Cytogenetic Profile in Monoclonal Gammopathy of Undetermined Significance, Smoldering and Symptomatic Multiple Myeloma: A Study of 1087 Patients with Highly Purified Plasma Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Assessment of Plasma Cell Involvement
2.3. Plasma Cell Purification
2.4. FISH Analysis
2.5. Chromosomal Analysis
3. Results
3.1. Patients
3.2. Cytogenetic Abnormalities Detected via FISH Analysis
3.3. Cytogenetic Abnormalities Detected via Karyotyping
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landgren, O.; Kyle, R.A.; Pfeiffer, R.M.; Katzmann, J.A.; Caporaso, N.E.; Hayes, R.B.; Dispenzieri, A.; Kumar, S.; Clark, R.J.; Baris, D.; et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: A prospective study. Blood 2009, 113, 5412–5417. [Google Scholar] [CrossRef] [PubMed]
- Weiss, B.M.; Abadie, J.; Verma, P.; Howard, R.S.; Kuehl, W.M. A monoclonal gammopathy precedes multiple myeloma in most patients. Blood 2009, 113, 5418–5422. [Google Scholar] [CrossRef]
- Kyle, R.A.; Therneau, T.M.; Rajkumar, S.V.; Remstein, E.D.; Offord, J.R.; Larson, D.R.; Plevak, M.F.; Melton, L.J. Long-term follow-up of IgM monoclonal gammopathy of undetermined significance. Blood 2003, 102, 3759–3764. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Remstein, E.D.; Therneau, T.M.; Dispenzieri, A.; Kurtin, P.J.; Hodnefield, J.M.; Larson, D.R.; Plevak, M.F.; Jelinek, D.F.; Fonseca, R.; et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N. Engl. J. Med. 2007, 356, 2582–2590. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Gupta, V.; Fonseca, R.; Dispenzieri, A.; Gonsalves, W.I.; Larson, D.; Ketterling, R.P.; Lust, J.A.; Kyle, R.A.; Kumar, S.K. Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leukemia 2013, 27, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
- Neben, K.; Jauch, A.; Hielscher, T.; Hillengass, J.; Lehners, N.; Seckinger, A.; Granzow, M.; Raab, M.S.; Ho, A.D.; Goldschmidt, H.; et al. Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del(17p), t(4;14), gain 1q, hyperdiploidy, and tumor load. J. Clin. Oncol. 2013, 31, 4325–4332. [Google Scholar] [CrossRef] [PubMed]
- Lakshman, A.; Paul, S.; Rajkumar, S.V.; Ketterling, R.P.; Greipp, P.T.; Dispenzieri, A.; A Gertz, M.; Buadi, F.K.; Lacy, M.Q.; Dingli, D.; et al. Prognostic significance of interphase FISH in monoclonal gammopathy of undetermined significance. Leukemia 2018, 32, 1811–1815. [Google Scholar] [CrossRef]
- Greipp, P.R.; Miguel, J.S.; Durie, B.G.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Avet-Loiseau, H.; Kyle, R.A.; et al. International staging system for multiple myeloma. J. Clin. Oncol. 2005, 23, 3412–3420. [Google Scholar] [CrossRef]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Mikhael, J.R.; Dingli, D.; Roy, V.; Reeder, C.B.; Buadi, F.K.; Hayman, S.R.; Dispenzieri, A.; Fonseca, R.; Sher, T.; Kyle, R.A.; et al. Management of newly diagnosed symptomatic multiple myeloma: Updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines 2013. Mayo Clin. Proc. 2013, 88, 360–376. [Google Scholar] [CrossRef]
- Audil, H.Y.; Cook, J.M.; Greipp, P.T.; Kapoor, P.; Baughn, L.B.; Dispenzieri, A.; Gertz, M.A.; Buadi, F.K.; Lacy, M.Q.; Dingli, D.; et al. Prognostic significance of acquired 1q22 gain in multiple myeloma. Am. J. Hematol. 2022, 97, 52–59. [Google Scholar] [CrossRef]
- Grzasko, N.; Hajek, R.; Hus, M.; Chocholska, S.; Morawska, M.; Giannopoulos, K.; Czarnocki, K.; Druzd-Sitek, A.; Pienkowska-Grela, B.; Rygier, J.; et al. Chromosome 1 amplification has similar prognostic value to del(17p13) and t(4;14)(p16;q32) in multiple myeloma patients: Analysis of real-life data from the Polish Myeloma Study Group. Leuk. Lymphoma 2017, 58, 2089–2100. [Google Scholar] [CrossRef]
- Shaughnessy, J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology 2005, 10 (Suppl. S1), 117–126. [Google Scholar] [CrossRef]
- Shi, L.; Wang, S.; Zangari, M.; Xu, H.; Cao, T.M.; Xu, C.; Wu, Y.; Xiao, F.; Liu, Y.; Yang, Y.; et al. Over-expression of CKS1B activates both MEK/ERK and JAK/STAT3 signaling pathways and promotes myeloma cell drug-resistance. Oncotarget 2010, 1, 22–33. [Google Scholar] [CrossRef]
- Weinhold, N.; Salwender, H.J.; Cairns, D.A.; Raab, M.S.; Waldron, G.; Blau, I.W.; Bertsch, U.; Hielscher, T.; Morgan, G.J.; Jauch, A.; et al. Chromosome 1q21 abnormalities refine outcome prediction in patients with multiple myeloma—A meta-analysis of 2,596 trial patients. Haematologica 2021, 106, 2754–2758. [Google Scholar] [CrossRef]
- D’Agostino, M.; Cairns, D.A.; Lahuerta, J.J.; Wester, R.; Bertsch, U.; Waage, A.; Zamagni, E.; Mateos, M.-V.; Dall’Olio, D.; van de Donk, N.W.; et al. Second Revision of the International Staging System (R2-ISS) for Overall Survival in Multiple Myeloma: A European Myeloma Network (EMN) Report within the HARMONY Project. J. Clin. Oncol. 2022, 40, 3406–3418. [Google Scholar] [CrossRef]
- Abdallah, N.H.; Binder, M.; Rajkumar, S.V.; Greipp, P.T.; Kapoor, P.; Dispenzieri, A.; Gertz, M.A.; Baughn, L.B.; Lacy, M.Q.; Hayman, S.R.; et al. A simple additive staging system for newly diagnosed multiple myeloma. Blood Cancer J. 2022, 12, 21. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am. J. Hematol. 2022, 97, 1086–1107. [Google Scholar] [CrossRef]
- Kumar, S.K.; Rajkumar, S.V. The multiple myelomas—Current concepts in cytogenetic classification and therapy. Nat. Rev. Clin. Oncol. 2018, 15, 409–421. [Google Scholar] [CrossRef]
- McKenna, R.W.; Kyle, R.A.; Kuehl, W.M.; Harris, N.L.; Coupland, R.W.F.F. Plasma cell neoplasms. In WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues; Swerdlow, S.H., Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Thiele, J., Vardiman, J.W., Eds.; IARC: Lyon, France, 2017. [Google Scholar]
- Angelova, E.A.; Li, S.; Wang, W.; Bueso-Ramos, C.; Tang, G.; Medeiros, L.J.; Lin, P. IgM plasma cell myeloma in the era of novel therapy: A clinicopathological study of 17 cases. Hum. Pathol. 2019, 84, 321–334. [Google Scholar] [CrossRef]
- Fonseca, R.; Bergsagel, P.L.; Drach, J.; Shaughnessy, J.; Gutierrez, N.; Stewart, A.K.; Morgan, G.; Van Ness, B.; Chesi, M.; Minvielle, S.; et al. International Myeloma Working Group molecular classification of multiple myeloma: Spotlight review. Leukemia 2009, 23, 2210–2221. [Google Scholar] [CrossRef]
- Mikhail, F.M.; Heerema, N.A.; Rao, K.W.; Burnside, R.D.; Cherry, A.M.; Cooley, L.D. Section E6.1-6.4 of the ACMG technical standards and guidelines: Chromosome studies of neoplastic blood and bone marrow-acquired chromosomal abnormalities. Genet. Med. 2016, 18, 635–642. [Google Scholar] [CrossRef]
- Rajan, A.M.; Rajkumar, S.V. Interpretation of cytogenetic results in multiple myeloma for clinical practice. Blood Cancer J. 2015, 5, e365. [Google Scholar] [CrossRef]
- Maura, F.; Bolli, N.; Rustad, E.H.; Hultcrantz, M.; Munshi, N.; Landgren, O. Moving from Cancer Burden to Cancer Genomics for Smoldering Myeloma: A Review. JAMA Oncol. 2020, 6, 425–432. [Google Scholar] [CrossRef]
- Lannes, R.; Samur, M.; Perrot, A.; Mazzotti, C.; Divoux, M.; Cazaubiel, T.; Leleu, X.; Schavgoulidze, A.; Chretien, M.-L.; Manier, S.; et al. In Multiple Myeloma, High-Risk Secondary Genetic Events Observed at Relapse Are Present from Diagnosis in Tiny, Undetectable Subclonal Populations. J. Clin. Oncol. 2023, 41, 1695–1702. [Google Scholar] [CrossRef]
- Le Baccon, P.; Leroux, D.; Dascalescu, C.; Duley, S.; Marais, D.; Esmenjaud, E.; Sotto, J.J.; Callanan, M. Novel evidence of a role for chromosome 1 pericentric heterochromatin in the pathogenesis of B-cell lymphoma and multiple myeloma. Genes. Chromosomes Cancer 2001, 32, 250–264. [Google Scholar] [CrossRef]
- Sanford, D.; DiNardo, C.D.; Tang, G.; Cortes, J.E.; Verstovsek, S.; Jabbour, E.; Ravandi, F.; Kantarjian, H.; Garcia-Manero, G. Jumping Translocations in Myeloid Malignancies Associated with Treatment Resistance and Poor Survival. Clin. Lymphoma Myeloma Leuk. 2015, 15, 556–562. [Google Scholar] [CrossRef]
- Sawyer, J.R.; Tricot, G.; Mattox, S.; Jagannath, S.; Barlogie, B. Jumping translocations of chromosome 1q in multiple myeloma: Evidence for a mechanism involving decondensation of pericentromeric heterochromatin. Blood 1998, 91, 1732–1741. [Google Scholar] [CrossRef]
- Shaughnessy, J.D.; Zhan, F.; Burington, B.E.; Huang, Y.; Colla, S.; Hanamura, I.; Stewart, J.P.; Kordsmeier, B.; Randolph, C.; Williams, D.R.; et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007, 109, 2276–2284. [Google Scholar] [CrossRef]
- Bendig, S.; Walter, W.; Meggendorfer, M.; Bär, C.; Fuhrmann, I.; Kern, W.; Haferlach, T.; Haferlach, C.; Stengel, A. Whole genome sequencing demonstrates substantial pathophysiological differences of MYC rearrangements in patients with plasma cell myeloma and B-cell lymphoma. Leuk. Lymphoma 2021, 62, 3420–3429. [Google Scholar] [CrossRef]
- Avet-Loiseau, H.; Gerson, F.; Magrangeas, F.; Minvielle, S.; Harousseau, J.-L.; Bataille, R. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood 2001, 98, 3082–3086. [Google Scholar] [CrossRef]
- Affer, M.; Chesi, M.; Chen, W.D.; Keats, J.J.; Demchenko, Y.N.; Tamizhmani, K.; Garbitt, V.M.; Riggs, D.L.; A Brents, L.; Roschke, A.V.; et al. Promiscuous MYC locus rearrangements hijack enhancers but mostly super-enhancers to dysregulate MYC expression in multiple myeloma. Leukemia 2014, 28, 1725–1735. [Google Scholar] [CrossRef]
- Abdallah, N.; Baughn, L.B.; Rajkumar, S.V.; Kapoor, P.; Gertz, M.A.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Dingli, D.; et al. Implications of MYC Rearrangements in Newly Diagnosed Multiple Myeloma. Clin. Cancer Res. 2020, 26, 6581–6588. [Google Scholar] [CrossRef]
- Locher, M.; Jukic, E.; Vogi, V.; Keller, M.A.; Kröll, T.; Schwendinger, S.; Oberhuber, K.; Verdorfer, I.; Mühlegger, B.E.; Witsch-Baumgartner, M.; et al. Amp(1q) and tetraploidy are commonly acquired chromosomal abnormalities in relapsed multiple myeloma. Eur. J. Haematol. 2023, 110, 296–304. [Google Scholar] [CrossRef]
- Sidana, S.; Jevremovic, D.; Ketterling, R.P.; Tandon, N.; Greipp, P.T.; Baughn, L.B.; Dispenzieri, A.; Gertz, M.A.; Rajkumar, S.V.; Kumar, S.K. Tetraploidy is associated with poor prognosis at diagnosis in multiple myeloma. Am. J. Hematol. 2019, 94, E117–E120. [Google Scholar] [CrossRef]
- Yuan, J.; Shah, R.; Kulharya, A.; Ustun, C. Near-tetraploidy clone can evolve from a hyperdiploidy clone and cause resistance to lenalidomide and bortezomib in a multiple myeloma patient. Leuk. Res. 2010, 34, 954–957. [Google Scholar] [CrossRef]
- Pavlistova, L.; Zemanova, Z.; Sarova, I.; Lhotska, H.; Berkova, A.; Spicka, I.; Michalova, K. Change in ploidy status from hyperdiploid to near-tetraploid in multiple myeloma associated with bortezomib/lenalidomide resistance. Cancer Genet. 2014, 207, 326–331. [Google Scholar] [CrossRef]
Case No | Total (%) | MGUS | SMM | NDMM | RRMM | t(11;14) | t(4;14) | t(14;16) | del(17p) | HR- R-ISS | HR-Plus 1q+ | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Races | ||||||||||||
Caucasian | 744 | 68% | 14% | 19% | 24% | 43% | 27% | 10% | 5% | 16% | 27% | 48% |
African American | 225 | 21% | 11% | 18% | 22% | 49% | 23% | 7% | 5% | 13% | 23% | 51% |
Asian | 38 | 3% | 16% | 21% | 21% | 42% | 26% | 13% | 0% | 18% | 26% | 42% |
Others | 80 | 7% | 6% | 19% | 18% | 58% | 24% | 15% | 5% | 13% | 26% | 49% |
Gender | ||||||||||||
Male | 613 | 56% | 11% | 18% | 23% | 48% | 27% | 9% | 4% | 15% | 24% | 46% |
Female | 474 | 44% | 14% | 20% | 23% | 42% | 25% | 11% | 6% | 17% | 28% | 52% |
Age (years) | ||||||||||||
<50 | 72 | 7% | 8% | 21% | 25% | 46% | 28% | 13% | 1% | 18% | 26% | 47% |
50–59 | 213 | 20% | 14% | 21% | 22% | 44% | 23% | 13% | 5% | 15% | 28% | 50% |
60–69 | 391 | 36% | 13% | 16% | 21% | 49% | 25% | 10% | 7% | 16% | 28% | 50% |
70–79 | 311 | 29% | 13% | 20% | 25% | 43% | 28% | 8% | 4% | 14% | 24% | 47% |
>80 | 100 | 9% | 11% | 22% | 26% | 41% | 28% | 6% | 2% | 17% | 22% | 46% |
PC (%) | FISH | Chromosomal Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Case No | On EPC | On Culture | Abnormal (Case No) | Abnormal % | Case No | Normal Karyotype * | Abnormal Karyotype | Abnormal % | PCN-UR | |
0 | 53 | 53 | 0 | 46 | 87% | 34 | 32 | 0 | 0% | 2 |
1 | 127 | 127 | 0 | 114 | 90% | 96 | 89 | 4 | 4% | 3 |
2 | 106 | 106 | 0 | 103 | 97% | 77 | 72 | 2 | 3% | 3 |
3~5 | 208 | 208 | 0 | 197 | 95% | 157 | 148 | 7 | 4% | 2 |
6~10 | 183 | 183 | 0 | 180 | 98% | 130 | 114 | 12 | 9% | 4 |
11~20 | 150 | 150 | 0 | 148 | 99% | 116 | 96 | 19 | 16% | 1 |
>20 | 260 | 159 | 101 | 255 | 98% | 192 | 72 | 120 | 63% | 0 |
Total | 1087 | 986 | 101 | 1043 | 96% | 802 | 623 | 164 | 20% | 15 |
MGUS | SMM | NDMM | RRMM | Total | |
---|---|---|---|---|---|
Tri/tetra 9 | 38% | 48% | 49% | 45% | 46% |
Del(13q)/−13 | 31% | 41% | 47% | 44% | 43% |
Tri/tetra 11 | 41% | 40% | 42% | 39% | 40% |
1q+/amp | 14% | 32% | 36% | 44% | 36% |
t(11;14) | 29% | 25% | 26% | 25% | 26% |
del(17p)/−17 | 1% | 5% | 17% | 23% | 15% |
MYC-R | 0% | 10% | 16% | 15% | 12% |
t(4;14) | 1% | 12% | 8% | 12% | 10% |
1p− | 1% | 4% | 10% | 12% | 9% |
Tetraploidy | 0% | 3% | 11% | 11% | 8% |
t(14;16) | 7% | 4% | 5% | 5% | 5% |
Other IGH-R | 4% | 3% | 4% | 2% | 3% |
Karyotype | ||||
---|---|---|---|---|
Total | Normal | Abnormal * | Frequency of Abnormal Karyotype | |
Diagnosis | ||||
MGUS | 106 | 103 | 0 | 0% |
SMM | 152 | 132 | 16 | 11% |
NDMM | 193 | 139 | 51 | 26% |
RRMM | 351 | 249 | 97 | 28% |
Number of abnormalities detected via FISH | ||||
None | 36 | 36 | 0 | 0% |
1 | 120 | 110 | 5 | 4% |
2 | 158 | 143 | 13 | 8% |
3 | 167 | 135 | 27 | 16% |
4 | 132 | 87 | 44 | 33% |
5 or more | 189 | 112 | 75 | 40% |
Abnormalities (detected via FISH) | ||||
del(17p)/−17 | 117 | 63 | 52 | 44% |
MYC-R | 93 | 53 | 40 | 43% |
1q+ | 300 | 203 | 96 | 32% |
t(4;14) | 75 | 52 | 23 | 31% |
t(14;16) | 32 | 24 | 8 | 25% |
trisomy 9 | 350 | 258 | 87 | 25% |
del(13q)/−13 | 331 | 257 | 70 | 21% |
t(11;14) | 217 | 183 | 28 | 13% |
Total | Gain-Aneusomy | Loss-Aneusomy | Structural Abnormality | ||||
---|---|---|---|---|---|---|---|
Chrom No | Abnormal | Chrom No | Abnormal | Chrom No | Abnormal | Chrom No | Abnormal |
1 | 67% | 15 | 46% | 13 | 30% | 1 | 65% |
11 | 67% | 9 | 40% | X | 21% | 14 | 41% |
9 | 65% | 11 | 38% | Y | 16% | 11 | 36% |
15 | 58% | 3 | 36% | 16 | 15% | 9 | 32% |
5 | 52% | 19 | 34% | 4 | 14% | 17 | 32% |
14 | 50% | 21 | 30% | 22 | 11% | 6 | 32% |
3 | 50% | 5 | 29% | 14 | 10% | 8 | 27% |
19 | 46% | 7 | 29% | 8 | 9% | 5 | 21% |
7 | 45% | 1 | 26% | 12 | 9% | 12 | 20% |
6 | 44% | 18 | 16% | 17 | 9% | 3 | 18% |
17 | 42% | 6 | 13% | 7 | 8% | 7 | 16% |
13 | 42% | 8 | 11% | 18 | 8% | 2 | 16% |
8 | 41% | 20 | 9% | 20 | 8% | 16 | 15% |
21 | 39% | 22 | 7% | 10 | 7% | 4 | 12% |
16 | 32% | 12 | 7% | 15 | 6% | 13 | 12% |
12 | 31% | 14 | 7% | 2 | 5% | 10 | 12% |
4 | 29% | 16 | 5% | 5 | 5% | 19 | 12% |
18 | 27% | 2 | 5% | 11 | 5% | 15 | 10% |
22 | 27% | 4 | 5% | 19 | 5% | 21 | 8% |
X | 26% | 17 | 5% | 1 | 4% | 22 | 8% |
2 | 23% | 10 | 4% | 21 | 4% | X | 5% |
10 | 22% | X | 2% | 6 | 3% | 20 | 4% |
20 | 21% | Y | 2% | 9 | 2% | 18 | 4% |
Y | 18% | 13 | 0% | 3 | 1% | Y | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, G.; Wu, Y.; Lin, P.; Toruner, G.A.; Hu, S.; Li, S.; Qazilbash, M.H.; Orlowski, R.Z.; Ye, C.; Xu, J.; et al. Cytogenetic Profile in Monoclonal Gammopathy of Undetermined Significance, Smoldering and Symptomatic Multiple Myeloma: A Study of 1087 Patients with Highly Purified Plasma Cells. Cancers 2023, 15, 5690. https://doi.org/10.3390/cancers15235690
Tang G, Wu Y, Lin P, Toruner GA, Hu S, Li S, Qazilbash MH, Orlowski RZ, Ye C, Xu J, et al. Cytogenetic Profile in Monoclonal Gammopathy of Undetermined Significance, Smoldering and Symptomatic Multiple Myeloma: A Study of 1087 Patients with Highly Purified Plasma Cells. Cancers. 2023; 15(23):5690. https://doi.org/10.3390/cancers15235690
Chicago/Turabian StyleTang, Guilin, Yilin Wu, Pei Lin, Gokce A. Toruner, Shimin Hu, Shaoying Li, Muzaffar H. Qazilbash, Robert Z. Orlowski, Christine Ye, Jie Xu, and et al. 2023. "Cytogenetic Profile in Monoclonal Gammopathy of Undetermined Significance, Smoldering and Symptomatic Multiple Myeloma: A Study of 1087 Patients with Highly Purified Plasma Cells" Cancers 15, no. 23: 5690. https://doi.org/10.3390/cancers15235690
APA StyleTang, G., Wu, Y., Lin, P., Toruner, G. A., Hu, S., Li, S., Qazilbash, M. H., Orlowski, R. Z., Ye, C., Xu, J., Nahmod, K. A., Medeiros, L. J., & Tang, Z. (2023). Cytogenetic Profile in Monoclonal Gammopathy of Undetermined Significance, Smoldering and Symptomatic Multiple Myeloma: A Study of 1087 Patients with Highly Purified Plasma Cells. Cancers, 15(23), 5690. https://doi.org/10.3390/cancers15235690