | Type of Study | No. of Patients | Eligibility Criteria | Results | Reference |
---|---|---|---|---|---|---|---|
Bargon et al., 2022 | Netherlands | ICG + RI | prospective single-arm noninferiority study | 102 | cT1-2N0 breast-conserving patients | IR of ICG 96.1% IR of RI 86.7% IR of pathological SLNs 86.7% for both ICG and RI | [39] |
Dumitru et al., 2022 | UK | ICG + RI | prospective observational study | 79 | cTis-2N0 | IR of ICG + RI 98.7% IR of ICG 98.1% IR of RI 73.4% Concordance rate 71.4% between ICG and RI [90% of SLNs were ICG(+) and 73.4% of SLNs were RI(+)] | [40] |
Fregatti et al., 2021 | Italy | ICG + RI | prospective study | 54 | cT1N0 | IR of ICG 96.3% IR of RI 100% ICG is cost-effective if the cost of the device is not included (with the addition of the cost of the device, when 118 patients undergo SLNB by ICG, there is a net saving of 254 euro per patient) | [33] |
Jimbo et al., 2022 | Japan | ICG + RI | retrospective study | 338 | cT0-3,N0 | IR of ICG + RI, ICG, RI was 99.7%, 96.4% and 91.7%, respectively (not significant). However, 411.3% discordance between ICG and RI in detecting metastatic disease (i.e., 38/338 patients would be false negative with ICG or RI alone) | [34] |
Jung et al., 2019 | Korea | ICG + RI vs. RI | phase 2, prospective, single-center, randomized trial | 130 | cT0-4N0-3M0 patients in post NACT setting | IR of ICG + RI 98.3% IR of RI 93.8% Average number of SLNs 2.2 with ICG + RI and 1.9 with RI alone (not significant) | [32] |
Kang et al., 2022 | Korea | ICG + RI | prospective comparative study | 78 | cTis-2,N0-1 | 83–84% of retrieved SLNs were identical in the uptake of ICG and RI. Discordance between ICG and RI 17.7% (but regarding the first SLN, the discordance rate is 6.3%) | [42] |
Mazouni et al., 2018 | France | ICG + RI | prospective study | 122 | cT0-2N0 | IR of ICG + RI 98.3% IR of ICG 82% IR of RI 96.7% Concordance between ICG and RI 82% Obesity and SLN macrometastasis strongly correlate with ICG failure | [41] |
Ngo et al., 2020 | France | ICG + RI | prospective clinical trial | 77 | cT1-2N0 | IR of ICG + RI 99% IR of ICG 96% IR of RI 93% No difference in FNR Mean number of SLNs for ICG + RI 2.7, for ICG 2.3 and for RI 2.3 (not significant) | [35] |
Papathemelis et al., 2018 | Germany | ICG + RI | retrospective single-arm single-center study | 104 | all SLNB eligible patients (including 19 after NACT) | IR of ICG + RI 100% IR of ICG 98% IR of RI 98% FNR for ICG was 0% and for RI was 4.8% all 10 post NACT patients were ICG(+) | [36] |
Staubach et al., 2022 | Germany | ICG + RI | retrospective double-arm study | 161 | cN0 early breast cancer vs. patients receiving SLNB in the post NACT setting | For primary SLNB: IR of ICG, RI and ICG + RI were 94.3%, 96.2% and 98.1%, respectively. For SLNB post NACT: IR of ICG 95.4% and IR of RI 95.4% | [37] |
Valente et al., 2018 | USA | ICG + RI | prospective clinical trial | 92 | cT1-2N0 | 81% of SLNs were ICG(+)/RI(+) 14% of SLNs were ICG(+)/RI(−) 5% of SLNs were ICG(−)/RI(+) ICG is equivalent to RI regarding IR | [38] |
Vermersch et al., 2019 | France | ICG + RI vs. RI | randomized controlled trial | 99 | cN0 breast cancer | SLNs were ICG(+) in 92.6% of patients, RI(+) in 85.2% and both ICG+RI(+) in 78.7% Mean number of SLNs for ICG+RI 2.14 and for RI 1.77 (p = 0.09) | [31] |
4. Studies Using ICG, RI and BD as SLNB Tracers
Study | Country | Tracer | Type of Study | No. of Patients | Eligibility Criteria | Results | Reference |
---|---|---|---|---|---|---|---|
Agrawal et al., 2020 | India | ICG + BD vs. RI + BD | retrospective analysis of prospectively collected data | 207 | cN0 early stage breast cancer | IR of ICG + BD 97% IR of RI + BD 95% (p = 0.72) Mean number of SLNs identified 2.73 for ICG + BD and 3.17 for RI + BD (p = 0.07) Average cost for ICG + BD USD 40 and for RI + BD USD 130 | [52] |
Agrawal et al., 2022 | India | ICG + BD vs. BD vs. RI vs. RI + BD | retrospective analysis of prospectively collected data | 1521 | 95% cN0 breast cancer and 5% in post NACT setting | IR of ICG + BD 98% IR of RI + BD 96% IR of BD 94% IR of RI 93.5% (p = 0.004) Mean number of SLNs for ICG + BD 3.4 and for RI + BD 2.8 (p < 0.001) | [45] |
Chirappapha et al., 2020 | Thailand | ICG + BD + RI | prospective study | 23 | after NACT | IR of ICG, BD and RI was 95.23%, 85.71% and 85.71% IR of ICG + BD 100% IR of RI + BD 95.23% FNR for ICG, BD, RI were 10%, 30% and 40%, respectively, and for ICG + BD + RI < 10% | [50] |
Hua et al., 2022 | China | ICG + BD + RI ICG + BD | retrospective study | 194 | cN0 | IR of ICG 95.5% IR of RI 95.5% IR of BD 86.4% IR of ICG + RI + BD 100% FNR no significant differences | [47] |
Jin et al., 2022 | China | ICG + BD + RI | prospective self-controlled | 182 | cN0 breast cancer (152/182) and after NACT (30/182) | IR of ICG + BD 100% IR of RI + BD 98.9% Significantly more SLNs detected with ICG + BD vs. RI + BD Similar IRs between the cN0 and the post NACT group | [51] |
Nguyen et al., 2022 | Australia | ICG + RI vs. BD + RI | prospective cohort of patients undergoing ICG + RI SLNB, compared with retrospective cohort of standard BD + RI SLNB | 300 | cN0 early breast cancer | ICG + RI is an effective and safe alternative to standard BD + RI In the BD + RI group there were 2 cases of anaphylaxis and 2 cases of skin tattooing | [47] |
Somashekhar et al., 2020 | India | ICG + RI + BD | non-randomized prospective observational stusy | 100 | cN0 early breast cancer | IR of ICG 96% IR of RI + BD 94% False negative rates for ICG 3.1% and for RI + BD 6.2% Cost of RI + BD USD 350 per patient, whereas <USD 50 for ICG (imaging system instrument not included) | [49] |
Suhani et al., 2023 | India | ICG + BD vs. RI + BD | randomized controlled trial | 70 | cTis-2N0 | IR of ICG + BD 100% IR of RI + BD 91.4% (p = 0.07) Mean number of SLNs for ICG + BD 4 and for RI + BD 3 (p = 0.048) Cost of ICG + BD USD 175 and for RI + BD USD 36 (NIR equipment included) | [44] |
Vaz et al., 2018 | Portugal | ICG + RI + BD | retrospective study | 232 | 94% breast cancer cN0 and 6% post NACT | IR of ICG 91.4% IR of RI 97.2% IR of BD 89.5% In obese patients, no significant difference regarding IR between ICG, RI and BD | [48] |
Yuan et al., 2018 | China | ICG + BD vs. RI + BD | randomized trial | 471 | cTis-3N0 | IR of ICG + BD 99% IR of RI + BD 99.6% FNR for ICG + BD and RI + BD were 5.6% and 7.5%, respectively (p > 0.05) | [43] |
5. ICG as SLNB Tracer in the Post NACT Setting
6. ICG as SLNB Tracer in Obese Patients
7. ICG as SLNB Tracer within Clinical Practice Guidelines
8. Meta-Analyses on the Use of ICG as SLNB Tracer for Breast Cancer
Meta-Analysis | Tracers | No. of Studies | No. of Patients | Results | Reference |
---|---|---|---|---|---|
Wang et al., 2023 | ICG + BD vs. BD | 11 | 2137 | ICG + BD has significantly higher detection rate, and significantly higher number of SLNs detected, compared with BD alone | [60] |
Rocco et al., 2023 | ICG vs. conventional tracers | 22 | 3980 | ICG has significantly higher identification rate and significantly higher number of SLNs detected, compared with conventional single or dual tracer | [65] |
Liu et al., 2021 | ICG + BD vs. RI + BD vs. BD | 49 | 7498 | Both ICG + BD and RI + BD can be used as effective mapping methods to improve the detection rate, compared with BD alone For ICG + BD the IR is 97% and FNR 7% For RI + BD the IR is 96% and FNR is 7% | [68] |
Yin et al., 2020 | ICG vs. BD ICG vs. RI ICG vs. RI + BD | 21 | 2671 | ICG is better tracer compared with BD or RI alone, and is not a worse tracer compared with BD + RI | [66] |
Kedrzycki et al., 2021 | ICG vs. BD ICG vs. RI ICG vs. RI + BD | 10 | 944 | ICG is equivalent to RI regarding SLN identification, and superior to BD alone and to gold standard BD + RI | [63] |
Thongvitokomarn et al., 2020 | ICG vs. BD ICG vs. RI | 30 | 4216 | ICG is equivalent to RI regarding SLN identification, and superior to BD The mean number of SLNs removed were 2.35, 1.92 and 1.72 for ICG, BD and RI, respectively | [64] |
Goonawardena et al., 2020 | ICG vs. RI ICG + RI vs. RI ICG + RI vs. ICG | 19 | 2301 | ICG is equivalent to RI regarding SLN detection and sensitivity (metastatic SLNs detection). Dual mapping with ICG + RI is significantly better compared with RI or ICG alone. | [62] |
Mok et al., 2019 | ICG vs. RI vs. BD vs. (RI + BD) vs. SPIO vs. CEUS | 35 | 4244 | ICG alone is superior to BD alone and comparable to the standard dual-technique of RI + BD, in terms of IR and FNR | [67] |
Sugie et al., 2017 | ICG vs. RI | 12 | 1736 | No significant difference between ICG and RI in terms of SLN IR | [61] |
Niebling et al., 2016 | ICG vs. (ICG + RI) vs. (RI + BD) vs. RI vs. BD | 154 (88 breast cancer and 66 melanoma) | 44,172 | Regarding the included breast cancer studies:
| [69] |
Unsolved Questions and Future Perspectives of ICG as SLN Tracer
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giuliano, A.E.; Ballman, K.V.; McCall, L.; Beitsch, P.D.; Brennan, M.B.; Kelemen, P.R.; Ollila, D.W.; Hansen, N.M.; Whitworth, P.W.; Blumencranz, P.W.; et al. Effect of Axillary Dissection vs No Axillary Dissection on 10-Year Overall Survival Among Women with Invasive Breast Cancer and Sentinel Node Metastasis: The ACOSOG Z0011 (Alliance) Randomized Clinical Trial. JAMA 2017, 318, 918–926. [Google Scholar] [CrossRef] [PubMed]
- Bartels, S.A.L.; Donker, M.; Poncet, C.; Sauvé, N.; Straver, M.E.; van de Velde, C.J.H.; Mansel, R.E.; Blanken, C.; Orzalesi, L.; Klinkenbijl, J.H.G.; et al. Radiotherapy or Surgery of the Axilla after a Positive Sentinel Node in Breast Cancer: 10-Year Results of the Randomized Controlled EORTC 10981-22023 AMAROS Trial. J. Clin. Oncol. 2023, 41, 2159–2165. [Google Scholar] [CrossRef] [PubMed]
- Consensus Statement on Axillary Management for Patients with In-Situ and Invasive Breast Cancer: A Concise Overview. Available online: https://www.breastsurgeons.org (accessed on 10 September 2023).
- Breast.pdf. Available online: https://www.nccn.org (accessed on 10 September 2023).
- Krag, D.N.; Weaver, D.L.; Alex, J.C.; Fairbank, J.T. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg. Oncol. 1993, 2, 335–339, discussion 340. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, A.E.; Kirgan, D.M.; Guenther, J.M.; Morton, D.L. Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann. Surg. 1994, 220, 391–398, discussion 398–401. [Google Scholar] [CrossRef] [PubMed]
- National Guideline Alliance (Great Britain). Early and Locally Advanced Breast Cancer: Diagnosis and Management; National Institute for Health and Care Excellence (NICE): London, UK, 2023. [Google Scholar]
- Frountzas, M.; Theodoropoulos, C.; Karathanasis, P.; Nikolaou, C.; Zografos, C.G.; Larentzakis, A.; Zografos, G.C.; Michalopoulos, N.V. Severe anaphylactic reaction after blue dye injection for sentinel lymph node biopsy in breast surgery: Report of two cases and literature review. Clin. Case Rep. 2021, 9. [Google Scholar] [CrossRef] [PubMed]
- Thevarajah, S.; Huston, T.L.; Simmons, R.M. A comparison of the adverse reactions associated with isosulfan blue versus methylene blue dye in sentinel lymph node biopsy for breast cancer. Am. J. Surg. 2005, 189, 236–239. [Google Scholar] [CrossRef]
- Polom, K.; Murawa, D.; Rho, Y.S.; Nowaczyk, P.; Hünerbein, M.; Murawa, P. Current trends and emerging future of indocyanine green usage in surgery and oncology: A literature review. Cancer 2011, 117, 4812–4822. [Google Scholar] [CrossRef]
- Di Donna, M.C.; Quartuccio, N.; Giallombardo, V.; Sturiale, L.; Arnone, A.; Ricapito, R.; Sozzi, G.; Arnone, G.; Chiantera, V. Detection of sentinel lymph node in vulvar cancer using 99mTc-labeled colloid lymphoscintigraphy, blue dye, and indocyanine-green fluorescence: A meta-analysis of studies published in 2010–2020. Arch. Gynecol. Obstet. 2023, 307, 1677–1686. [Google Scholar] [CrossRef]
- Quartuccio, N.; Siracusa, M.; Pappalardo, M.; Arnone, A.; Arnone, G. Sentinel Node Identification in Melanoma: Current Clinical Impact, New Emerging SPECT Radiotracers and Technological Advancements. An Update of the Last Decade. Curr. Radiopharm. 2020, 13, 32–41. [Google Scholar] [CrossRef]
- Mahesh, M.; Madsen, M. Addressing Technetium-99m Shortage. J. Am. Coll. Radiol. 2017, 14, 681–683. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, T.; Yan, C.; Huang, M.; Fan, Z.; Ling, R. Clinical Practice Status of Sentinel Lymph Node Biopsy for Early-Stage Breast Cancer Patients in China: A Multicenter Study. Clin. Epidemiol. 2020, 12, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Coibion, M.; Olivier, F.; Courtois, A.; Maes, N.; Jossa, V.; Jerusalem, G. A Randomized Prospective Non-Inferiority Trial of Sentinel Lymph Node Biopsy in Early Breast Cancer: Blue Dye Compared with Indocyanine Green Fluorescence Tracer. Cancers 2022, 14, 888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Y.; Wang, X.; Zhang, M.; Jiang, W.; Ou, J. Clinical study of combined application of indocyanine green and methylene blue for sentinel lymph node biopsy in breast cancer. Medicine 2021, 100, e25365. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Yang, M.; Zheng, X. Comparative study of indocyanine green combined with blue dye with methylene blue only and carbon nanoparticles only for sentinel lymph node biopsy in breast cancer. Ann. Surg. Treat. Res. 2019, 97, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, X.; Wang, J.; Liu, P.; Pan, Y.; Han, C.; Pei, J. Real-Time In Situ Navigation System With Indocyanine Green Fluorescence for Sentinel Lymph Node Biopsy in Patients with Breast Cancer. Front. Oncol. 2021, 11, 621914. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cui, Y.; Zheng, M.; Ge, H.; Huang, Y.; Peng, J.; Xie, H.; Wang, S. Comparison of indocyanine green fluorescence and methylene blue dye in the detection of sentinel lymph nodes in breast cancer. Gland Surg. 2020, 9, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.S.; Peleteiro, B.; Pinto, C.A.; Osório, F.; Costa, S.; Magalhães, A.; Mora, H.; Amaral, J.; Gonçalves, D.; Fougo, J.L. Initial experience with targeted axillary dissection after neoadjuvant therapy in breast cancer patients. Breast Cancer 2022, 29, 709–719. [Google Scholar] [CrossRef]
- Ng, S.; Pitsinis, V.; Elseedawy, E.H.; Brown, D.; Vinci, A.; Jones, B.A.; Macaskill, E.J. Indocyanine Green Is a Safe and Effective Alternative to Radioisotope in Breast Cancer Sentinel Lymph Node Biopsy regardless of Patient Body Mass Index. Eur. Surg. Res. 2023, 64, 230–236. [Google Scholar] [CrossRef]
- Lin, J.; Lin, L.S.; Chen, D.R.; Lin, K.J.; Wang, Y.F.; Chang, Y.J. Indocyanine green fluorescence method for sentinel lymph node biopsy in breast cancer. Asian J. Surg. 2020, 43, 1149–1153. [Google Scholar] [CrossRef]
- Yuan, Q.; Wu, G.; Xiao, S.Y.; He, Y.; Wang, K.; Zhang, D. Surgical Management of the Axilla in Breast Cancer Patients with Negative Sentinel Lymph Node: A Method to Reduce False-Negative Rate. World J. Surg. 2019, 43, 1047–1053. [Google Scholar] [CrossRef]
- Shen, S.; Xu, Q.; Zhou, Y.; Mao, F.; Guan, J.; Sun, Q. Comparison of sentinel lymph node biopsy guided by blue dye with or without indocyanine green in early breast cancer. J. Surg. Oncol. 2018, 117, 1841–1847. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Dong, C.; Jiang, T.; Zhang, X.; Zhang, F.; Fan, Z. Indocyanine Green and Methylene Blue Dye Guided Sentinel Lymph Node Biopsy in Early Breast Cancer: A Single-Center Retrospective Survival Study in 1574 Patients. Clin. Breast Cancer 2023, 23, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wu, H.; Zhang, W.; Shen, Y.; Jiang, Y.; Meng, L. Comparing single or dual tracing modality on sentinel lymph node biopsy from patients who plan to omitting axillary lymph node dissection referring to the criteria of Z0011 trial: A retrospective study. Updates Surg. 2022, 74, 1073–1078. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yuan, S.; Chen, M.; Gong, K.; Liu, Y.; Li, S.; Xiong, F.; Pan, Y.; Cao, J.; Gong, J.; et al. Evaluation of indocyanine green combined with methylene blue staining in sentinel lymph node biopsy of breast cancer. Gland Surg. 2022, 11, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tong, F.; Cao, Y.; Liu, P.; Zhou, B.; Liu, H.; Cheng, L.; Liu, M.; Guo, J.; Xie, F.; et al. Long-term follow-up results of fluorescence and blue dye guided sentinel lymph node biopsy in early breast cancer. Breast Cancer Res. Treat. 2021, 188, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.H.; Zhang, X.J. Indocyanine green combined with methylene blue versus methylene blue alone for sentinel lymph node biopsy in breast cancer: A retrospective study. BMC Surg. 2023, 23, 133. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, N.; Koyanagi, A.; Yasuda, M.; Yamamoto, H. Comparison of the indocyanine green dye method versus the combined method of indigo carmine blue dye with indocyanine green fluorescence imaging for sentinel lymph node biopsy in breast conservative therapy for stage ≤IIA breast cancer. BMC Womens Health 2018, 18, 151. [Google Scholar] [CrossRef]
- Vermersch, C.; Raia-Barjat, T.; Chapelle, C.; Lima, S.; Chauleur, C. Randomized comparison between indocyanine green fluorescence plus 99mtechnetium and 99mtechnetium alone methods for sentinel lymph node biopsy in breast cancer. Sci. Rep. 2019, 9, 6943. [Google Scholar] [CrossRef]
- Jung, S.Y.; Han, J.H.; Park, S.J.; Lee, E.G.; Kwak, J.; Kim, S.H.; Lee, M.H.; Lee, E.S.; Kang, H.S.; Lee, K.S.; et al. The Sentinel Lymph Node Biopsy Using Indocyanine Green Fluorescence plus Radioisotope Method Compared with the Radioisotope-Only Method for Breast Cancer Patients after Neoadjuvant Chemotherapy: A Prospective, Randomized, Open-Label, Single-Center Phase 2 Trial. Ann. Surg. Oncol. 2019, 26, 2409–2416. [Google Scholar] [CrossRef]
- Fregatti, P.; Gipponi, M.; Sparavigna, M.; Diaz, R.; Murelli, F.; Depaoli, F.; Baldelli, I.; Gallo, M.; Friedman, D. Standardized comparison of radioguided surgery with indocyanine green detection of the sentinel lymph node in early stage breast cancer patients: Personal experience and literature review. J. Cancer Res. Ther. 2021, 17, 1530–1534. [Google Scholar] [CrossRef]
- Jimbo, K.; Nakadaira, U.; Watase, C.; Murata, T.; Shiino, S.; Takayama, S.; Suto, A. Clinical significance of discordances in sentinel lymph node reactivity between radioisotope and indocyanine green fluorescence in patients with cN0 breast cancer. Asian J. Surg. 2023, 46, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Ngô, C.; Sharifzadehgan, S.; Lecurieux-Lafayette, C.; Belhouari, H.; Rousseau, D.; Bonsang-Kitzis, H.; Crouillebois, L.; Balaya, V.; Oudard, S.; Lécuru, F.; et al. Indocyanine green for sentinel lymph node detection in early breast cancer: Prospective evaluation of detection rate and toxicity-The FLUOBREAST trial. Breast J. 2020, 26, 2357–2363. [Google Scholar] [CrossRef] [PubMed]
- Papathemelis, T.; Jablonski, E.; Scharl, A.; Hauzenberger, T.; Gerken, M.; Klinkhammer-Schalke, M.; Hipp, M.; Scharl, S. Sentinel Lymph Node Biopsy in Breast Cancer Patients by Means of Indocyanine Green Using the Karl Storz VITOM® Fluorescence Camera. BioMed Res. Int. 2018, 2018, 6251468. [Google Scholar] [CrossRef] [PubMed]
- Staubach, P.; Scharl, A.; Ignatov, A.; Ortmann, O.; Inwald, E.C.; Hildebrandt, T.; Gerken, M.; Klinkhammer-Schalke, M.; Scharl, S.; Papathemelis, T. Sentinel lymph node detection by means of indocyanine green using the Karl Storz VITOM® fluorescence camera: A comparison between primary sentinel lymph node biopsy versus sentinel lymph node biopsy after neoadjuvant chemotherapy. J. Cancer Res. Clin. Oncol. 2021, 147, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- Valente, S.A.; Al-Hilli, Z.; Radford, D.M.; Yanda, C.; Tu, C.; Grobmyer, S.R. Near Infrared Fluorescent Lymph Node Mapping with Indocyanine Green in Breast Cancer Patients: A Prospective Trial. J. Am. Coll. Surg. 2019, 228, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Bargon, C.A.; Huibers, A.; Young-Afat, D.A.; Jansen, B.A.M.; Borel-Rinkes, I.H.M.; Lavalaye, J.; van Slooten, H.J.; Verkooijen, H.M.; van Swol, C.F.P.; Doeksen, A. Sentinel Lymph Node Mapping in Breast Cancer Patients through Fluorescent Imaging Using Indocyanine Green: The INFLUENCE Trial. Ann. Surg. 2022, 276, 913–920. [Google Scholar] [CrossRef]
- Dumitru, D.; Ghanakumar, S.; Provenzano, E.; Benson, J.R. A Prospective Study Evaluating the Accuracy of Indocyanine Green (ICG) Fluorescence Compared with Radioisotope for Sentinel Lymph Node (SLN) Detection in Early Breast Cancer. Ann. Surg. Oncol. 2022, 29, 3014–3020. [Google Scholar] [CrossRef]
- Mazouni, C.; Koual, M.; De Leeuw, F.; Conversano, A.; Leymarie, N.; Rimareix, F.; Alkhashnam, H.; Laplace-Builhé, C.; Abbaci, M. Prospective evaluation of the limitations of near-infrared imaging in detecting axillary sentinel lymph nodes in primary breast cancer. Breast J. 2018, 24, 1006–1009. [Google Scholar] [CrossRef]
- Kang, B.; Lee, J.H.; Lee, J.; Jung, J.H.; Kim, W.W.; Chu, G.; Chae, Y.; Lee, S.J.; Lee, I.H.; Yang, J.D.; et al. Comparative Study Between Radioisotope Uptake and Fluorescence Intensity of Indocyanine Green for Sentinel Lymph Node Biopsy in Breast Cancer. J. Breast Cancer 2022, 25, 244–252. [Google Scholar] [CrossRef]
- Yuan, L.; Qi, X.; Zhang, Y.; Yang, X.; Zhang, F.; Fan, L.; Chen, L.; Zhang, K.; Zhong, L.; Li, Y.; et al. Comparison of sentinel lymph node detection performances using blue dye in conjunction with indocyanine green or radioisotope in breast cancer patients: A prospective single-center randomized study. Cancer Biol. Med. 2018, 15, 452–460. [Google Scholar] [CrossRef]
- Suhani Kumar, U.; Seenu, V.; Sodhi, J.; Joshi, M.; Bhattacharjee, H.K.; Khan, M.A.; Mathur, S.; Kumar, R.; Parshad, R. Evaluation of Dual Dye Technique for Sentinel Lymph Node Biopsy in Breast Cancer: Two-Arm Open-Label Parallel Design Non-Inferiority Randomized Controlled Trial. World J. Surg. 2023, 47, 2178–2185. [Google Scholar] [CrossRef]
- Agrawal, S.K.; Sharma, H.; Priya, N.; Saji, A.P.; Phom, H.D.; Sharma, A.; Arun, I.; Das, J.; Chandra, A.; Ahmed, R. Diagnostic performance and survival outcome following sentinel lymph node biopsy in breast cancer patients from a tertiary cancer centre in India. Ecancermedicalscience 2022, 16, 1398. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.L.; Zhou, M.; Easwaralingam, N.; Seah, J.L.; Azimi, F.; Mak, C.; Pulitano, C.; Warrier, S. Novel Dual Tracer Indocyanine Green and Radioisotope Versus Gold Standard Sentinel Lymph Node Biopsy in Breast Cancer: The GREENORBLUE Trial. Ann. Surg. Oncol. 2023, 30, 6520–6527. [Google Scholar] [CrossRef] [PubMed]
- Hua, B.; Li, Y.; Yang, X.; Ren, X.; Lu, X. Short-term and long-term outcomes of indocyanine green for sentinel lymph node biopsy in early-stage breast cancer. World J. Surg. Oncol. 2022, 20, 253. [Google Scholar] [CrossRef] [PubMed]
- Vaz, T.; Costa, S.; Peleteiro, B. Biópsia do Gânglio Sentinela Guiada por Fluorescência no Cancro da Mama: Taxa de Deteção e Performance Diagnóstica [Fluorescence-Guided Sentinel Lymph Node Biopsy in Breast Cancer: Detection Rate and Diagnostic Accuracy]. Acta Med. Port. 2018, 31, 706–713, Portuguese. [Google Scholar] [CrossRef]
- Somashekhar, S.P.; Kumar, C.R.; Ashwin, K.R.; Zaveri, S.S.; Jampani, A.; Ramya, Y.; Parameswaran, R.; Rakshit, S. Can Low-cost Indo Cyanine Green Florescence Technique for Sentinel Lymph Node Biopsy Replace Dual Dye (Radio-colloid and Blue Dye) Technique in Early Breast Cancer: A Prospective Two-arm Comparative Study. Clin. Breast Cancer 2020, 20, e576–e583. [Google Scholar] [CrossRef] [PubMed]
- Chirappapha, P.; Chatmongkonwat, T.; Lertsithichai, P.; Pipatsakulroj, W.; Sritara, C.; Sukarayothin, T. Sentinel lymph node biopsy after neoadjuvant treatment of breast cancer using blue dye, radioisotope, and indocyanine green: Prospective cohort study. Ann. Med. Surg. 2020, 59, 156–160. [Google Scholar] [CrossRef]
- Jin, Y.; Yuan, L.; Zhang, Y.; Tang, P.; Yang, Y.; Fan, L.; Chen, L.; Qi, X.; Jiang, J. A Prospective Self-Controlled Study of Indocyanine Green, Radioisotope, and Methylene Blue for Combined Imaging of Axillary Sentinel Lymph Nodes in Breast Cancer. Front. Oncol. 2022, 12, 803804. [Google Scholar] [CrossRef]
- Agrawal, S.K.; Hashlamoun, I.; Karki, B.; Sharma, A.; Arun, I.; Ahmed, R. Diagnostic Performance of Indocyanine Green Plus Methylene Blue Versus Radioisotope Plus Methylene Blue Dye Method for Sentinel Lymph Node Biopsy in Node-Negative Early Breast Cancer. JCO Glob. Oncol. 2020, 6, 1225–1231. [Google Scholar] [CrossRef]
- Cavalcante, F.P.; Millen, E.C.; Novita, G.G.; Zerwes, F.P.; Mattar, A.; Machado, R.H.S.; Frasson, A.L. Sentinel lymph node biopsy following neoadjuvant chemotherapy: An evidence-based review and recommendations for current practice. Chin. Clin. Oncol. 2023, 12, 6. [Google Scholar] [CrossRef]
- Derossis, A.M.; Fey, J.V.; Cody, H.S., 3rd; Borgen, P.I. Obesity influences outcome of sentinel lymph node biopsy in early-stage breast cancer. J. Am. Coll. Surg. 2003, 197, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Somerfield, M.R.; Bosserman, L.D.; Perkins, C.L.; Weaver, D.L.; Giuliano, A.E. Sentinel Lymph Node Biopsy for Patients with Early-Stage Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2017, 35, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Senkus, E.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rutgers, E.; Zackrisson, S.; Cardoso, F.; ESMO Guidelines Committee. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. S5), v8–v30. [Google Scholar] [CrossRef]
- Jinno, H.; Inokuchi, M.; Ito, T.; Kitamura, K.; Kutomi, G.; Sakai, T.; Kijima, Y.; Wada, N.; Ito, Y.; Mukai, H. The Japanese Breast Cancer Society clinical practice guideline for surgical treatment of breast cancer, 2015 edition. Breast Cancer 2016, 23, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.M.; Guo, B.L.; Liu, Q.; Ma, F.; Liu, H.J.; Wu, Q.; Xin, L.; Cheng, Y.J.; Zhang, H.; Zhang, S.; et al. Clinical practice guidelines for sentinel lymph node biopsy in patients with early-stage breast cancer: Chinese Society of Breast Surgery (CSBrS) practice guidelines 2021. Chin. Med. J. 2021, 134, 886–894. [Google Scholar] [CrossRef]
- National Health Commission of the People’s Republic of China. Chinese guidelines for diagnosis and treatment of breast cancer 2018 (English version). Chin. J. Cancer Res. 2019, 31, 259–277. [Google Scholar] [CrossRef]
- Wang, P.; Shuai, J.; Leng, Z.; Ji, Y. Meta-analysis of the application value of indocyanine green fluorescence imaging in guiding sentinel lymph node biopsy for breast cancer. Photodiagn. Photodyn. Ther. 2023, 43, 103742. [Google Scholar] [CrossRef]
- Sugie, T.; Ikeda, T.; Kawaguchi, A.; Shimizu, A.; Toi, M. Sentinel lymph node biopsy using indocyanine green fluorescence in early-stage breast cancer: A meta-analysis. Int. J. Clin. Oncol. 2017, 22, 11–17. [Google Scholar] [CrossRef]
- Goonawardena, J.; Yong, C.; Law, M. Use of indocyanine green fluorescence compared to radioisotope for sentinel lymph node biopsy in early-stage breast cancer: Systematic review and meta-analysis. Am. J. Surg. 2020, 220, 665–676. [Google Scholar] [CrossRef]
- Kedrzycki, M.S.; Leiloglou, M.; Ashrafian, H.; Jiwa, N.; Thiruchelvam, P.T.R.; Elson, D.S.; Leff, D.R. Meta-analysis Comparing Fluorescence Imaging with Radioisotope and Blue Dye-Guided Sentinel Node Identification for Breast Cancer Surgery. Ann. Surg. Oncol. 2021, 28, 3738–3748. [Google Scholar] [CrossRef]
- Thongvitokomarn, S.; Polchai, N. Indocyanine Green Fluorescence Versus Blue Dye or Radioisotope Regarding Detection Rate of Sentinel Lymph Node Biopsy and Nodes Removed in Breast Cancer: A Systematic Review and Meta-Analysis. Asian Pac. J. Cancer Prev. 2020, 21, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Rocco, N.; Velotti, N.; Pontillo, M.; Vitiello, A.; Berardi, G.; Accurso, A.; Masone, S.; Musella, M. New techniques versus standard mapping for sentinel lymph node biopsy in breast cancer: A systematic review and meta-analysis. Updates Surg. 2023, 75, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Ding, L.Y.; Wei, Q.Z.; Zhou, Y.; Tang, G.Y.; Zhu, X. Comparisons of ICG-fluorescence with conventional tracers in sentinel lymph node biopsy for patients with early-stage breast cancer: A meta-analysis. Oncol. Lett. 2021, 21, 114. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.W.; Tan, S.M.; Zheng, Q.; Shi, L. Network meta-analysis of novel and conventional sentinel lymph node biopsy techniques in breast cancer. BJS Open 2019, 3, 445–452. [Google Scholar] [CrossRef]
- Liu, H.J.; Sun, M.S.; Liu, L.Y.; Yu, Z.H.; Chen, X.X.; Liu, Q.; Cheng, Y.J.; Xu, L.; Liu, Y.H.; Ye, J.M. The detection rate of methylene blue combined with another tracer in sentinel lymph node biopsy of early-stage breast cancer: A systematic review and network meta-analysis. Transl. Cancer Res. 2021, 10, 5222–5237. [Google Scholar] [CrossRef] [PubMed]
- Niebling, M.G.; Pleijhuis, R.G.; Bastiaannet, E.; Brouwers, A.H.; van Dam, G.M.; Hoekstra, H.J. A systematic review and meta-analyses of sentinel lymph node identification in breast cancer and melanoma, a plea for tracer mapping. Eur. J. Surg. Oncol. 2016, 42, 466–473. [Google Scholar] [CrossRef]
- Kitai, T.; Inomoto, T.; Miwa, M.; Shikayama, T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 2005, 12, 211–215. [Google Scholar] [CrossRef]
- Hsieh, Y.C.; Guo, K.W.; Wang, M.W.; Su, S.P.; Syu, Y.H.; Huang, C.S.; Chan, Y.H. A Novel Injection Protocol Using Voluven®-Assisted Indocyanine Green with Improved Near-Infrared Fluorescence Guidance in Breast Cancer Sentinel Lymph Node Mapping-A Translational Study. Ann. Surg. Oncol. 2023, 30, 8419–8427. [Google Scholar] [CrossRef]
- Xiong, L.; Gazyakan, E.; Yang, W.; Engel, H.; Hünerbein, M.; Kneser, U.; Hirche, C. Indocyanine green fluorescence-guided sentinel node biopsy: A meta-analysis on detection rate and diagnostic performance. Eur. J. Surg. Oncol. 2014, 40, 843–849. [Google Scholar] [CrossRef]
- Morales-Conde, S.; Licardie, E.; Alarcón, I.; Balla, A. Indocyanine green (ICG) fluorescence guide for the use and indications in general sur-gery: Recommendations based on the descriptive review of the literature and the analysis of experience. Cir. Esp. 2022, 100, 534–554. [Google Scholar] [CrossRef]
- Noh, Y.W.; Park, H.S.; Sung, M.H.; Lim, Y.T. Enhancement of the photostability and retention time of indocyanine green in sentinel lymph node mapping by anionic polyelectrolytes. Biomaterials 2011, 32, 6551–6557. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Sugie, T.; Abdelazeem, K.; Kato, H.; Shinkura, N.; Takada, M.; Yamashiro, H.; Ueno, T.; Toi, M. Lymphatic mapping with fluorescence navigation using indocyanine green and axillary surgery in patients with primary breast cancer. Breast J. 2012, 18, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, B.E.; Verbeek, F.P.; Rietbergen, D.D.; van der Hiel, B.; van der Vorst, J.R.; Liefers, G.J.; Frangioni, J.V.; van de Velde, C.J.; van Leeuwen, F.W.; Vahrmeijer, A.L. Clinical trial of combined radio- and fluorescence-guided sentinel lymph node biopsy in breast cancer. Br. J. Surg. 2013, 100, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, F.W.B.; Schottelius, M.; Brouwer, O.R.; Vidal-Sicart, S.; Achilefu, S.; Klode, J.; Wester, H.J.; Buckle, T. Trending: Radioactive and Fluorescent Bimodal/Hybrid Tracers as Multiplexing Solutions for Surgical Guidance. J. Nucl. Med. 2020, 61, 13–19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akrida, I.; Michalopoulos, N.V.; Lagadinou, M.; Papadoliopoulou, M.; Maroulis, I.; Mulita, F. An Updated Review on the Emerging Role of Indocyanine Green (ICG) as a Sentinel Lymph Node Tracer in Breast Cancer. Cancers 2023, 15, 5755. https://doi.org/10.3390/cancers15245755
Akrida I, Michalopoulos NV, Lagadinou M, Papadoliopoulou M, Maroulis I, Mulita F. An Updated Review on the Emerging Role of Indocyanine Green (ICG) as a Sentinel Lymph Node Tracer in Breast Cancer. Cancers. 2023; 15(24):5755. https://doi.org/10.3390/cancers15245755
Chicago/Turabian StyleAkrida, Ioanna, Nikolaos V. Michalopoulos, Maria Lagadinou, Maria Papadoliopoulou, Ioannis Maroulis, and Francesk Mulita. 2023. "An Updated Review on the Emerging Role of Indocyanine Green (ICG) as a Sentinel Lymph Node Tracer in Breast Cancer" Cancers 15, no. 24: 5755. https://doi.org/10.3390/cancers15245755
APA StyleAkrida, I., Michalopoulos, N. V., Lagadinou, M., Papadoliopoulou, M., Maroulis, I., & Mulita, F. (2023). An Updated Review on the Emerging Role of Indocyanine Green (ICG) as a Sentinel Lymph Node Tracer in Breast Cancer. Cancers, 15(24), 5755. https://doi.org/10.3390/cancers15245755