The New Face of Autophagy in Chronic Lymphocytic Leukemia
Author Contributions
Funding
Conflicts of Interest
References
- Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F.; Kipps, T.J.; Anderson, M.A.; Brown, J.R.; Gressick, L.; et al. Targeting BCL2 with Venetoclax in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2016, 374, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Eichhorst, B.; Niemann, C.U.; Kater, A.P.; Fürstenau, M.; von Tresckow, J.; Zhang, C.; Robrecht, S.; Gregor, M.; Juliusson, G.; Thornton, P.; et al. First-Line Venetoclax Combinations in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 1739–1754. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.A.; Tam, C.; Lew, T.E.; Juneja, S.; Juneja, M.; Westerman, D.; Wall, M.; Lade, S.; Gorelik, A.; Huang, D.C.S.; et al. Clinicopathological Features and Outcomes of Progression of CLL on the BCL2 Inhibitor Venetoclax. Blood 2017, 129, 3362–3370. [Google Scholar] [CrossRef] [PubMed]
- Guièze, R.; Liu, V.M.; Rosebrock, D.; Jourdain, A.A.; Hernández-Sánchez, M.; Martinez Zurita, A.; Sun, J.; Ten Hacken, E.; Baranowski, K.; Thompson, P.A.; et al. Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell 2019, 36, 369–384.e13. [Google Scholar] [CrossRef]
- Bose, P.; Gandhi, V.; Konopleva, M. Pathways and Mechanisms of Venetoclax Resistance. Leuk. Lymphoma 2017, 58, 2026–2039. [Google Scholar] [CrossRef]
- Avsec, D.; Djordjevič, A.T.J.; Kandušer, M.; Podgornik, H.; Škerget, M.; Mlinarič-raščan, I. Targeting Autophagy Triggers Apoptosis and Complements the Action of Venetoclax in Chronic Lymphocytic Leukemia Cells. Cancers 2021, 13, 4557. [Google Scholar] [CrossRef]
- Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-Eating and Self-Killing: Crosstalk between Autophagy and Apoptosis. Nat. Rev. Mol. Cell Biol. 2007, 8, 741–752. [Google Scholar] [CrossRef]
- Mahoney, E.; Maddocks, K.; Flynn, J.; Jones, J.; Cole, S.L.; Zhang, X.; Byrd, J.C.; Johnson, A.J. Identification of Endoplasmic Reticulum Stress-Inducing Agents by Antagonizing Autophagy: A New Potential Strategy for Identification of Anti-Cancer Therapeutics in B-Cell Malignancies. Leuk. Lymphoma 2013, 54, 2685–2692. [Google Scholar] [CrossRef]
- Lagneaux, L.; Delforge, A.; Dejeneffe, M.; Massy, M.; Bernier, M.; Bron, D. Hydroxychloroquine-Induced Apoptosis of Chronic Lymphocytic Leukemia Involves Activation of Caspase-3 and Modulation of Bcl-2/Bax/Ratio. Leuk. Lymphoma 2002, 43, 1087–1095. [Google Scholar] [CrossRef]
- Glytsou, C.; Chen, X.; Zacharioudakis, E.; Al-Santli, W.; Zhou, H.; Nadorp, B.; Lee, S.; Lasry, A.; Sun, Z.; Papaioannou, D.; et al. Mitophagy Promotes Resistance to BH3 Mimetics in Acute Myeloid Leukemia. Cancer Discov. 2023, 13, 1656–1677. [Google Scholar] [CrossRef]
- Folkerts, H.; Wierenga, A.T.; van den Heuvel, F.A.; Woldhuis, R.R.; Kluit, D.S.; Jaques, J.; Schuringa, J.J.; Vellenga, E. Elevated VMP1 Expression in Acute Myeloid Leukemia Amplifies Autophagy and Is Protective against Venetoclax-Induced Apoptosis. Cell Death Dis. 2019, 10, 421. [Google Scholar] [CrossRef]
- Arroyo, D.S.; Rodriguez, C.M.; Bussi, C.; Manzone-Rodriguez, C.; Sastre, D.; Heller, V.; Stanganelli, C.; Slavutsky, I.; Iribarren, P. Increased Expression of Autophagy Protein LC3 in Two Patients With Progressing Chronic Lymphocytic Leukemia. Front. Endocrinol. 2020, 11, 321. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.L.; Huang, Y.; Wu, J.Z.; Cao, X.; Liang, J.H.; Xia, Y.; Wu, W.; Cao, L.; Zhu, H.Y.; Wang, L.; et al. Expression of Autophagy Related Genes in Chronic Lymphocytic Leukemia Is Associated with Disease Course. Leuk. Res. 2018, 66, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.D.; Minton, A.R.; Blunt, M.D.; Karydis, L.I.; Dutton, D.A.; Rogers-Broadway, K.R.; Dobson, R.; Liu, R.; Norster, F.; Hogg, E.; et al. BCR Signaling Contributes to Autophagy Regulation in Chronic Lymphocytic Leukemia. Leukemia 2020, 34, 640. [Google Scholar] [CrossRef] [PubMed]
- Allavena, G.; Boyd, C.; Oo, K.S.; Maellaro, E.; Zhivotovsky, B.; Kaminskyy, V.O. Suppressed Translation and ULK1 Degradation as Potential Mechanisms of Autophagy Limitation under Prolonged Starvation. Autophagy 2016, 12, 2085. [Google Scholar] [CrossRef]
- Allavena, G.; Cuomo, F.; Baumgartner, G.; Bele, T.; Sellgren, A.Y.; Oo, K.S.; Johnson, K.; Gogvadze, V.; Zhivotovsky, B.; Kaminskyy, V.O. Suppressed Translation as a Mechanism of Initiation of CASP8 (Caspase 8)-Dependent Apoptosis in Autophagy-Deficient NSCLC Cells under Nutrient Limitation. Autophagy 2018, 14, 252. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Piya, S.; Ma, H.; Sharma, P.; Zhang, Q.; Baran, N.; Ruvolo, V.R.; McQueen, T.; Eric Davis, R.; Pourebrahim, R.; et al. Targeting Unc51-like Autophagy Activating Kinase 1 (ULK1) Overcomes Adaptive Drug Resistance in Acute Myelogenous Leukemia. Mol. Cancer Res. 2023, 21, 548–563. [Google Scholar] [CrossRef]
- Salwa, A.; Ferraresi, A.; Secomandi, E.; Vallino, L.; Moia, R.; Patriarca, A.; Garavaglia, B.; Gaidano, G.; Isidoro, C. High BECN1 Expression Negatively Correlates with BCL2 Expression and Predicts Better Prognosis in Diffuse Large B-Cell Lymphoma: Role of Autophagy. Cells 2023, 12, 1924. [Google Scholar] [CrossRef]
- Horne, G.A.; Stobo, J.; Kelly, C.; Mukhopadhyay, A.; Latif, A.L.; Dixon-Hughes, J.; McMahon, L.; Cony-Makhoul, P.; Byrne, J.; Smith, G.; et al. A Randomised Phase II Trial of Hydroxychloroquine and Imatinib versus Imatinib Alone for Patients with Chronic Myeloid Leukaemia in Major Cytogenetic Response with Residual Disease. Leukemia 2020, 34, 1775–1786. [Google Scholar] [CrossRef]
- Sanchez-Lopez, E.; Ghia, E.M.; Antonucci, L.; Sharma, N.; Rassenti, L.Z.; Xu, J.; Sun, B.; Kipps, T.J.; Karin, M. NF-ΚB-P62-NRF2 Survival Signaling Is Associated with High ROR1 Expression in Chronic Lymphocytic Leukemia. Cell Death Differ. 2020, 27, 2206–2216. [Google Scholar] [CrossRef]
- Cui, B.; Ghia, E.M.; Chen, L.; Rassenti, L.Z.; DeBoever, C.; Widhopf, G.F.; Yu, J.; Neuberg, D.S.; Wierda, W.G.; Rai, K.R.; et al. High-Level ROR1 Associates with Accelerated Disease Progression in Chronic Lymphocytic Leukemia. Blood 2016, 128, 2931–2940. [Google Scholar] [CrossRef] [PubMed]
- Gilardini Montani, M.S.; Santarelli, R.; Granato, M.; Gonnella, R.; Torrisi, M.R.; Faggioni, A.; Cirone, M. EBV Reduces Autophagy, Intracellular ROS and Mitochondria to Impair Monocyte Survival and Differentiation. Autophagy 2019, 15, 652. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopeina, G.S.; Zhivotovsky, B. The New Face of Autophagy in Chronic Lymphocytic Leukemia. Cancers 2023, 15, 5279. https://doi.org/10.3390/cancers15215279
Kopeina GS, Zhivotovsky B. The New Face of Autophagy in Chronic Lymphocytic Leukemia. Cancers. 2023; 15(21):5279. https://doi.org/10.3390/cancers15215279
Chicago/Turabian StyleKopeina, Gelina S., and Boris Zhivotovsky. 2023. "The New Face of Autophagy in Chronic Lymphocytic Leukemia" Cancers 15, no. 21: 5279. https://doi.org/10.3390/cancers15215279
APA StyleKopeina, G. S., & Zhivotovsky, B. (2023). The New Face of Autophagy in Chronic Lymphocytic Leukemia. Cancers, 15(21), 5279. https://doi.org/10.3390/cancers15215279