Prognostic Value of Hematological Parameters in Oral Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- INCA. Estimativa 2020: Incidência de Câncer No Brasil/Instituto Nacional de Câncer José Alencar Gomes da Silva; INCA: Rio de Janeiro, Brazil, 2019; Volume 1. [Google Scholar]
- Nemoto, R.P.; Victorino, A.A.; Pessoa, G.B.; Cunha, L.L.; Silva, J.A.; Kanda, J.L.; Matos, L.L. Oral cancer preventive campaigns: Are we reaching the real target? Braz J. Otorhinolaryngol. 2015, 81, 44–49. [Google Scholar] [CrossRef]
- Pinto, F.R.; Matos, L.L.; Gumz Segundo, W.; Vanni, C.M.; Rosa, D.S.; Kanda, J.L. Tobacco and alcohol use after head and neck cancer treatment: Influence of the type of oncological treatment employed. Rev. Assoc. Med. Bras 2011, 57, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Halabi, S.; Owzar, K. The importance of identifying and validating prognostic factors in oncology. Semin. Oncol. 2010, 37, e9–e18. [Google Scholar] [CrossRef]
- d’Alessandro, A.F.; Pinto, F.R.; Lin, C.S.; Kulcsar, M.A.; Cernea, C.R.; Brandao, L.G.; Matos, L.L. Oral cavity squamous cell carcinoma: Factors related to occult lymph node metastasis. Braz. J. Otorhinolaryngol. 2015, 81, 248–254. [Google Scholar] [CrossRef]
- Abernethy, E.R.; Campbell, G.P.; Pentz, R.D. Why many oncologists fail to share accurate prognoses: They care deeply for their patients. Cancer 2020, 126, 1163–1165. [Google Scholar] [CrossRef]
- Leite, A.K.; de Matos, L.L.; Belli, M.; Kulcsar, M.A.; Cernea, C.R.; Garcia Brandao, L.; Pinto, F.R. Pectoralis major myocutaneous flap for head and neck reconstruction: Risk factors for fistula formation. Acta Otorhinolaryngol. Ital. 2014, 34, 389–393. [Google Scholar]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Zanoni, D.K.; Montero, P.H.; Migliacci, J.C.; Shah, J.P.; Wong, R.J.; Ganly, I.; Patel, S.G. Survival outcomes after treatment of cancer of the oral cavity (1985–2015). Oral. Oncol. 2019, 90, 115–121. [Google Scholar] [CrossRef]
- Fagan, J.J.; Collins, B.; Barnes, L.; D’Amico, F.; Myers, E.N.; Johnson, J.T. Perineural invasion in squamous cell carcinoma of the head and neck. Arch. Otolaryngol. Head Neck. Surg. 1998, 124, 637–640. [Google Scholar] [CrossRef]
- Garzino-Demo, P.; Zavattero, E.; Franco, P.; Fasolis, M.; Tanteri, G.; Mettus, A.; Tosco, P.; Chiusa, L.; Airoldi, M.; Ostellino, O.; et al. Parameters and outcomes in 525 patients operated on for oral squamous cell carcinoma. J. Craniomaxillofac. Surg. 2016, 44, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Ling, W.; Mijiti, A.; Moming, A. Survival pattern and prognostic factors of patients with squamous cell carcinoma of the tongue: A retrospective analysis of 210 cases. J. Oral. Maxillofac. Surg. 2013, 71, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Ong, T.K.; Murphy, C.; Smith, A.B.; Kanatas, A.N.; Mitchell, D.A. Survival after surgery for oral cancer: A 30-year experience. Br J. Oral. Maxillofac. Surg. 2017, 55, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Quinlan-Davidson, S.R.; Mohamed, A.S.R.; Myers, J.N.; Gunn, G.B.; Johnson, F.M.; Skinner, H.; Beadle, B.M.; Gillenwater, A.M.; Phan, J.; Frank, S.J.; et al. Outcomes of oral cavity cancer patients treated with surgery followed by postoperative intensity modulated radiation therapy. Oral. Oncol. 2017, 72, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.E.; Han, A.Y.; Kuan, E.C.; Strohl, M.; Clair, J.M.; St John, M.A.; Ryan, W.R.; Heaton, C.M. The survival impact of surgical therapy in squamous cell carcinoma of the hard palate. Laryngoscope 2018, 128, 2050–2055. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, Z.H.; Alonso, J.E.; Kuan, E.C.; St John, M.A. Treatment outcomes of patients with primary squamous cell carcinoma of the retromolar trigone. Laryngoscope 2018, 128, 2740–2744. [Google Scholar] [CrossRef] [PubMed]
- Saggi, S.; Badran, K.W.; Han, A.Y.; Kuan, E.C.; St John, M.A. Clinicopathologic Characteristics and Survival Outcomes in Floor of Mouth Squamous Cell Carcinoma: A Population-Based Study. Otolaryngol. Head Neck. Surg. 2018, 159, 51–58. [Google Scholar] [CrossRef]
- Trevisani, L.F.M.; Kulcsar, I.F.; Leite, A.K.N.; Kulcsar, M.A.V.; Lima, G.A.S.; Dedivitis, R.A.; Kowalski, L.P.; Matos, L.L. Nutritional and immunological parameters as prognostic factors in patients with advanced oral cancer. Braz. J. Otorhinolaryngol. 2022, 88 (Suppl. S4), S89–S97. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Gooden, M.J.; de Bock, G.H.; Leffers, N.; Daemen, T.; Nijman, H.W. The prognostic influence of tumour-infiltrating lymphocytes in cancer: A systematic review with meta-analysis. Br J. Cancer 2011, 105, 93–103. [Google Scholar] [CrossRef]
- Bardash, Y.; Olson, C.; Herman, W.; Khaymovich, J.; Costantino, P.; Tham, T. Platelet-Lymphocyte Ratio as a Predictor of Prognosis in Head and Neck Cancer: A Systematic Review and Meta-Analysis. Oncol. Res. Treat. 2019, 42, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Mariani, P.; Russo, D.; Maisto, M.; Troiano, G.; Caponio, V.C.A.; Annunziata, M.; Laino, L. Pre-treatment neutrophil-to-lymphocyte ratio is an independent prognostic factor in head and neck squamous cell carcinoma: Meta-analysis and trial sequential analysis. J. Oral. Pathol. Med. 2022, 51, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Tham, T.; Olson, C.; Khaymovich, J.; Herman, S.W.; Costantino, P.D. The lymphocyte-to-monocyte ratio as a prognostic indicator in head and neck cancer: A systematic review and meta-analysis. Eur. Arch. Otorhinolaryngol. 2018, 275, 1663–1670. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Kuo, L.T.; Weng, H.H.; Hsu, C.M.; Tsai, M.S.; Chang, G.H.; Lee, Y.C.; Huang, E.I.; Tsai, Y.T. Systemic Immun e-Inflammation Index as a Predictor for Head and Neck Cancer Prognosis: A Meta-Analysis. Front. Oncol. 2022, 12, 899518. [Google Scholar] [CrossRef]
- Wang, P.F.; Song, S.Y.; Guo, H.; Wang, T.J.; Liu, N.; Yan, C.X. Prognostic role of pretreatment red blood cell distribution width in patients with cancer: A meta-analysis of 49 studies. J. Cancer 2019, 10, 4305–4317. [Google Scholar] [CrossRef]
- Kumar, P. Impact of Anemia in Patients With Head and Neck Cancer. Oncologist 2000, 5 (Suppl. S2), 13–18. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, F.; Chen, C.; Bi, X.; Yang, H.; An, X.; Wang, F.; Jiang, W. The ratio of hemoglobin to red cell distribution width as a novel prognostic parameter in esophageal squamous cell carcinoma: A retrospective study from southern China. Oncotarget 2016, 7, 42650–42660. [Google Scholar] [CrossRef]
- Tham, T.; Olson, C.; Wotman, M.; Teegala, S.; Khaymovich, J.; Coury, J.; Costantino, P. Evaluation of the prognostic utility of the hemoglobin-to-red cell distribution width ratio in head and neck cancer. Eur. Arch. Otorhinolaryngol. 2018, 275, 2869–2878. [Google Scholar] [CrossRef]
- Halabi, S.; Li, C.; Luo, S. Developing and Validating Risk Assessment Models of Clinical Outcomes in Modern Oncology. JCO Precis Oncol. 2019, 3, 1–12. [Google Scholar] [CrossRef]
- Felker, G.M.; Allen, L.A.; Pocock, S.J.; Shaw, L.K.; McMurray, J.J.; Pfeffer, M.A.; Swedberg, K.; Wang, D.; Yusuf, S.; Michelson, E.L.; et al. Red cell distribution width as a novel prognostic marker in heart failure: Data from the CHARM Program and the Duke Databank. J. Am. Coll. Cardiol. 2007, 50, 40–47. [Google Scholar] [CrossRef]
- Lou, Y.; Wang, M.; Mao, W. Clinical usefulness of measuring red blood cell distribution width in patients with hepatitis B. PLoS ONE 2012, 7, e37644. [Google Scholar] [CrossRef] [PubMed]
- Malandrino, N.; Wu, W.C.; Taveira, T.H.; Whitlatch, H.B.; Smith, R.J. Association between red blood cell distribution width and macrovascular and microvascular complications in diabetes. Diabetologia 2012, 55, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.J.; Park, J.T.; Kim, J.K.; Yoo, D.E.; Kim, S.J.; Han, S.H.; Kang, S.W.; Choi, K.H.; Yoo, T.H. Red blood cell distribution width is an independent predictor of mortality in acute kidney injury patients treated with continuous renal replacement therapy. Nephrol. Dial. Transplant. 2012, 27, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, E.C.; Ozgul, M.A.; Tutar, N.; Omur, I.; Uysal, A.; Altin, S. Red blood cell distribution and survival in patients with chronic obstructive pulmonary disease. COPD 2013, 10, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Zorlu, A.; Bektasoglu, G.; Guven, F.M.; Dogan, O.T.; Gucuk, E.; Ege, M.R.; Altay, H.; Cinar, Z.; Tandogan, I.; Yilmaz, M.B. Usefulness of admission red cell distribution width as a predictor of early mortality in patients with acute pulmonary embolism. Am. J. Cardiol. 2012, 109, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Perlstein, T.S.; Weuve, J.; Pfeffer, M.A.; Beckman, J.A. Red blood cell distribution width and mortality risk in a community-based prospective cohort. Arch. Intern. Med. 2009, 169, 588–594. [Google Scholar] [CrossRef]
- Seretis, C.; Seretis, F.; Lagoudianakis, E.; Gemenetzis, G.; Salemis, N.S. Is red cell distribution width a novel biomarker of breast cancer activity? Data from a pilot study. J. Clin. Med. Res. 2013, 5, 121–126. [Google Scholar] [CrossRef]
- Kemal, Y.; Demirag, G.; Bas, B.; Onem, S.; Teker, F.; Yucel, I. The value of red blood cell distribution width in endometrial cancer. Clin. Chem. Lab. Med. 2015, 53, 823–827. [Google Scholar] [CrossRef]
- Ay, S.; Eryilmaz, M.A.; Aksoy, N.; Okus, A.; Unlu, Y.; Sevinc, B. Is early detection of colon cancer possible with red blood cell distribution width? Asian Pac. J. Cancer Prev. 2015, 16, 753–756. [Google Scholar] [CrossRef]
- Hu, L.; Li, M.; Ding, Y.; Pu, L.; Liu, J.; Xie, J.; Cabanero, M.; Li, J.; Xiang, R.; Xiong, S. Prognostic value of RDW in cancers: A systematic review and meta-analysis. Oncotarget 2017, 8, 16027–16035. [Google Scholar] [CrossRef]
- Kara, M.; Uysal, S.; Altinisik, U.; Cevizci, S.; Guclu, O.; Derekoy, F.S. The pre-treatment neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and red cell distribution width predict prognosis in patients with laryngeal carcinoma. Eur. Arch. Otorhinolaryngol. 2017, 274, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Mao, Y.; Chen, S.; Yang, A.; Zhang, Q. A Novel Inflammation- and Nutrition-Based Prognostic System for Patients with Laryngeal Squamous Cell Carcinoma: Combination of Red Blood Cell Distribution Width and Body Mass Index (COR-BMI). PLoS ONE 2016, 11, e0163282. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, C.Y.; Lau, H.C.; Li, S.; Tao, L.; Zhang, M.; Gong, H.; Zhou, L. Pretreatment Level of Red Cell Distribution Width as a Prognostic Indicator for Survival in a Large Cohort Study of Male Laryngeal Squamous Carcinoma. Front. Oncol. 2019, 9, 271. [Google Scholar] [CrossRef] [PubMed]
- Marcus, K.; Sullivan, C.B.; Al-Qurayshi, Z.; Buchakjian, M.R. Can Red Blood Cell Distribution Width Predict Laryngectomy Complications or Survival Outcomes? Ann. Otol. Rhinol. Laryngol. 2022, 131, 1102–1108. [Google Scholar] [CrossRef]
- Wang, Y.; He, S.S.; Cai, X.Y.; Chen, H.Y.; Yang, X.L.; Lu, L.X.; Chen, Y. The Novel Prognostic Score Combining Red Blood Cell Distribution Width and Body Mass Index (COR-BMI) Has Prognostic Impact for Survival Outcomes in Nasopharyngeal Carcinoma. J. Cancer 2018, 9, 2295–2301. [Google Scholar] [CrossRef]
- Staniewska, E.; Tomasik, B.; Tarnawski, R.; Laszczych, M.; Miszczyk, M. The prognostic value of red cell distribution width (RDW), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) in radiotherapy for oropharyngeal cancer. Rep. Pract. Oncol. Radiother. 2021, 26, 1010–1018. [Google Scholar] [CrossRef]
- Tangthongkum, M.; Tiyanuchit, S.; Kirtsreesakul, V.; Supanimitjaroenporn, P.; Sinkitjaroenchai, W. Platelet to lymphocyte ratio and red cell distribution width as prognostic factors for survival and recurrence in patients with oral cancer. Eur. Arch. Otorhinolaryngol. 2017, 274, 3985–3992. [Google Scholar] [CrossRef]
- Ge, W.; Xie, J.; Chang, L. Elevated red blood cell distribution width predicts poor prognosis in patients with oral squamous cell carcinoma. Cancer Manag. Res. 2018, 10, 3611–3618. [Google Scholar] [CrossRef]
- Kario, K.; Matsuo, T.; Nakao, K.; Yamaguchi, N. The correlation between red cell distribution width and serum erythropoietin titres. Clin. Lab. Haematol. 1991, 13, 222–223. [Google Scholar] [CrossRef]
- Kamarudin, A.N.; Cox, T.; Kolamunnage-Dona, R. Time-dependent ROC curve analysis in medical research: Current methods and applications. BMC Med. Res. Methodol. 2017, 17, 53. [Google Scholar] [CrossRef]
- Jelkmann, W. Proinflammatory cytokines lowering erythropoietin production. J. Interferon. Cytokine. Res. 1998, 18, 555–559. [Google Scholar] [CrossRef]
- Weiss, G.; Goodnough, L.T. Anemia of chronic disease. N. Engl. J. Med. 2005, 352, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Salvagno, G.L.; Sanchis-Gomar, F.; Picanza, A.; Lippi, G. Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit. Rev. Clin. Lab. Sci. 2015, 52, 86–105. [Google Scholar] [CrossRef] [PubMed]
- Ycas, J.W. Toward a Blood-Borne Biomarker of Chronic Hypoxemia: Red Cell Distribution Width and Respiratory Disease. Adv. Clin. Chem. 2017, 82, 105–197. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Iga, T.; Takeda, D.; Amano, R.; Saito, I.; Kakei, Y.; Kusumoto, J.; Kimoto, A.; Sakakibara, A.; Akashi, M. Neutrophil-lymphocyte ratio associated with poor prognosis in oral cancer: A retrospective study. BMC Cancer 2020, 20, 568. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Yan, W.; Liang, J.; Yu, M.; Liu, J.; Hao, J.; Wan, Q.; Liu, J.; Luo, C.; Chen, Y. Nomogram Based on Systemic Immune-Inflammation Index to Predict Survival of Tongue Cancer Patients Who Underwent Cervical Dissection. Front. Oncol. 2020, 10, 341. [Google Scholar] [CrossRef] [PubMed]
Variable | Results |
---|---|
Patient’s/Tumor’s characteristics | |
Male | 441 (73.5%) |
Age (years old) | 61.3 ± 11.7 (15–91) * |
Subsites of primary tumor | |
Tongue | 240 (40%) |
Floor of the mouth | 164 (27.3%) |
Retromolar area | 67 (11.2%) |
Inferior gum | 55 (9.2%) |
Buccal mucosa | 42 (7%) |
Superior gum | 19 (3.2%) |
Hard palate | 13 (2.2%) |
Smoking | 469 (78.2%) |
Alcohol abuse | 391 (65.2%) |
Histopathological data | |
Greatest tumor dimension (cm) * | 3.54 ± 1.8 (0.1–11) * |
Deep of invasion (cm) * | 1.8 ± 1.4 (0.1–7.9) * |
Degree of differentiation | |
Well | 157 (26.2%) |
Moderate | 379 (63.2%) |
Low | 54 (9%) |
Perineural invasion | 302 (50.3%) |
Angiolymphatic invasion | 160 (26.7%) |
Positive margins | 75 (12.5%) |
pT classification | |
pT1 | 132 (22%) |
pT2 | 140 (23.3%) |
pT3 | 79 (13.2%) |
pT4a/b | 245 (40.8%) |
Lymph node metastasis | 301 (50.2%) |
pN classification | |
pN0 | 299 (49.8%) |
pN1 | 51 (8.5%) |
pN2a | 24 (4%) |
pN2b | 53 (8.8%) |
pN2c | 27 (4.5%) |
pN3b | 146 (24.3%) |
Extranodal extension | 165 (46.3%) |
Clinical and follow-up data | |
RDW (%) | 13 ± 2.0 (11.3–26.6%) * |
NLR | 3.22 ± 2.7 (0.3–26.95) * |
PLR | 150.9 ± 88.2 (34.8–1141.8) * |
LMR | 4.4 ± 9.5 (0.38–185) * |
SII | 884 ± 920.7 (27.7–13,234.1) * |
RHbRDW | 1 ± 0.7 (0.3–10.1) * |
Adjuvant radiotherapy | 362 (60.3%) |
Adjuvant chemotherapy | 135 (22.5%) |
Locoregional recurrence | 154 (25.7%) |
Distant metastasis | 68 (11.3%) |
Death | 293 (48.8%) |
Follow-up (months) | 33.1 ± 27 (0–133) |
Variable | HR | 95% CI | p-Value * |
---|---|---|---|
Male | 1.010 | 0.780–1.316 | 0.923 |
Smoking | 0.942 | 0.709–1.251 | 0.678 |
Alcohol abuse | 1.032 | 0.808–1.318 | 0.802 |
Positive margins | 1.350 | 0.976–1.867 | 0.070 |
Low differentiation | 1.038 | 0.689–1.566 | 0.858 |
Perineural invasion | 2.100 | 1.655–2.663 | <0.001 |
Angiolymphatic invasion | 2.081 | 1.632–2.653 | <0.001 |
pT4a/b | 1.866 | 1.482–2.350 | <0.001 |
Lymph node metastasis | 2.443 | 1.916–3.115 | <0.001 |
Extranodal extension | 1.888 | 1.430–2.493 | <0.001 |
RDW > 14.3 | 1.509 | 1.191–1.910 | <0.001 |
NLR > 3.38 | 1.568 | 1.231–1.998 | <0.001 |
PLR > 167.3 | 1.585 | 1.250–2.010 | <0.001 |
SII > 416.1 | 1.525 | 1.159–2.007 | 0.003 |
Variable | HR | 95% CI | p-Value * |
---|---|---|---|
NLR > 3.38 | 1.315 | 0.983–1.761 | 0.065 |
PLR > 167.3 | 1.370 | 1.029–1.824 | 0.031 |
SII > 416.1 | 1.255 | 0.924–1.704 | 0.145 |
Variable | HR | 95% CI | p-Value * |
---|---|---|---|
Perineural invasion | 1.291 | 0.30–1.793 | 0.128 |
Angiolymphatic invasion | 1.439 | 1.076–1.925 | 0.014 |
pT4a/b | 1.761 | 1.327–2.337 | <0.001 |
Lymph node metastasis | 1.654 | 0.911–3.004 | 0.098 |
Extranodal extension | 1.420 | 1.047–1.926 | 0.024 |
RDW > 14.3 | 1.541 | 1.156–2.056 | 0.003 |
PLR >167.3 | 1.125 | 0.838–1.510 | 0.432 |
Variable | Events/Total | Median Survival | Cumulative Survival (140 Months) | p-Value * | |
---|---|---|---|---|---|
RDW | ≤14.3% | 179/400 | 55 months | 37.5% | <0.001 |
>14.3% | 113/199 | 26 months | 36.3% | ||
ALI | Negative | 188/436 | 68 months | 41.2% | <0.001 |
Positive | 103/160 | 18 months | 19.1% | ||
pT | pT1 pT2 pT3 | 143/351 | 69 months | 38.3% | <0.001 |
pT4a/b | 148/244 | 24 months | 28.7% | ||
ENE | Negative | 88/191 | 42 months | 36.2% | <0.001 |
Positive | 116/165 | 17 months | 16.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trevisani, L.F.M.; Kulcsar, I.F.; Kulcsar, M.A.V.; Dedivitis, R.A.; Kowalski, L.P.; Matos, L.L. Prognostic Value of Hematological Parameters in Oral Squamous Cell Carcinoma. Cancers 2023, 15, 5245. https://doi.org/10.3390/cancers15215245
Trevisani LFM, Kulcsar IF, Kulcsar MAV, Dedivitis RA, Kowalski LP, Matos LL. Prognostic Value of Hematological Parameters in Oral Squamous Cell Carcinoma. Cancers. 2023; 15(21):5245. https://doi.org/10.3390/cancers15215245
Chicago/Turabian StyleTrevisani, Lorenzo Fernandes Moça, Isabelle Fernandes Kulcsar, Marco Aurélio Vamondes Kulcsar, Rogerio Aparecido Dedivitis, Luiz Paulo Kowalski, and Leandro Luongo Matos. 2023. "Prognostic Value of Hematological Parameters in Oral Squamous Cell Carcinoma" Cancers 15, no. 21: 5245. https://doi.org/10.3390/cancers15215245
APA StyleTrevisani, L. F. M., Kulcsar, I. F., Kulcsar, M. A. V., Dedivitis, R. A., Kowalski, L. P., & Matos, L. L. (2023). Prognostic Value of Hematological Parameters in Oral Squamous Cell Carcinoma. Cancers, 15(21), 5245. https://doi.org/10.3390/cancers15215245