Review of Current Treatment Intensification Strategies for Prostate Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Treatment Intensification
2.1. RT Alone
2.2. RT + ADT
2.2.1. RT + STADT vs. RT Alone
2.2.2. RT + LTADT vs. RT Alone
2.2.3. RT + STADT vs. RT + LTADT
2.2.4. RT + NADT vs. RT Alone
2.2.5. Conformal RT + NADT
2.3. RT + Immunotherapy
2.4. RT + ADT + Additional Drugs
Trials | Status | Study Period | Treatment | Outcomes |
---|---|---|---|---|
NCT00684905: Leuprolide, Bicalutamide, and implant radiation therapy for patients with locally recurrent prostate cancer after external beam radiation therapy | Completed | 2000–2005 | Leuprolide + Bicalutamide + brachytherapy + Leuprolide | - |
NCT00002597: Radiation therapy with or without antiandrogen therapy for patients with stage I or II prostate cancer | Completed | 1994–2018 | Zoladex + Flutamide + RT | PSA level < 20 ng/mL, use of short-term ADT for 4 months before and during RT was reduced disease-specific mortality and increased overall survival [43] |
NCT00016913: Chemotherapy, hormone therapy, and radiation therapy for patients with locally advanced prostate cancer | Completed | 2001–2008 | Paclitaxel + Estramustine + Carboplatin + Gonadotropin-releasing hormonal therapy (Goserelin/Leuprolide) + RT | The administration of neoadjuvant chemohormonal therapy with TEC, followed by high-dose radiation therapy has demonstrated safety and feasibility [69] |
NCT02135445: Safety and efficacy of TAK-385 for patients with localized prostate cancer | Completed | 2014–2015 | TAK-385 + RT vs. Degarelix + RT | - |
NCT00193856: RADAR (randomized androgen deprivation and radiotherapy) trial | Completed | 2003–2017 | 6-month Leuprorelin acetate + RT 6-month Leuprorelin acetate + zoledronic acid + RT 18-month Leuprorelin acetate + RT 18-month Leuprorelin acetate + zoledronic acid + RT | Prostate cancer-specific mortality, Biochemical Failure |
NCT00223665: Effects of IAS in men with localized biochemical relapse prostate cancer (IAS) | Completed | 1997–2012 | RT + intermittent androgen suppression + Flutamide + Leuprolide acetate | - |
NCT02300389: Comparing hypofractionated radiotherapy boost to conventionally fractionated (HYPOPROST) | Completed | 2011–2019 | Hypofractionated IMRT boost + ADT vs Conventional IMRT boost + ADT | - |
NCT02472275: PLX3397, radiation therapy, and antihormone therapy for patients with intermediate- or high-risk prostate cancer | Completed | 2015–2019 | PLX3397 + RT + ADT (Leuprolide acetate, Goserelin acetate, or Degarelix) | - |
NCT02229734: Fairly brief androgen suppression and stereotactic radiotherapy for high-risk prostate cancer – Protocol 2 (FASTR-2) | Completed | 2014–2021 | SBRT + LHRH (Leuprolide) | This innovative condensed treatment showed higher than expected late toxicities, and was terminated before phase 2 accrual [70] |
NCT03311555: A salvage trial of AR inhibition with ADT and apalutamide with radiation therapy followed by docetaxel in men with PSA recurrent prostate cancer after radical prostatectomy (STARTAR) | Completed | 2018–2022 | Apalutamide + ADT + RT (salvage radiation therapy) + docetaxel | - |
NCT03649841: Antiandrogen therapy, Abiraterone acetate, and Prednisone with or without neutron radiation therapy for patients with prostate cancer | Terminated | 2020–2023 | ADT + Abiraterone + Prednisone + RT vs ADT + Abiraterone + Prednisone | Terminated due to low accrual |
NCT01439542: Fairly brief androgen suppression and stereotactic radiotherapy for high-risk prostate cancer (FASTR) | Terminated | 2011–2017 | Stereotactic radiotherapy + LHRH agonist | Higher than expected Grade 3 genitourinary/gastrointestinal toxicity |
NCT02508636: Trial of radiotherapy with Leuprolide and Enzalutamide in high-risk prostate cancer | Terminated | 2015–2020 | Enzalutamide + Leuprolide + IMRT | Terminated due to low accrual |
NCT01811810: Proton therapy for high-risk prostate cancer | Withdrawn | 2013–2014 | XRT + ADT vs XRT + chemotherapy + short-term ADT | Unable to recruit |
NCT01517451: Radiation and androgen ablation for prostate cancer | Active | 2013–2026 | ADT + SBRT | - |
NCT01952223: A phase III study of Cabazitaxel and pelvic radiotherapy in localized prostate cancer and high-risk features of relapse (PEACE2) | Active | 2013–2041 | ADT + pelvic RT ADT + Cabazitaxel + prostate RT ADT + Cabazitaxel + pelvic RT ADT + prostate RT | - |
NCT01546987: Hormone therapy, radiation therapy, and steroid 17alpha-monooxygenase TAK-700 for patients with high-risk prostate cancer | Active | 2012–2029 | ADT + RT vs TAK-700 + ADT + RT | - |
NCT04489745: Stereotactic body radiotherapy (SBRT) for localized prostate cancer | Active | 2016–2025 | ADT + SBRT | - |
NCT03541850: Stereotactic body radiation therapy for patients with localized prostate cancer that have undergone surgery | Active | 2019–2024 | ADT + SBRT | - |
NCT02346253: High-dose brachytherapy for patients with prostate cancer | Active | 2015–2026 | HDR brachytherapy + Bicalutamide + Leuprolide acetate + Goserelin acetate + Triptorelin pamoate + Degarelix | - |
NCT00936390: Radiation therapy with or without androgen deprivation therapy for patients with prostate cancer | Active | 2009–2025 | EBRT vs. EBRT + ADT | - |
NCT01436968: Phase 3 study of ProstAtak® immunotherapy with standard radiation therapy for localized prostate cancer (PrTK03) | Active | 2011–2024 | ProstAtak® + RT +/- ADT | - |
NCT02594072: Androgen suppression with stereotactic body or external beam radiation therapy (ASSERT) | Active | 2016–2024 | SABR + Zoladex® Vs. EBRT + Zoladex® | - |
NCT02446444: Enzalutamide in androgen deprivation therapy with radiation therapy for high-risk, clinically localized prostate cancer (ENZARAD) | Active | 2014–2025 | Enzalutamide + LHRHA + EBRT | - |
NCT01420250: Cabazitaxel with radiation and hormone therapy for prostate cancer | Active | 2011–2023 | Cabazitaxel + IMRT + Bicalutamide + LHRH agonist | - |
NCT02531516: An efficacy and safety study of JNJ-56021927 (Apalutamide) in high-risk prostate cancer subjects receiving primary radiation therapy: ATLAS | Active | 2015–2026 | Apalutamide + Bicalutamide Placebo + GnRH (agonist) + RT | - |
NCT03070886: Antiandrogen therapy and radiation therapy with or without docetaxel for patients with prostate cancer that has been removed via surgery | Active | 2017–2031 | ADT + EBRT Vs. ADT + EBRT + docetaxel | - |
NCT05003752: Hypo-Combi trial: Hypofractionated EBRT plus HDR-BT boost for prostate cancer | Active | 2021–2026 | Hypofractionated EBRT + HDR-BT boost | - |
NCT04947254: Androgen ablation therapy with or without niraparib after radiation therapy for the treatment of high-risk localized or locally advanced prostate cancer | Recruiting | 2021–2026 | Apalutamide + ADT, ADT + Abiraterone acetate and Prednisone, with or without Niraparib after RT | - |
NCT04298983: Abemaciclib in combination with androgen deprivation therapy for locally advanced prostate cancer (RAD 1805) | Recruiting | 2021–2026 | Abemaciclib + ADT + RT | - |
NCT05753566: Rezvilutamide in patients with biochemical recurrence after radical prostatectomy for prostate cancer | Recruiting | 2023–2028 | Rezvilutamide + ADT + SRT Rezvilutamide + ADT | - |
NCT02303327: Comparative study of radiotherapy treatments for high-risk prostate cancer patients | Recruiting | 2015–2029 | ADT + EBRT + HDR brachytherapy boost ADT + hypofractionated dose-escalation RT | - |
NCT05781217: Short- versus long-term androgen deprivation therapy with salvage radiotherapy in prostate cancer (URONCOR 06-24) | Recruiting | 2023–2032 | STADT + RT LTADT + RT | - |
NCT05100472: A study of shorter-course hormone therapy and radiation for high-risk prostate cancer | Recruiting | 2021–2024 | ADT + brachytherapy + hypofractionated pelvic external beam radiation | - |
NCT05361798: T-cell clonality after stereotactic body radiation therapy alone and in combination with the immunocytokine M9241 in localized high- and intermediate-risk prostate cancer treated with androgen deprivation therapy | Recruiting | 2023–2024 | De-escalating dose of M9241 + SBRT High tolerated dose of M9241 + SBRT SBRT | |
NCT01985828: CyberKnife® as monotherapy or boost SBRT for intermediate- or high-risk localized prostate cancer | Recruiting | 2013–2026 | ADT + CyberKnife + IMRT | - |
NCT04943536: Bicalutamide implants (Biolen) with radiation therapy in patients with localized prostate cancer | Recruiting | 2021–2024 | Biolen + RT | - |
NCT04894188: Neoadjuvant hormone and radiation therapy followed by radical prostatectomy in patients with high-risk prostate cancer | Recruiting | 2022–2041 | Neoadjuvant ADT and RT + radical prostatectomy Neoadjuvant ADT + radical prostatectomy | - |
NCT05568550: Pembro with radiation with or without Olaparib | Recruiting | 2023–2029 | Pembrolizumab + Olaparib + ADT + RT Pembrolizumab + ADT + RT | - |
NCT04349501: Biomarker monitoring of prostate cancer patients with RSI MRI (ProsRSI) | Recruiting | 2020–2026 | RSI-MRI + ADT + RT | - |
NCT04136353: Darolutamide augments standard therapy for localized very-high-risk prostate cancer (DASL-HiCaP) | Recruiting | 2020–2028 | Darolutamide + LHRHA + EBRT | - |
NCT02102477: Surgery versus radiotherapy for locally advanced prostate cancer (SPCG-15) | Recruiting | 2014–2045 | Radical prostatectomy + RT vs RT + adjuvant ADT | - |
NCT04093375: Radical prostatectomy versus radical radiotherapy for locally advanced prostate cancer | Not yet recruiting | - | Radical prostatectomy +/- ADT vs RT + adjuvant ADT | - |
NCT04176081: Study of radiation therapy in combination with Darolutamide + Degarelix in intermediate-risk prostate cancer (SChLAP/IDC) | Not yet recruiting | - | RT vs RT + Darolutamide + Degarelix | - |
2.5. Use of a Radiosensitizer
Trials | Radiosensitizer Used | Risk Group | Target | Trial Phase | Trial Period | Trial Status | Outcomes |
---|---|---|---|---|---|---|---|
NCT02724618 | Curcumin+RT+Placebo | - | NF-κB | II | 2016–2022 | Completed | Hematologic toxicity as assessed by significant reduction in hematologic components. Biochemical progression-free survival (b-PFS). |
NCT03066154 | Docetaxel+ADT+RT | - | - | I | 2016–2020 | Completed | Cmax was significantly lower for both docetaxel and ritonavir was significantly lower in prostate cancer patients as compared to patients with other types of solid tumours, treated on ModraDoc006/r 30-20/100-100 [85] |
NCT02057939 | Enzalutamide+ADT+ RT | High risk | Androgen receptor | II | 2014–2019 | Completed | Biochemical progression-free survival, PSA less than 0.1 ng/mL. |
NCT00631527 | Sunitinib + ADT | High risk | Multi-targeted RTK | I | 2008–2015 | Completed | - |
NCT02023463 | Enzalutamide+RT+ADT | High-Risk | androgen receptor | 1 | 2014–2040 | Recruiting | - |
NCT02203695 | Enzalutamide+SRT | High risk | androgen receptor | II | 2015–2024 | Recruiting | - |
NCT02805894 | NBTXR3 nanoparticles + brachytherapy + IMRT | Intermediate or high risk | prostate Adenocarcinoma | I/II | 2017–2021 | Recruiting | - |
NCT00943956 | Everolimus + ADT | High risk | mTOR | I | 2009–2012 | Unknown | - |
NCT01826838 | Dasatinib + ADT | Intermediate-to high-risk | SRC | I | 2012–2022 | Recruiting | - |
3. Treatment Intensification vs. Active Surveillance
4. Complications
5. Role of Precision Medicine
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wani, M.; Madaan, S. What Is New in the Management of High-Risk Localized Prostate Cancer? J. Clin. Med. 2023, 12, 455. [Google Scholar] [CrossRef] [PubMed]
- Wasim, S.; Lee, S.Y.; Kim, J. Complexities of Prostate Cancer. Int. J. Mol. Sci. 2022, 23, 14257. [Google Scholar] [CrossRef] [PubMed]
- Nasser, N.J.; Klein, J.; Agbarya, A. Markers of Toxicity and Response to Radiation Therapy in Patients With Prostate Cancer. Adv. Radiat. Oncol. 2021, 6, 100603. [Google Scholar] [CrossRef]
- Kinsella, N.; Helleman, J.; Bruinsma, S.; Carlsson, S.; Cahill, D.; Brown, C.; Van Hemelrijck, M. Active surveillance for prostate cancer: A systematic review of contemporary worldwide practices. Transl. Androl. Urol. 2018, 7, 83–97. [Google Scholar] [CrossRef]
- Tolis, G.; Ackman, D.; Stellos, A.; Mehta, A.; Labrie, F.; Fazekas, A.T.; Comaru-Schally, A.M.; Schally, A.V. Tumor growth inhibition in patients with prostatic carcinoma treated with luteinizing hormone-releasing hormone agonists. Proc. Natl. Acad. Sci. USA 1982, 79, 1658–1662. [Google Scholar] [CrossRef] [PubMed]
- Paz-Manrique, R.; Morton, G.; Vera, F.Q.; Paz-Manrique, S.; Espinoza-Briones, A.; Deza, C.M. Radiation therapy after radical surgery in prostate cancer. Ecancermedicalscience 2023, 17, 1565. [Google Scholar] [CrossRef]
- Koka, K.; Verma, A.; Dwarakanath, B.S.; Papineni, R.V.L. Technological Advancements in External Beam Radiation Therapy (EBRT): An Indispensable Tool for Cancer Treatment. Cancer Manag. Res. 2022, 14, 1421–1429. [Google Scholar] [CrossRef]
- Baumann, M.; Krause, M.; Overgaard, J.; Debus, J.; Bentzen, S.M.; Daartz, J.; Richter, C.; Zips, D.; Bortfeld, T. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer 2016, 16, 234–249. [Google Scholar] [CrossRef]
- Denmeade, S.R.; Isaacs, J.T. A history of prostate cancer treatment. Nat. Rev. Cancer 2002, 2, 389–396. [Google Scholar] [CrossRef]
- Bagshaw, M.A.; Kaplan, H.S.; Sagerman, R.H. Linear Accelerator Supervoltage Radiotherapy. Vii. Carcinoma of the Prostate. Radiology 1965, 85, 121–129. [Google Scholar] [CrossRef]
- Bagshaw, M.A.; Ray, G.R.; Pistenma, D.A.; Castellino, R.A.; Meares, E.M. External beam radiation therapy of primary carcinoma of the prostate. Cancer 1975, 36, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Hayden, A.J.; Catton, C.; Pickles, T. Radiation therapy in prostate cancer: A risk-adapted strategy. Curr. Oncol. 2010, 17 (Suppl. S2), S18–S24. [Google Scholar] [CrossRef] [PubMed]
- Kuban, D.A.; Thames, H.D.; Levy, L.B.; Horwitz, E.M.; Kupelian, P.A.; Martinez, A.A.; Michalski, J.M.; Pisansky, T.M.; Sandler, H.M.; Shipley, W.U.; et al. Long-term multi-institutional analysis of stage T1-T2 prostate cancer treated with radiotherapy in the PSA era. Int. J. Radiat. Oncol. Biol. Phys. 2003, 57, 915–928. [Google Scholar] [CrossRef] [PubMed]
- Shipley, W.U.; Thames, H.D.; Sandler, H.M.; Hanks, G.E.; Zietman, A.L.; Perez, C.A.; Kuban, D.A.; Hancock, S.L.; Smith, C.D. Radiation therapy for clinically localized prostate cancer: A multi-institutional pooled analysis. JAMA 1999, 281, 1598–1604. [Google Scholar] [CrossRef] [PubMed]
- Zagars, G.K.; Pollack, A.; von Eschenbach, A.C. Prognostic factors for clinically localized prostate carcinoma: Analysis of 938 patients irradiated in the prostate specific antigen era. Cancer 1997, 79, 1370–1380. [Google Scholar] [CrossRef]
- Dal Pra, A.; Cury, F.L.; Souhami, L. Combining radiation therapy and androgen deprivation for localized prostate cancer-a critical review. Curr. Oncol. 2010, 17, 28–38. [Google Scholar] [CrossRef]
- Garibaldi, C.; Jereczek-Fossa, B.A.; Marvaso, G.; Dicuonzo, S.; Rojas, D.P.; Cattani, F.; Starzynska, A.; Ciardo, D.; Surgo, A.; Leonardi, M.C.; et al. Recent advances in radiation oncology. Ecancermedicalscience 2017, 11, 785. [Google Scholar] [CrossRef]
- Mladenov, E.; Magin, S.; Soni, A.; Iliakis, G. DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Front. Oncol. 2013, 3, 113. [Google Scholar] [CrossRef]
- Pajonk, F.; Vlashi, E.; McBride, W.H. Radiation resistance of cancer stem cells: The 4 R’s of radiobiology revisited. Stem Cells 2010, 28, 639–648. [Google Scholar] [CrossRef]
- Ganguly, S.; Lone, Z.; Muskara, A.; Imamura, J.; Hardaway, A.; Patel, M.; Berk, M.; Smile, T.D.; Davicioni, E.; Stephans, K.L.; et al. Intratumoral androgen biosynthesis associated with 3beta-hydroxysteroid dehydrogenase 1 promotes resistance to radiotherapy in prostate cancer. J. Clin. Investig. 2023, 133, e165718. [Google Scholar] [CrossRef]
- Maximum androgen blockade in advanced prostate cancer: An overview of the randomised trials. Prostate Cancer Trialists’ Collaborative Group. Lancet 2000, 355, 1491–1498. [CrossRef]
- Maximum androgen blockade in advanced prostate cancer: An overview of 22 randomised trials with 3283 deaths in 5710 patients. Prostate Cancer Trialists’ Collaborative Group. Lancet 1995, 346, 265–269. [CrossRef]
- Greene, D.E.; Mayadev, J.S.; Valicenti, R.K. Radiation treatment for patients with intermediate-risk prostate cancer. Ther. Adv. Urol. 2012, 4, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Kuban, D.A.; Tucker, S.L.; Dong, L.; Starkschall, G.; Huang, E.H.; Cheung, M.R.; Lee, A.K.; Pollack, A. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Zietman, A.L.; Bae, K.; Slater, J.D.; Shipley, W.U.; Efstathiou, J.A.; Coen, J.J.; Bush, D.A.; Lunt, M.; Spiegel, D.Y.; Skowronski, R.; et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: Long-term results from proton radiation oncology group/american college of radiology 95-09. J. Clin. Oncol. 2010, 28, 1106–1111. [Google Scholar] [CrossRef] [PubMed]
- Heemsbergen, W.D.; Al-Mamgani, A.; Slot, A.; Dielwart, M.F.; Lebesque, J.V. Long-term results of the Dutch randomized prostate cancer trial: Impact of dose-escalation on local, biochemical, clinical failure, and survival. Radiother. Oncol. 2014, 110, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Beckendorf, V.; Guerif, S.; Le Prise, E.; Cosset, J.M.; Bougnoux, A.; Chauvet, B.; Salem, N.; Chapet, O.; Bourdain, S.; Bachaud, J.M.; et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Dearnaley, D.P.; Jovic, G.; Syndikus, I.; Khoo, V.; Cowan, R.A.; Graham, J.D.; Aird, E.G.; Bottomley, D.; Huddart, R.A.; Jose, C.C.; et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: Long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol. 2014, 15, 464–473. [Google Scholar] [CrossRef]
- Zagars, G.K.; Johnson, D.E.; von Eschenbach, A.C.; Hussey, D.H. Adjuvant estrogen following radiation therapy for stage C adenocarcinoma of the prostate: Long-term results of a prospective randomized study. Int. J. Radiat. Oncol. Biol. Phys. 1988, 14, 1085–1091. [Google Scholar] [CrossRef]
- Sood, A.; Keeley, J.; Palma-Zamora, I.; Chien, M.; Corsi, N.; Jeong, W.; Rogers, C.G.; Trinh, Q.-D.; Peabody, J.O.; Menon, M.; et al. Anti-Androgen Therapy Overcomes the Time Delay in Initiation of Salvage Radiation Therapy and Rescues the Oncological Outcomes in Men with Recurrent Prostate Cancer After Radical Prostatectomy: A Post Hoc Analysis of the RTOG-9601 Trial Data. Ann. Surg. Oncol. 2022, 29, 7206–7215. [Google Scholar] [CrossRef]
- Zumsteg, Z.S. Local versus systemic treatment intensification: What is the optimal strategy for localized prostate cancer? Prostate Cancer Prostatic Dis. 2022, 25, 7–8. [Google Scholar] [CrossRef]
- Jiang, T.; Markovic, D.; Patel, J.; Juarez, J.E.; Ma, T.M.; Shabsovich, D.; Nickols, N.G.; Reiter, R.E.; Elashoff, D.; Rettig, M.B.; et al. Radiation therapy dose and androgen deprivation therapy in localized prostate cancer: A meta-regression of 5-year outcomes in phase III randomized controlled trials. Prostate Cancer Prostatic Dis. 2022, 25, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.C.; James, N.D.; Brawley, C.D.; Clarke, N.W.; Hoyle, A.P.; Ali, A.; Ritchie, A.W.S.; Attard, G.; Chowdhury, S.; Cross, W.; et al. Radiotherapy to the primary tumour for newly diagnosed, metastatic prostate cancer (STAMPEDE): A randomised controlled phase 3 trial. Lancet 2018, 392, 2353–2366. [Google Scholar] [CrossRef] [PubMed]
- Michalski, J.M.; Moughan, J.; Purdy, J.; Bosch, W.; Bruner, D.W.; Bahary, J.P.; Lau, H.; Duclos, M.; Parliament, M.; Morton, G.; et al. Effect of Standard vs Dose-Escalated Radiation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial. JAMA Oncol. 2018, 4, e180039. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kong, J.H.; Lee, Y.; Lee, J.Y.; Kang, T.W.; Kong, T.H.; Kim, M.H.; You, S.H. Dose-escalated radiotherapy for clinically localized and locally advanced prostate cancer. Cochrane Database Syst. Rev. 2023, 3, CD012817. [Google Scholar] [CrossRef] [PubMed]
- Brand, D.H.; Tree, A.C.; Ostler, P.; van der Voet, H.; Loblaw, A.; Chu, W.; Ford, D.; Tolan, S.; Jain, S.; Martin, A.; et al. Intensity-modulated fractionated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): Acute toxicity findings from an international, randomised, open-label, phase 3, non-inferiority trial. Lancet Oncol. 2019, 20, 1531–1543. [Google Scholar] [CrossRef]
- Van As, N.J.; Brand, D.; Tree, A.; Ostler, P.J.; Chu, W.; Loblaw, A.; Ford, D.; Tolan, S.P.; Jain, S.; Martin, A.S.; et al. PACE: Analysis of acute toxicity in PACE-B, an international phase Ill randomized controlled trial comparing stereotactic body radiotherapy (SBRT) to conventionally fractionated or moderately hypofractionated external beam radiotherapy (CFMHRT) for localized prostate cancer (LPCa). J. Clin. Oncol. 2019, 37. [Google Scholar] [CrossRef]
- Lapierre, A.; Hennequin, C.; Beneux, A.; Belhomme, S.; Benziane Ouaritini, N.; Biston, M.C.; Crehange, G.; de Crevoisier, R.; Dumas, J.L.; Fawzi, M.; et al. Highly hypofractionated schedules for localized prostate cancer: Recommendations of the GETUG radiation oncology group. Crit. Rev. Oncol. Hematol. 2022, 173, 103661. [Google Scholar] [CrossRef]
- Nigogosyan, Z.; Ippolito, J.E.; Collins, S.P.; Wang, E.C. Prostate MRI in Stereotactic Body Radiation Treatment Planning and Delivery for Localized Prostate Cancer. Radiographics 2022, 42, 1251–1264. [Google Scholar] [CrossRef]
- van As, N.; Tree, A.; Patel, J.; Ostler, P.; Van Der Voet, H.; Loblaw, D.A.; Chu, W.; Ford, D.; Tolan, S.; Jain, S.; et al. 5-Year Outcomes from PACE B: An International Phase III Randomized Controlled Trial Comparing Stereotactic Body Radiotherapy (SBRT) vs. Conventionally Fractionated or Moderately Hypo Fractionated External Beam Radiotherapy for Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, e2–e3. [Google Scholar] [CrossRef]
- Nabid, A.; Carrier, N.; Martin, A.G.; Bahary, J.P.; Lemaire, C.; Vass, S.; Bahoric, B.; Archambault, R.; Vincent, F.; Bettahar, R.; et al. Duration of Androgen Deprivation Therapy in High-risk Prostate Cancer: A Randomized Phase III Trial. Eur. Urol. 2018, 74, 432–441. [Google Scholar] [CrossRef]
- D’Amico, A.V.; Chen, M.H.; Renshaw, A.A.; Loffredo, M.; Kantoff, P.W. Androgen suppression and radiation vs radiation alone for prostate cancer—A randomized trial. Jama J. Am. Med. Assoc. 2008, 299, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.U.; Hunt, D.; McGowan, D.G.; Amin, M.B.; Chetner, M.P.; Bruner, D.W.; Leibenhaut, M.H.; Husain, S.M.; Rotman, M.; Souhami, L.; et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N. Engl. J. Med. 2011, 365, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Nabid, A.; Carrier, N.; Vigneault, E.; Van Nguyen, T.; Vavassis, P.; Brassard, M.A.; Bahoric, B.; Archambault, R.; Vincent, F.; Bettahar, R.; et al. Androgen deprivation therapy and radiotherapy in intermediate-risk prostate cancer: A randomised phase III trial. Eur. J. Cancer 2021, 143, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Kishan, A.U.; Wang, X.; Sun, Y.; Romero, T.; Michalski, J.M.; Ma, T.M.; Feng, F.Y.; Sandler, H.M.; Bolla, M.; Maingon, P.; et al. High-dose Radiotherapy or Androgen Deprivation Therapy (HEAT) as Treatment Intensification for Localized Prostate Cancer: An Individual Patient-data Network Meta-analysis from the MARCAP Consortium. Eur. Urol. 2022, 82, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Dubray, B.M.; Beckendorf, V.; Guerif, S.; Le Prise, E.; Reynaud-Bougnoux, A.; Levi, J.M.H.; Nguyen, T.D.; Hennequin, C.; Cretin, J.; Fayolle-Campana, M.; et al. Does short-term androgen depletion add to high-dose radiotherapy (80 Gy) in localized intermediate-risk prostate cancer? Intermediary analysis of GETUG 14 randomized trial (EU-20503/NCT00104741). J. Clin. Oncol. 2011, 29, 4521. [Google Scholar] [CrossRef]
- Dubray, B.M.; Salleron, J.; Guerif, S.G.; Le Prise, E.; Reynaud-Bougnoux, A.; Hannoun-Levi, J.-M.; Nguyen, T.D.; Hennequin, C.; Cretin, J.; Fayolle-Campana, M. Does short-term androgen depletion add to high dose radiotherapy (80 Gy) in localized intermediate risk prostate cancer? Final analysis of GETUG 14 randomized trial (EU-20503/NCT00104741). J. Clin. Oncol. 2016, 34, 5021. [Google Scholar] [CrossRef]
- Kapoor, A.; Hotte, S.J. Localized prostate cancer. Can. Urol. Assoc. J. 2016, 10, S138–S139. [Google Scholar] [CrossRef]
- Bolla, M.; Van Tienhoven, G.; Warde, P.; Dubois, J.B.; Mirimanoff, R.O.; Storme, G.; Bernier, J.; Kuten, A.; Sternberg, C.; Billiet, I.; et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol. 2010, 11, 1066–1073. [Google Scholar] [CrossRef]
- Bolla, M.; Collette, L.; Blank, L.; Warde, P.; Dubois, J.B.; Mirimanoff, R.O.; Storme, G.; Bernier, J.; Kuten, A.; Sternberg, C.; et al. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): A phase III randomised trial. Lancet 2002, 360, 103–106. [Google Scholar] [CrossRef]
- Pilepich, M.V.; Winter, K.; Lawton, C.A.; Krisch, R.E.; Wolkov, H.B.; Movsas, B.; Hug, E.B.; Asbell, S.O.; Grignon, D. Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma--long-term results of phase III RTOG 85-31. Int. J. Radiat. Oncol. Biol. Phys. 2005, 61, 1285–1290. [Google Scholar] [CrossRef]
- Horwitz, E.M.; Bae, K.; Hanks, G.E.; Porter, A.; Grignon, D.J.; Brereton, H.D.; Venkatesan, V.; Lawton, C.A.; Rosenthal, S.A.; Sandler, H.M.; et al. Ten-year follow-up of radiation therapy oncology group protocol 92-02: A phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J. Clin. Oncol. 2008, 26, 2497–2504. [Google Scholar] [CrossRef]
- Keating, N.L.; O’Malley, A.J.; Smith, M.R. Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J. Clin. Oncol. 2006, 24, 4448–4456. [Google Scholar] [CrossRef]
- Bolla, M.; de Reijke, T.M.; Van Tienhoven, G.; Van den Bergh, A.C.; Oddens, J.; Poortmans, P.M.; Gez, E.; Kil, P.; Akdas, A.; Soete, G.; et al. Duration of androgen suppression in the treatment of prostate cancer. N. Engl. J. Med. 2009, 360, 2516–2527. [Google Scholar] [CrossRef]
- Zapatero, A.; Guerrero, A.; Maldonado, X.; Alvarez, A.; Gonzalez San Segundo, C.; Cabeza Rodriguez, M.A.; Macias, V.; Pedro Olive, A.; Casas, F.; Boladeras, A.; et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (DART01/05 GICOR): A randomised, controlled, phase 3 trial. Lancet Oncol. 2015, 16, 320–327. [Google Scholar] [CrossRef]
- Zapatero, A.; Guerrero, A.; Maldonado, X.; Alvarez, A.; San-Segundo, C.G.; Rodriguez, M.A.C.; Sole, J.M.; Olive, A.P.; Casas, F.; Boladeras, A.; et al. High-dose radiotherapy and risk-adapted androgen deprivation in localised prostate cancer (DART 01/05): 10-year results of a phase 3 randomised, controlled trial. Lancet Oncol. 2022, 23, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Lawton, C.A.F.; Lin, X.; Hanks, G.E.; Lepor, H.; Grignon, D.J.; Brereton, H.D.; Bedi, M.; Rosenthal, S.A.; Zeitzer, K.L.; Venkatesan, V.M.; et al. Duration of Androgen Deprivation in Locally Advanced Prostate Cancer: Long-Term Update of NRG Oncology RTOG 9202. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Dignam, J.J.; Hamstra, D.A.; Lepor, H.; Grignon, D.; Brereton, H.; Currey, A.; Rosenthal, S.; Zeitzer, K.L.; Venkatesan, V.M.; Horwitz, E.M.; et al. Time Interval to Biochemical Failure as a Surrogate End Point in Locally Advanced Prostate Cancer: Analysis of Randomized Trial NRG/RTOG 9202. J. Clin. Oncol. 2019, 37, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Denham, J.W.; Joseph, D.; Lamb, D.S.; Spry, N.A.; Duchesne, G.; Matthews, J.; Atkinson, C.; Tai, K.H.; Christie, D.; Kenny, L.; et al. Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): An open-label, randomised, phase 3 factorial trial. Lancet Oncol. 2014, 15, 1076–1089. [Google Scholar] [CrossRef] [PubMed]
- Denham, J.W.; Joseph, D.; Lamb, D.S.; Spry, N.A.; Duchesne, G.; Matthews, J.; Atkinson, C.; Tai, K.H.; Christie, D.; Kenny, L.; et al. Short-term androgen suppression and radiotherapy versus intermediate-term androgen suppression and radiotherapy, with or without zoledronic acid, in men with locally advanced prostate cancer (TROG 03.04 RADAR): 10-year results from a randomised, phase 3, factorial trial. Lancet Oncol. 2019, 20, 267–281. [Google Scholar] [CrossRef] [PubMed]
- Giraud, N.; Benziane-Ouaritini, N.; Schick, U.; Beauval, J.-B.; Chaddad, A.; Niazi, T.; Faye, M.D.; Supiot, S.; Sargos, P.; Latorzeff, I. Post-Operative Radiotherapy in Prostate Cancer: Is It Time for a Belt and Braces Approach? Front. Oncol. 2021, 11, 781040. [Google Scholar] [CrossRef] [PubMed]
- Denham, J.W.; Steigler, A.; Lamb, D.S.; Joseph, D.; Turner, S.; Matthews, J.; Atkinson, C.; North, J.; Christie, D.; Spry, N.A.; et al. Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol. 2011, 12, 451–459. [Google Scholar] [CrossRef] [PubMed]
- McCall, N.S.; Liu, Y.; Patel, S.A.; Hershatter, B.; Moghanaki, D.; Godette, K.D.; Hanasoge, S.; Patel, P.; Fischer-Valuck, B.W.; Shelton, J.W.; et al. Influence of Timing Between Androgen Deprivation Therapy and External Beam Radiation Therapy in Patients With Localized, High-Risk Prostate Cancer. Adv. Radiat. Oncol. 2021, 6, 100803. [Google Scholar] [CrossRef] [PubMed]
- Kishan, A.U.; Sun, Y.; Hartman, H.; Pisansky, T.M.; Bolla, M.; Neven, A.; Steigler, A.; Denham, J.W.; Feng, F.Y.; Zapatero, A.; et al. Androgen deprivation therapy use and duration with definitive radiotherapy for localised prostate cancer: An individual patient data meta-analysis. Lancet Oncol. 2022, 23, 304–316. [Google Scholar] [CrossRef]
- Chen, H.H.W.; Kuo, M.T. Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget 2017, 8, 62742–62758. [Google Scholar] [CrossRef]
- Yuan, Z.; Fernandez, D.; Dhillon, J.; Abraham-Miranda, J.; Awasthi, S.; Kim, Y.; Zhang, J.; Jain, R.; Serna, A.; Pow-Sang, J.M.; et al. Proof-of-principle Phase I results of combining nivolumab with brachytherapy and external beam radiation therapy for Grade Group 5 prostate cancer: Safety, feasibility, and exploratory analysis. Prostate Cancer Prostatic Dis. 2021, 24, 140–149. [Google Scholar] [CrossRef]
- Roge, M.; Pointreau, Y.; Sargos, P.; Meyer, E.; Schick, U.; Hasbini, A.; Rio, E.; Bera, G.; Ruffier, A.; Quivrin, M.; et al. Randomized phase II trial in prostate cancer with hormone-sensitive OligometaSTatic relapse: Combining stereotactic ablative radiotherapy and durvalumab (POSTCARD GETUG P13): Study protocol. Clin. Transl. Radiat. Oncol. 2023, 40, 100613. [Google Scholar] [CrossRef]
- Posadas, E.M.; Gay, H.A.; Pugh, S.L.; Morgan, T.M.; Yu, J.B.; Lechpammer, S.; Feng, F.Y. RTOG 3506 (STEEL): A study of salvage radiotherapy with or without enzalutamide in recurrent prostate cancer following surgery. J. Clin. Oncol. 2020, 38, TPS5601. [Google Scholar] [CrossRef]
- Kelly, W.K.; Halabi, S.; Elfiky, A.; Ou, S.S.; Bogart, J.; Zelefsky, M.; Small, E.; Cancer Leukemia Group, B. Multicenter phase 2 study of neoadjuvant paclitaxel, estramustine phosphate, and carboplatin plus androgen deprivation before radiation therapy in patients with unfavorable-risk localized prostate cancer: Results of Cancer and Leukemia Group B 99811. Cancer 2008, 113, 3137–3145. [Google Scholar] [CrossRef]
- Bauman, G.; Ferguson, M.; Lock, M.; Chen, J.; Ahmad, B.; Venkatesan, V.M.; Sexton, T.; D’Souza, D.; Loblaw, A.; Warner, A.; et al. A Phase 1/2 Trial of Brief Androgen Suppression and Stereotactic Radiation Therapy (FASTR) for High-Risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 856–862. [Google Scholar] [CrossRef]
- Palacios, D.A.; Miyake, M.; Rosser, C.J. Radiosensitization in prostate cancer: Mechanisms and targets. BMC Urol. 2013, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Alcorn, S.; Walker, A.J.; Gandhi, N.; Narang, A.; Wild, A.T.; Hales, R.K.; Herman, J.M.; Song, D.Y.; Deweese, T.L.; Antonarakis, E.S.; et al. Molecularly targeted agents as radiosensitizers in cancer therapy--focus on prostate cancer. Int. J. Mol. Sci. 2013, 14, 14800–14832. [Google Scholar] [CrossRef] [PubMed]
- Komorowska, D.; Radzik, T.; Kalenik, S.; Rodacka, A. Natural Radiosensitizers in Radiotherapy: Cancer Treatment by Combining Ionizing Radiation with Resveratrol. Int. J. Mol. Sci. 2022, 23, 10627. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Zhang, Y.; Liu, C.; Zhang, M.; Han, S. Application of Radiosensitizers in Cancer Radiotherapy. Int. J. Nanomed. 2021, 16, 1083–1102. [Google Scholar] [CrossRef] [PubMed]
- Joensuu, G.; Joensuu, T.; Nokisalmi, P.; Reddy, C.; Isola, J.; Ruutu, M.; Kouri, M.; Kupelian, P.A.; Collan, J.; Pesonen, S.; et al. A phase I/II trial of gefitinib given concurrently with radiotherapy in patients with nonmetastatic prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 42–49. [Google Scholar] [CrossRef]
- Vuky, J.; Pham, H.T.; Warren, S.; Douglass, E.; Badiozamani, K.; Madsen, B.; Hsi, A.; Song, G. Phase II study of long-term androgen suppression with bevacizumab and intensity-modulated radiation therapy (IMRT) in high-risk prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, e609–e615. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.U.; Forman, J.D.; Sarkar, F.H.; Hillman, G.G.; Heath, E.; Vaishampayan, U.; Cher, M.L.; Andic, F.; Rossi, P.J.; Kucuk, O. Soy isoflavones in conjunction with radiation therapy in patients with prostate cancer. Nutr. Cancer 2010, 62, 996–1000. [Google Scholar] [CrossRef]
- Aggarwal, B.B. Nuclear factor-kappaB: The enemy within. Cancer Cell 2004, 6, 203–208. [Google Scholar] [CrossRef]
- Chendil, D.; Ranga, R.S.; Meigooni, D.; Sathishkumar, S.; Ahmed, M.M. Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 2004, 23, 1599–1607. [Google Scholar] [CrossRef]
- Veeraraghavan, J.; Natarajan, M.; Herman, T.S.; Aravindan, N. Curcumin-altered p53-response genes regulate radiosensitivity in p53-mutant Ewing’s sarcoma cells. Anticancer. Res. 2010, 30, 4007–4015. [Google Scholar]
- Takahashi, J.; Misawa, M.; Iwahashi, H. Combined treatment with X-ray irradiation and 5-aminolevulinic acid elicits better transcriptomic response of cell cycle-related factors than X-ray irradiation alone. Int. J. Radiat. Biol. 2016, 92, 774–789. [Google Scholar] [CrossRef]
- Miyake, M.; Tanaka, N.; Hori, S.; Ohnishi, S.; Takahashi, H.; Fujii, T.; Owari, T.; Ohnishi, K.; Iida, K.; Morizawa, Y.; et al. Dual benefit of supplementary oral 5-aminolevulinic acid to pelvic radiotherapy in a syngenic prostate cancer model. Prostate 2019, 79, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Semenas, J.; Dizeyi, N.; Persson, J.L. Enzalutamide as a second generation antiandrogen for treatment of advanced prostate cancer. Drug Des. Devel Ther. 2013, 7, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, K.R.; Wang, J.; Freeman, M.L.; Kirschner, A.N. Radiosensitization by enzalutamide for human prostate cancer is mediated through the DNA damage repair pathway. PLoS ONE 2019, 14, e0214670. [Google Scholar] [CrossRef] [PubMed]
- Vermunt, M.A.C.; van der Heijden, L.T.; Hendrikx, J.; Schinkel, A.H.; de Weger, V.A.; van der Putten, E.; van Triest, B.; Bergman, A.M.; Beijnen, J.H. Pharmacokinetics of docetaxel and ritonavir after oral administration of ModraDoc006/r in patients with prostate cancer versus patients with other advanced solid tumours. Cancer Chemother. Pharmacol. 2021, 87, 855–869. [Google Scholar] [CrossRef] [PubMed]
- de Vos, I.I.; Luiting, H.B.; Roobol, M.J. Active Surveillance for Prostate Cancer: Past, Current, and Future Trends. J. Pers. Med. 2023, 13, 629. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.D.; Good, D.W.; Alan McNeill, S. Re: Patient-reported Outcomes 12 Years after Localized Prostate Cancer Treatment. Eur. Urol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N. Engl. J. Med. 2016, 375, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Metcalfe, C.; Davis, M.; Turner, E.L.; Martin, R.M.; Young, G.J.; Walsh, E.I.; Bryant, R.J.; et al. Fifteen-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2023, 388, 1547–1558. [Google Scholar] [CrossRef]
- REINIKAINEN, P.; KAPANEN, M.; LUUKKAALA, T.; KELLOKUMPU-LEHTINEN, P.-L. Acute Side-effects of Different Radiotherapy Treatment Schedules in Early Prostate Cancer. Anticancer Res. 2022, 42, 2553–2565. [Google Scholar] [CrossRef]
- Achard, V.; Zilli, T. Prostate cancer intensity-modulated radiotherapy and long term genitourinary toxicity: An evolving therapeutic landscape. Prostate Cancer Prostatic Dis. 2023, 26, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Corkum, M.T.; Achard, V.; Morton, G.; Zilli, T. Ultrahypofractionated Radiotherapy for Localised Prostate Cancer: How Far Can We Go? Clin. Oncol. 2022, 34, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Teunissen, F.R.; van der Voort van Zyp, J.R.N.; Wortel, R.C. Advances in erectile function-preserving radiotherapy for prostate cancer. J. Sex. Med. 2023, 20, 121–123. [Google Scholar] [CrossRef]
- Barocas, D.A.; Alvarez, J.; Resnick, M.J.; Koyama, T.; Hoffman, K.E.; Tyson, M.D.; Conwill, R.; McCollum, D.; Cooperberg, M.R.; Goodman, M.; et al. Association Between Radiation Therapy, Surgery, or Observation for Localized Prostate Cancer and Patient-Reported Outcomes After 3 Years. JAMA 2017, 317, 1126–1140. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.C.; Basak, R.; Meyer, A.M.; Kuo, T.M.; Carpenter, W.R.; Agans, R.P.; Broughman, J.R.; Reeve, B.B.; Nielsen, M.E.; Usinger, D.S.; et al. Association Between Choice of Radical Prostatectomy, External Beam Radiotherapy, Brachytherapy, or Active Surveillance and Patient-Reported Quality of Life Among Men With Localized Prostate Cancer. JAMA 2017, 317, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Donovan, J.L.; Hamdy, F.C.; Lane, J.A.; Mason, M.; Metcalfe, C.; Walsh, E.; Blazeby, J.M.; Peters, T.J.; Holding, P.; Bonnington, S.; et al. Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2016, 375, 1425–1437. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.K.; Rajala, J.L.; Tyldesley, S.; Pickles, T.; Virani, S.A. The Prevalence of Cardiac Risk Factors in Men with Localized Prostate Cancer Undergoing Androgen Deprivation Therapy in British Columbia, Canada. J. Oncol. 2015, 2015, 820403. [Google Scholar] [CrossRef]
- Campbell, C.M.; Zhang, K.W.; Collier, A.; Linch, M.; Calaway, A.C.; Ponsky, L.; Guha, A.; Ghosh, A.K. Cardiovascular Complications of Prostate Cancer Therapy. Curr. Treat. Opt. Card. 2020, 22, 69. [Google Scholar] [CrossRef]
- Narayan, V.; Ross, A.E.; Parikh, R.B.; Nohria, A.; Morgans, A.K. How to Treat Prostate Cancer With Androgen Deprivation and Minimize Cardiovascular Risk A Therapeutic Tightrope. JACC CardioOncol. 2021, 3, 737–741. [Google Scholar] [CrossRef]
- Tzortzis, V.; Samarinas, M.; Zachos, I.; Oeconomou, A.; Pisters, L.L.; Bargiota, A. Adverse effects of androgen deprivation therapy in patients with prostate cancer: Focus on metabolic complications. Hormones 2017, 16, 115–123. [Google Scholar] [CrossRef]
- Sweeney, C.J.; Chen, Y.H.; Carducci, M.; Liu, G.; Jarrard, D.F.; Eisenberger, M.; Wong, Y.N.; Hahn, N.; Kohli, M.; Cooney, M.M.; et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2015, 373, 737–746. [Google Scholar] [CrossRef]
- James, N.D.; Sydes, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Spears, M.R.; Ritchie, A.W.; Parker, C.C.; Russell, J.M.; Attard, G.; et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016, 387, 1163–1177. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Ozguroglu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2017, 377, 352–360. [Google Scholar] [CrossRef]
- Bagshaw, H.P.; Arnow, K.D.; Trickey, A.W.; Leppert, J.T.; Wren, S.M.; Morris, A.M. Assessment of Second Primary Cancer Risk Among Men Receiving Primary Radiotherapy vs Surgery for the Treatment of Prostate Cancer. JAMA Netw. Open 2022, 5, e2223025. [Google Scholar] [CrossRef] [PubMed]
- Monda, S.; Pratsinis, M.; Lui, H.; Noel, O.; Chandrasekar, T.; Evans, C.P.; Dall’Era, M.A. Secondary Bladder Cancer After Prostate Cancer Treatment: An Age-matched Comparison Between Radiation and Surgery. Eur. Urol. Focus. 2023. [Google Scholar] [CrossRef]
- Palermo, B.; Bottero, M.; Panetta, M.; Faiella, A.; Sperduti, I.; Masi, S.; Frisullo, G.; Foddai, M.L.; Cordone, I.; Nistico, P.; et al. Stereotactic Ablative Radiation Therapy in 3 Fractions Induces a Favorable Systemic Immune Cell Profiling in Prostate Cancer Patients. Oncoimmunology 2023, 12, 2174721. [Google Scholar] [CrossRef]
- Quon, H.; McNutt, T.; Lee, J.; Bowers, M.; Jiang, W.; Lakshminarayanan, P.; Cheng, Z.; Han, P.; Hui, X.; Shah, V.; et al. Needs and Challenges for Radiation Oncology in the Era of Precision Medicine. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 809–817. [Google Scholar] [CrossRef]
- Hernando Polo, S.; Moreno Munoz, D.; Rosero Rodriguez, A.C.; Silva Ruiz, J.; Rosero Rodriguez, D.I.; Counago, F. Changing the History of Prostate Cancer with New Targeted Therapies. Biomedicines 2021, 9, 392. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, D.; Spring, D.J.; DePinho, R.A. Genetics and biology of prostate cancer. Genes. Dev. 2018, 32, 1105–1140. [Google Scholar] [CrossRef]
- Hall, W.A.; Bergom, C.; Thompson, R.F.; Baschnagel, A.M.; Vijayakumar, S.; Willers, H.; Li, X.A.; Schultz, C.J.; Wilson, G.D.; West, C.M.L.; et al. Precision Oncology and Genomically Guided Radiation Therapy: A Report From the American Society for Radiation Oncology/American Association of Physicists in Medicine/National Cancer Institute Precision Medicine Conference. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 274–284. [Google Scholar] [CrossRef]
- Jairath, N.K.; Dal Pra, A.; Vince, R., Jr.; Dess, R.T.; Jackson, W.C.; Tosoian, J.J.; McBride, S.M.; Zhao, S.G.; Berlin, A.; Mahal, B.A.; et al. A Systematic Review of the Evidence for the Decipher Genomic Classifier in Prostate Cancer. Eur. Urol. 2021, 79, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Feng, F.Y.; Huang, H.C.; Spratt, D.E.; Zhao, S.G.; Sandler, H.M.; Simko, J.P.; Davicioni, E.; Nguyen, P.L.; Pollack, A.; Efstathiou, J.A.; et al. Validation of a 22-Gene Genomic Classifier in Patients With Recurrent Prostate Cancer: An Ancillary Study of the NRG/RTOG 9601 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Morgan, T.M.; Okoth, L.A.; Spratt, D.E.; Dunn, R.; Feng, F.Y.; Johnson, A.M.; Lane, B.R.; Linsell, S.; Ghani, K.R.; Montie, J.E.; et al. Prospective randomized trial of gene expression classifier utility following radical prostatectomy (G-MINOR). J. Clin. Oncol. 2021, 39, 15. [Google Scholar] [CrossRef]
- Spratt, D.E.; Liu, V.Y.T.; Michalski, J.; Davicioni, E.; Berlin, A.; Simko, J.P.; Efstathiou, J.A.; Tran, P.T.; Sandler, H.M.; Hall, W.A.; et al. Genomic Classifier Performance in Intermediate-Risk Prostate Cancer: Results From NRG Oncology/RTOG 0126 Randomized Phase 3 Trial. Int. J. Radiat. Oncol. Biol. Phys. 2023, 117, 370–377. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.R.; Park, W. Radiotherapy in prostate cancer treatment: Results of the patterns of care study in Korea. Radiat. Oncol. J. 2017, 35, 25–31. [Google Scholar] [CrossRef]
- Yap, M.L.; O’Connell, D.L.; Goldsbury, D.E.; Weber, M.F.; Smith, D.P.; Barton, M.B. Patterns of care for men with prostate cancer: The 45 and Up Study. Med. J. Aust. 2021, 214, 271–278. [Google Scholar] [CrossRef]
- Jung, J.; Bae, G.H.; Kim, J.H.; Kim, J. Outcomes of prostate cancer patients after robot-assisted radical prostatectomy compared with open radical prostatectomy in Korea. Sci. Rep. 2023, 13, 7851. [Google Scholar] [CrossRef]
- Heath, E.I.; Dyson, G.E.; Cackowski, F.C.; Hafron, J.; Powell, I. Treatment Intensification Patterns and Utilization in Patients with Metastatic Castration-Sensitive Prostate Cancer. Clin. Genitourin. Cancer 2022, 20, 524–532. [Google Scholar] [CrossRef]
- Bartkowiak, D.; Thamm, R.; Siegmann, A.; Böhmer, D.; Budach, V.; Wiegel, T. Lead-time bias does not falsify the efficacy of early salvage radiotherapy for recurrent prostate cancer. Radiother. Oncol. 2021, 154, 255–259. [Google Scholar] [CrossRef]
- Wang, T.; Lewis, B.; Ruscetti, M.; Mittal, K.; Wang, M.J.; Sokoloff, M.; Ding, L.; Bishop-Jodoin, M.; FitzGerald, T.J. Prostate Cancer: Advances in Radiation Oncology, Molecular Biology, and Future Treatment Strategies. In Urologic Cancers; Barber, N., Ali, A., Eds.; Exon Publications: Brisbane, Australia, 2022. [Google Scholar]
- Parker, C.C.; Clarke, N.W.; Cook, A.D.; Kynaston, H.G.; Petersen, P.M.; Catton, C.; Cross, W.; Logue, J.; Parulekar, W.; Payne, H.; et al. Timing of radiotherapy after radical prostatectomy (RADICALS-RT): A randomised, controlled phase 3 trial. Lancet 2020, 396, 1413–1421. [Google Scholar] [CrossRef]
- Tilki, D.; D’Amico, A.V. Timing of radiotherapy after radical prostatectomy. Lancet 2020, 396, 1374–1375. [Google Scholar] [CrossRef] [PubMed]
- Ghadjar, P.; Höcht, S.; Wiegel, T. Postoperative radiotherapy in prostate cancer. Lancet 2021, 397, 1623. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, N.; Goyal, S.; Liu, Y.; Janopaul-Naylor, J.R.; Patel, P.R.; Dhere, V.R.; Hanasoge, S.; Shelton, J.W.; Godette, K.D.; Jani, A.B.; et al. Radiation Facility Volume and Survival for Men With Very High-Risk Prostate Cancer Treated with Radiation and Androgen Deprivation Therapy. JAMA Netw. Open 2023, 6, e2327637. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasim, S.; Park, J.; Nam, S.; Kim, J. Review of Current Treatment Intensification Strategies for Prostate Cancer Patients. Cancers 2023, 15, 5615. https://doi.org/10.3390/cancers15235615
Wasim S, Park J, Nam S, Kim J. Review of Current Treatment Intensification Strategies for Prostate Cancer Patients. Cancers. 2023; 15(23):5615. https://doi.org/10.3390/cancers15235615
Chicago/Turabian StyleWasim, Sobia, Jieun Park, Seungyoon Nam, and Jaehong Kim. 2023. "Review of Current Treatment Intensification Strategies for Prostate Cancer Patients" Cancers 15, no. 23: 5615. https://doi.org/10.3390/cancers15235615
APA StyleWasim, S., Park, J., Nam, S., & Kim, J. (2023). Review of Current Treatment Intensification Strategies for Prostate Cancer Patients. Cancers, 15(23), 5615. https://doi.org/10.3390/cancers15235615