Optical Imaging in Human Lymph Node Specimens for Detecting Breast Cancer Metastases: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Histopathological Assessment
1.2. Imaging Techniques
1.3. Basic Principles of Light–Tissue Interaction and Optical Diagnostic Methods
2. Materials and Methods
3. Results
3.1. Elastic Scattering Spectroscopy
3.2. Optical Coherence Tomography
3.3. Raman Spectroscopy
3.4. Near-Infrared Fluorescence Imaging
3.5. Diffuse Reflectance Spectroscopy
3.6. Fourier-Transform Infrared Spectroscopy
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Langer, I.; Guller, U.; Hsu-Schmitz, S.F.; Ladewig, A.; Viehl, C.T.; Moch, H.; Wight, E.; Harder, F.; Oertli, D.; Zuber, M. Sentinel lymph node biopsy is associated with improved survival compared to level I & II axillary lymph node dissection in node negative breast cancer patients. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2009, 35, 805–813. [Google Scholar] [CrossRef]
- Co, M.; Kwong, A. Macrometastasis, micrometastasis, and isolated tumor cells in sentinel lymph nodes of early breast cancers: A 10-year histopathological and survival analysis of 537 Asian patients. World J. Surg. 2015, 39, 1438–1442. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Purushotham, A.; Douek, M. Novel Techniques for Sentinel Lymph Node Biopsy in Breast Cancer: A Systematic Review. Lancet Oncol. 2014, 15, e351–e362. [Google Scholar] [CrossRef]
- Verry, H.; Lord, S.J.; Martin, A.; Gill, G.; Lee, C.K.; Howard, K.; Wetzig, N.; Simes, J. Effectiveness and cost-effectiveness of sentinel lymph node biopsy compared with axillary node dissection in patients with early-stage breast cancer: A decision model analysis. Br. J. Cancer 2012, 106, 1045–1052. [Google Scholar] [CrossRef]
- Grootendorst, D.J.; Steenbergen, W.; Manohar, S.; Ruers, T.J.M. Optical Techniques for the Intraoperative Assessment of Nodal Status. Future Oncol. 2013, 9, 1741–1755. [Google Scholar] [CrossRef]
- Tuchin, V.V. Tissue Optics and Photonics: Light-Tissue Interaction. J. Biomed. Photonics Eng. 2015, 1, 98–134. [Google Scholar] [CrossRef]
- Man, V.; Suen, D.; Kwong, A. Use of Superparamagnetic Iron Oxide (SPIO) Versus Conventional Technique in Sentinel Lymph Node Detection for Breast Cancer: A Randomised Controlled Trial. Ann. Surg. Oncol. 2023, 30, 3237–3244. [Google Scholar] [CrossRef]
- Jacques, S.L. Optical Properties of Biological Tissues: A Review. Phys. Med. Biol. 2013, 58, R37–R61. [Google Scholar] [CrossRef]
- Sandell, J.; Zhu, T.C. A Review of In-Vivo Optical Properties of Human Tissues and Its Impact on PDT. J. Biophotonics 2011, 4, 773–787. [Google Scholar] [CrossRef]
- Giannios, P.; Toutouzas, K.G.; Matiatou, M.; Stasinos, K.; Konstadoulakis, M.M.; Zografos, G.; Moutzouris, K. Visible to Near-Infrared Refractive Properties of Freshly-Excised Human-Liver Tissues: Marking Hepatic Malignancies. Sci. Rep. 2016, 6, 27910. [Google Scholar] [CrossRef] [PubMed]
- Giannios, P.; Koutsoumpos, S.; Toutouzas, K.G.; Matiatou, M.; Zografos, G.; Moutzouris, K. Complex Refractive Index of Normal and Malignant Human Colorectal Tissue in the Visible and Near-Infrared. J. Biophotonics 2016, 10, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Matiatou, M.; Giannios, P.; Koutsoumpos, S.; Michalopoulos, N.V.; Toutouzas, K.G.; Zografos, G.; Moutzouris, K. Complex Refractive Index of Freshly Excised Human Breast Tissue as a Marker of Disease. Lasers Med. Sci. 2022, 37, 2597–2604. [Google Scholar] [CrossRef]
- Matiatou, M.; Giannios, P.; Koutsoumpos, S.; Toutouzas, K.G.; Zografos, G.; Moutzouris, K. Data on the Refractive Index of Freshly-Excised Human Tissues in the Visible and near-Infrared Spectral Range. Results Phys. 2021, 22, 103833. [Google Scholar] [CrossRef]
- Marchesini, R.; Bertoni, A.; Andreola, S.; Melloni, E.; Sichirollo, A.E. Extinction and Absorption Coefficients and Scattering Phase Functions of Human Tissues in Vitro. Appl. Opt. 1989, 28, 2318. [Google Scholar] [CrossRef]
- Troy, T.L.; Thennadil, S.N. Optical Properties of Human Skin in the near Infrared Wavelength Range of 1000 to 2200 Nm. J. Biomed. Opt. 2001, 6, 167. [Google Scholar] [CrossRef] [PubMed]
- Wisotzky, E.L.; Uecker, F.C.; Dommerich, S.; Hilsmann, A.; Eisert, P.; Arens, P. Determination of Optical Properties of Human Tissues Obtained from Parotidectomy in the Spectral Range of 250 to 800 Nm. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef]
- Miyazaki, D. Fresnel equations. In Springer eBooks; Springer: Berlin/Heidelberg, Germany, 2014; pp. 305–307. [Google Scholar] [CrossRef]
- Lapaeva, L.G.; Rogatkin, D.A. Improved Kubelka-Munk approach for determination of tissues optical properties in biomedical noninvasive reflectance spectroscopy. In Proceedings of the Saratov Fall Meeting 2006: Coherent Optics of Ordered and Random Media VII, Saratov, Russian, 26 June 2007; SPIE: Bellingham, WA, USA, 2007. [Google Scholar] [CrossRef]
- Bhandari, A.; Hamre, B.; Frette, Ø.; Stamnes, K.; Stamnes, J.J. Modeling Optical Properties of Human Skin Using Mie Theory for Particles with Different Size Distributions and Refractive Indices. Opt. Express 2011, 19, 14549. [Google Scholar] [CrossRef]
- Mohlenhoff, B.; Romeo, M.; Diem, M.; Wood, B.R. MIE-Type Scattering and Non-Beer-Lambert Absorption Behavior of Human Cells in Infrared Microspectroscopy. Biophys. J. 2005, 88, 3635–3640. [Google Scholar] [CrossRef]
- Young, A.T. Rayleigh Scattering. Appl. Opt. 1981, 20, 533. [Google Scholar] [CrossRef]
- Miles, R.B.; Lempert, W.R.; Forkey, J.N. Laser Rayleigh Scattering. Meas. Sci. Technol. 2001, 12, R33–R51. [Google Scholar] [CrossRef]
- Gardiner, D.J. Introduction to raman scattering. In Springer eBooks; Springer: Berlin/Heidelberg, Germany, 1989; pp. 1–12. [Google Scholar] [CrossRef]
- Fung, A.A.; Shi, L. Mammalian Cell and Tissue Imaging Using Raman and Coherent Raman Microscopy. Wiley Interdiscip. Rev. Syst. Biol. Med. 2020, 12, e1501. [Google Scholar] [CrossRef] [PubMed]
- Monici, M. Cell and tissue autofluorescence research and diagnostic applications. In Elsevier eBooks; Elsevier: Amsterdam, The Netherlands, 2005; pp. 227–256. [Google Scholar] [CrossRef]
- Willingham, M.C. Fluorescence labeling of surface antigens of attached or suspended tissue-culture cells. Methods Mol. Biol. 2009, 588, 143–151. [Google Scholar] [CrossRef]
- Sordillo, L.A.; Pu, Y.; Pratavieira, S.; Budansky, Y.; Alfano, R.R. Deep Optical Imaging of Tissue Using the Second and Third Near-Infrared Spectral Windows. J. Biomed. Opt. 2014, 19, 56004. [Google Scholar] [CrossRef]
- Kim, J.A.; Wales, D.J.; Yang, G. Optical Spectroscopy for In Vivo Medical Diagnosis—A Review of the State of the Art and Future Perspectives. Prog. Biomed. Eng. 2020, 2, 42001. [Google Scholar] [CrossRef]
- Sokolov, K.; Follen, M.; Richards-Kortum, R. Optical Spectroscopy for Detection of Neoplasia. Curr. Opin. Chem. Biol. 2002, 6, 651–658. [Google Scholar] [CrossRef]
- Vahrmeijer, A.L.; Hutteman, M.; Van Der Vorst, J.R.; Van De Velde, C.J.H.; Frangioni, J.V. Image-Guided Cancer Surgery Using near-Infrared Fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518. [Google Scholar] [CrossRef]
- Wunderbaldinger, P. Optical Imaging of Lymph Nodes. Eur. J. Radiol. 2006, 58, 390–393. [Google Scholar] [CrossRef]
- Boustany, N.N.; Boppart, S.A.; Backman, V. Microscopic Imaging and Spectroscopy with Scattered Light. Annu. Rev. Biomed. Eng. 2010, 12, 285–314. [Google Scholar] [CrossRef]
- Lin, X.; Liu, C.; Sheng, Z.; Gong, X.; Song, L.; Zhang, R.; Zheng, H.; Sun, M. Highly Sensitive Fluorescence and Photoacoustic Detection of Metastatic Breast Cancer in Mice Using Dual-Modal Nanoprobes. ACS Appl. Mater. Interfaces 2018, 10, 31, 26064–26074. [Google Scholar] [CrossRef]
- Dai, Y.; Yu, X.; Wei, J.; Zeng, F.; Li, Y.; Yang, X.; Luo, Q.; Zhang, Z. Metastatic status of sentinel lymph nodes in breast cancer determined with photoacoustic microscopy via dual-targeting nanoparticles. Light Sci. Appl. 2020, 9, 164. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, J.G.; Drexler, W. Introduction to Optical Coherence Tomography. In Springer eBooks; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–45. [Google Scholar] [CrossRef]
- Podoleanu, A.G. Optical Coherence Tomography. J. Microsc. 2012, 247, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Singla, N.; Dubey, K.; Srivastava, V. Automated Assessment of Breast Cancer Margin in Optical Coherence Tomography Images via Pretrained Convolutional Neural Network. J. Biophotonics 2018, 12, e201800255. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Dai, Y.; Liu, P.; Hu, C.; Tong, L.; Chen, X.; Smith, Z.J. RamAn Plus X: Biomedical Applications of Multimodal RAMaN Spectroscopy. Sensors 2017, 17, 1592. [Google Scholar] [CrossRef] [PubMed]
- Horsnell, J.; Smith, J.; Sattlecker, M.; Sammon, A.M.; Christie-Brown, J.; Kendall, C.; Stone, N. Raman Spectroscopy—A Potential New Method for the Intra-Operative Assessment of Axillary Lymph Nodes. Surgeon 2012, 10, 123–127. [Google Scholar] [CrossRef]
- Isabelle, M.; Stone, N.; Barr, H.; Vipond, M.; Shepherd, N.A.; Rogers, K. Lymph Node Pathology Using Optical Spectroscopy in Cancer Diagnostics. Spectroscopy 2008, 22, 97–104. [Google Scholar] [CrossRef]
- Haka, A.S.; Volynskaya, Z.; Gardecki, J.A.; Nazemi, J.; Lyons, J.; Hicks, D.G.; Fitzmaurice, M.; Dasari, R.R.; Crowe, J.P.; Feld, M.S. In Vivo Margin Assessment during Partial Mastectomy Breast Surgery Using Raman Spectroscopy. Cancer Res. 2006, 66, 3317–3322. [Google Scholar] [CrossRef]
- Ouyang, J.; Sun, L.; Zeng, Z.; Zeng, C.; Zeng, F.; Wu, S. Nanoaggregate Probe for Breast Cancer Metastasis through Multispectral Optoacoustic Tomography and Aggregation-Induced NIR-I/II Fluorescence Imaging. Angew. Chem. 2020, 59, 10111–10121. [Google Scholar] [CrossRef]
- Lovat, L.; Johnson, K.; Mackenzie, G.D.; Clark, B.R.; Novelli, M.; Davies, S.; O’Donovan, M.; Selvasekar, C.; Thorpe, S.; Pickard, D.C.O.; et al. Elastic Scattering Spectroscopy Accurately Detects High Grade Dysplasia and Cancer in Barrett’s Oesophagus. Gut 2005, 55, 1078–1083. [Google Scholar] [CrossRef]
- Austwick, M.Z. Scanning Elastic Scattering Spectroscopy Detects Metastatic Breast Cancer in Sentinel Lymph Nodes. J. Biomed. Opt. 2010, 15, 47001. [Google Scholar] [CrossRef]
- Johnson, K.; Chicken, D.W.; Pickard, D.C.O.; Lee, A.C.; Briggs, G.M.; Falzon, M.; Bigio, I.J.; Keshtgar, M.; Bown, S.G. Elastic Scattering Spectroscopy for Intraoperative Determination of Sentinel Lymph Node Status in the Breast. J. Biomed. Opt. 2004, 9, 1122. [Google Scholar] [CrossRef] [PubMed]
- Keshtgar, M.; Chicken, D.W.; Austwick, M.Z.; Somasundaram, S.K.; Mosse, C.A.; Zhu, Y.; Bigio, I.J.; Bown, S.G. Optical Scanning for Rapid Intraoperative Diagnosis of Sentinel Node Metastases in Breast Cancer. Br. J. Surg. 2010, 97, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Jerjes, W.; Swinson, B.; Pickard, D.C.O.; Thomas, G.J.; Hopper, C. Detection of Cervical Intranodal Metastasis in Oral Cancer Using Elastic Scattering Spectroscopy. Oral Oncol. 2004, 40, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Denkçeken, T.; Canpolat, M.; Baykara, M.; Başsorgun, İ.; Aktaş-Samur, A. Diagnosis of Pelvic Lymph Node Metastasis in Prostate Cancer Using Single Optical Fiber Probe. Int. J. Biol. Macromol. 2016, 90, 63–67. [Google Scholar] [CrossRef]
- Iftimia, N.; Mujat, M.; Ustun, T.E.; Ferguson, R.D.; Danthu, V.; Hammer, D.X. Spectral-Domain Low Coherence Interferometry/Optical Coherence Tomography System for Fine Needle Breast Biopsy Guidance. Rev. Sci. Instrum. 2009, 80, 24302. [Google Scholar] [CrossRef]
- McLaughlin, R.A.; Scolaro, L.; Robbins, P.; Hamza, S.; Saunders, C.; Sampson, D.D. Imaging of Human Lymph Nodes Using Optical Coherence Tomography: Potential for Staging Cancer. Cancer Res. 2010, 70, 2579–2584. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, J.G. Biomedical imaging using optical coherence tomography. In Proceedings of the Volume 3749, 18th Congress of the International Commission for Optics, San Francisco, CA, USA, 2–6 August 1999; SPIE: Bellingham, WA, USA, 2007. [Google Scholar] [CrossRef]
- Nguyen, F.T.; Zysk, A.M.; Chaney, E.J.; Adie, S.G.; Kotynek, J.G.; Oliphant, U.J.; Bellafiore, F.J.; Rowland, K.M.; Johnson, P.A.; Boppart, S.A. Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer. IEEE Eng. Med. Biol. Mag. 2010, 29, 63–70. [Google Scholar] [CrossRef]
- Scolaro, L.; McLaughlin, R.A.; Klyen, B.R.; Wood, B.A.; Robbins, P.; Saunders, C.; Jacques, S.L.; Sampson, D.D. Parametric Imaging of the Local Attenuation Coefficient in Human Axillary Lymph Nodes Assessed Using Optical Coherence Tomography. Biomed. Opt. Express 2012, 3, 366. [Google Scholar] [CrossRef]
- Nolan, R.M.; Adie, S.G.; Marjanović, M.; Chaney, E.J.; South, F.A.; Monroy, G.L.; Shemonski, N.D.; Erickson-Bhatt, S.J.; Shelton, R.L.; Bower, A.J.; et al. Intraoperative Optical Coherence Tomography for Assessing Human Lymph Nodes for Metastatic Cancer. BMC Cancer 2016, 16, 144. [Google Scholar] [CrossRef]
- Kendall, C.; Isabelle, M.; Bazant-Hegemark, F.; Hutchings, J.; Orr, L.; Babrah, J.; Baker, R.; Stone, N. Vibrational Spectroscopy: A Clinical Tool for Cancer Diagnostics. Analyst 2009, 134, 1029. [Google Scholar] [CrossRef]
- Butler, H.J.; Ashton, L.; Bird, B.; Cinque, G.; Curtis, K.; Dorney, J.; Esmonde-White, K.A.; Fullwood, N.J.; Gardner, B.; Martin-Hirsch, P.L.; et al. Using Raman Spectroscopy to Characterize Biological Materials. Nat. Protoc. 2016, 11, 664–687. [Google Scholar] [CrossRef] [PubMed]
- Hanna, K.; Krzoska, E.; Shaaban, A.M.; Muirhead, D.; Eid, R.A.; Speirs, V. Raman Spectroscopy: Current Applications in Breast Cancer Diagnosis, Challenges and Future Prospects. Br. J. Cancer 2021, 126, 1125–1139. [Google Scholar] [CrossRef] [PubMed]
- Orr, L.; Kendall, C.; Hutchings, J.; Isabelle, M.; Horsnell, J.; Stone, E.M. Raman Spectroscopy as a Tool for the Identification and Differentiation of Neoplasias Contained within Lymph Nodes of the Head and Neck. Head Neck Oncol. 2010, 2 (Suppl. 1), O4. [Google Scholar] [CrossRef]
- Lloyd, G.R.; Orr, L.; Christie-Brown, J.; McCarthy, K.; Rose, S.; Thomas, M.; Stone, N. Discrimination between Benign, Primary and Secondary Malignancies in Lymph Nodes from the Head and Neck Utilising Raman Spectroscopy and Multivariate Analysis. Analyst 2013, 138, 3900. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, T.; Ferguson, D.; Shore, A.C.; Stone, N. P122: Raman Spectroscopy for Intraoperative Margin Analysis in Breast Conserving Surgery. Eur. J. Surg. Oncol. 2020, 46, e43. [Google Scholar] [CrossRef]
- Yang, R.; Lou, K.; Wang, P.; Gao, Y.; Zhang, Y.; Chen, M.; Huang, W.; Zhang, G. Surgical Navigation for Malignancies Guided by Near-Infrared-II Fluorescence Imaging. Small Methods 2021, 5, 2001066. [Google Scholar] [CrossRef]
- Xia, L.; Zeh, R.; Mizelle, J.; Newton, A.D.; Predina, J.D.; Nie, S.; Singhal, S.; Guzzo, T.J. Near-Infrared Intraoperative Molecular Imaging Can Identify Metastatic Lymph Nodes in Prostate Cancer. Urology 2017, 106, 133–138. [Google Scholar] [CrossRef]
- Kanick, S.C.; Sterenborg, H.J.C.M.; Amelink, A. Empirical Model of the Photon Path Length for a Single Fiber Reflectance Spectroscopy Device. Opt. Express 2009, 17, 860. [Google Scholar] [CrossRef]
- Kanick, S.C.; Van Der Leest, C.; Aerts, J.; Hoogsteden, H.C.; Kaščáková, S.; Sterenborg, H.J.C.M.; Amelink, A. Integration of Single-Fiber Reflectance Spectroscopy into Ultrasound-Guided Endoscopic Lung Cancer Staging of Mediastinal Lymph Nodes. J. Biomed. Opt. 2010, 15, 17004. [Google Scholar] [CrossRef]
- Tian, P.; Zhang, W.; Zhao, H.; Lei, Y.; Cui, L.; Zhang, Y.; Xu, Z. Intraoperative detection of sentinel lymph node metastases in breast carcinoma by Fourier transform infrared spectroscopy. Br. J. Surg. 2015, 102, 1372–1379. [Google Scholar] [CrossRef]
- Bird, B.; Miljkovic, M.; Romeo, M.J.; Smith, J.; Stone, N.; George, M.W.; Diem, M. Infrared micro-spectral imaging: Distinction of tissue types in axillary lymph node histology. BMC Clin. Pathol. 2008, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Duan, X.; Bin, L.; Wang, J.; Gao, Q.; Sun, X.; Xu, Y. Evaluation of Fourier transform infrared (FTIR) spectroscopy with multivariate analysis as a novel diagnostic tool for lymph node metastasis in gastric cancer. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 289, 122209. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, Y.; Liu, Y.; Zhang, Y.; Wang, D.; Xiu, D.; Xu, Z.; Zhou, X.; Wu, J.; Ling, X. Detection of cervical metastatic lymph nodes in papillary thyroid carcinoma by Fourier transform infrared spectroscopy. Br. J. Surg. 2011, 98, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Wald, N.; Bordry, N.; Foukas, P.G.; Speiser, D.E.; Goormaghtigh, E. Identification of melanoma cells and lymphocyte subpopulations in lymph node metastases by FTIR imaging histopathology. Biochim. Biophys. Acta 2016, 1862, 202–212. [Google Scholar] [CrossRef]
- Da Silva, R.M.; Pupin, B.; Bhattacharjee, T.T.; Vamondes Kulcsar, M.A.; Uno, M.; Chammas, R.; de Azevedo Canevari, R. ATR-FTIR spectroscopy and CDKN1C gene expression in the prediction of lymph nodes metastases in papillary thyroid carcinoma. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 228, 117693. [Google Scholar] [CrossRef]
- Yousef, I.; Bréard, J.; SidAhmed-Adrar, N.; Maâmer-Azzabi, A.; Marchal, C.; Dumas, P.; Le Naour, F. Infrared spectral signatures of CDCP1-induced effects in colon carcinoma cells. Analyst 2021, 136, 5162–5168. [Google Scholar] [CrossRef]
- Kujdowicz, M.; Perez-Guaita, D.; Chlosta, P.; Okon, K.; Malek, K. Fourier transform IR imaging of primary tumors predicts lymph node metastasis of bladder carcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166840. [Google Scholar] [CrossRef]
Technique | Cost | Depth | Resolution | Sensitivity/Specificity | Timing | References |
---|---|---|---|---|---|---|
ESS | low | 0.5 mm | 320–920 nm | 76–84%/91–96% | 20–25 min | [34,35] |
OCT | high | 2–3 mm | 12 μm | 58.8%/81.4% | real time | [4,36,37] |
Raman | high | 5–10 mm | 10 μm | 71–81%/97% | 10–20 min | [4,38] |
NIRF | low | 5–10 mm | 21–337 μm | limited data | real time | [39,40] |
DRS | low | 2–3 mm | 200–1000 nm | limited data | real time to minutes | [4,41] |
FTIR | low | 2–3 mm | 250–2500 nm | 94.7%/90.1% | 2–3 min | [4,42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadoliopoulou, M.; Matiatou, M.; Koutsoumpos, S.; Mulita, F.; Giannios, P.; Margaris, I.; Moutzouris, K.; Arkadopoulos, N.; Michalopoulos, N.V. Optical Imaging in Human Lymph Node Specimens for Detecting Breast Cancer Metastases: A Review. Cancers 2023, 15, 5438. https://doi.org/10.3390/cancers15225438
Papadoliopoulou M, Matiatou M, Koutsoumpos S, Mulita F, Giannios P, Margaris I, Moutzouris K, Arkadopoulos N, Michalopoulos NV. Optical Imaging in Human Lymph Node Specimens for Detecting Breast Cancer Metastases: A Review. Cancers. 2023; 15(22):5438. https://doi.org/10.3390/cancers15225438
Chicago/Turabian StylePapadoliopoulou, Maria, Maria Matiatou, Spyridon Koutsoumpos, Francesk Mulita, Panagiotis Giannios, Ioannis Margaris, Konstantinos Moutzouris, Nikolaos Arkadopoulos, and Nikolaos V. Michalopoulos. 2023. "Optical Imaging in Human Lymph Node Specimens for Detecting Breast Cancer Metastases: A Review" Cancers 15, no. 22: 5438. https://doi.org/10.3390/cancers15225438
APA StylePapadoliopoulou, M., Matiatou, M., Koutsoumpos, S., Mulita, F., Giannios, P., Margaris, I., Moutzouris, K., Arkadopoulos, N., & Michalopoulos, N. V. (2023). Optical Imaging in Human Lymph Node Specimens for Detecting Breast Cancer Metastases: A Review. Cancers, 15(22), 5438. https://doi.org/10.3390/cancers15225438