The Prediction of Biological Features Using Magnetic Resonance Imaging in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Quality Assessment
2.4. Data Extraction and Analyses
3. Results
3.1. Literature Search
3.2. Quality Assessment
3.3. Study Outcome Assessment
3.3.1. Human Papilloma Virus (HPV)
HPV: Independent T1W and T2W Texture Parameters and Radiomic Models
HPV: Diffusion-Weighted Imaging
HPV: Perfusion-Based Imaging
3.3.2. Tumor Cell Proliferation and Cellularity Markers: Ki-67, EGFR, Tumor Cell Count, and p53
Ki-67 Proliferation Index
Epidermal Growth Factor Receptor (EGFR)
Tumor Cell Count
Tumor Suppressor Protein p53
3.3.3. Tumor Vasculature: HIF-1α, VEGF, and MVD
Hypoxia-Inducible Factor (HIF)-1α
Vascular Endothelial Growth Factor (VEGF)
Microvessel Density (MVD)
3.3.4. Radiomics and Genomics Linkage Studies
Radiomic Models for Biological Signature | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Study, Year | Location Inclusion Center | Train (N) | Test (N) | Age (mean) | Male (%) | Tumor Subside | Tumor Stage | Modality | #Features | Total RQS | Domains: IM/ FR/VA/PI/LE/OS |
Gao, 2021 [76] | Hunan, CHN | 237 | 79 | 47.9 | 69.9 | NA | All | T1+c | 530 | 16 | 8/5/6/3/6/0 |
Zhang, 2020 [77] | Zuhai, CHN | 220 | 44 + 44 * | 47.4 † | 72.7 | NA | All | T1(c), T2 | 2364 | 19 | 8/6/6/5/7/0 |
4. Discussion
4.1. Human Papilloma Virus (HPV)
4.2. Tumor Cell Proliferation and Cellularity Markers: Ki-67, Tumor Cell Count, and EGFR
The p53 Pathway
4.3. Tumor Angiogenesis Markers: HIF-1α, VEGF, and MVD
4.4. Tumor Heterogeneity and Radiogenomics
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Becker, M.; Zaidi, H. Imaging in head and neck squamous cell carcinoma: The potential role of PET/MRI. Br. J. Radiol. 2014, 87, 20130677. [Google Scholar] [CrossRef] [PubMed]
- Leemans, C.R.; Snijders, P.J.F.; Brakenhoff, R.H. The molecular landscape of head and neck cancer. Nat. Rev. Cancer 2018, 18, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Canning, M.; Guo, G.; Yu, M.; Myint, C.; Groves, M.W.; Byrd, J.K.; Cui, Y. Heterogeneity of the Head and Neck Squamous Cell Carcinoma Immune Landscape and Its Impact on Immunotherapy. Front. Cell Dev. Biol. 2019, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Stransky, N.; Egloff, A.M.; Tward, A.D.; Kostic, A.D.; Cibulskis, K.; Sivachenko, A.; Kryukov, G.V.; Lawrence, M.S.; Sougnez, C.; McKenna, A.; et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011, 333, 1157–1160. [Google Scholar] [CrossRef]
- Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag. 2006, 2, 213–219. [Google Scholar] [CrossRef]
- Kyzas, P.A.; Stefanou, D.; Batistatou, A.; Agnantis, N.J. Prognostic significance of VEGF immunohistochemical expression and tumor angiogenesis in head and neck squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 2005, 131, 624–630. [Google Scholar] [CrossRef]
- Li, J.; Li, S.X.; Gao, X.H.; Zhao, L.F.; Du, J.; Wang, T.Y.; Wang, L.; Zhang, J.; Wang, H.Y.; Dong, R.; et al. HIF1A and VEGF regulate each other by competing endogenous RNA mechanism and involve in the pathogenesis of peritoneal fibrosis. Pathol. Res. Pract. 2019, 215, 644–652. [Google Scholar] [CrossRef]
- Rude Voldborg, B.; Damstrup, L.; Spang-Thomsen, M.; Skovgaard Poulsen, H. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann. Oncol. 1997, 8, 1197–1206. [Google Scholar] [CrossRef]
- Knegjens, J.L.; Hauptmann, M.; Pameijer, F.A.; Balm, A.J.; Hoebers, F.J.; de Bois, J.A.; Kaanders, J.H.; van Herpen, C.M.; Verhoef, C.G.; Wijers, O.B.; et al. Tumor volume as prognostic factor in chemoradiation for advanced head and neck cancer. Head Neck 2011, 33, 375–382. [Google Scholar] [CrossRef]
- van der Heijden, M.; Essers, P.B.M.; de Jong, M.C.; de Roest, R.H.; Sanduleanu, S.; Verhagen, C.V.M.; Hamming-Vrieze, O.; Hoebers, F.; Lambin, P.; Bartelink, H.; et al. Biological Determinants of Chemo-Radiotherapy Response in HPV-Negative Head and Neck Cancer: A Multicentric External Validation. Front. Oncol. 2019, 9, 1470. [Google Scholar] [CrossRef]
- Gaustad, J.V.; Hauge, A.; Wegner, C.S.; Simonsen, T.G.; Lund, K.V.; Hansem, L.M.K.; Rofstad, E.K. DCE-MRI of Tumor Hypoxia and Hypoxia-Associated Aggressiveness. Cancers 2020, 12, 1979. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.W.; van Amstel, P.; Martens, R.M.; Kooi, I.E.; Wesseling, P.; de Langen, A.J.; Menke-Van der Houven van Oordt, C.W.; Jansen, B.H.E.; Moll, A.C.; Dorsman, J.C.; et al. Non-invasive tumor genotyping using radiogenomic biomarkers, a systematic review and oncology-wide pathway analysis. Oncotarget 2018, 9, 20134–20155. [Google Scholar] [CrossRef] [PubMed]
- Park, A.Y.; Han, M.-R.; Seo, B.K.; Ju, H.-Y.; Son, G.S.; Lee, H.Y.; Chang, Y.W.; Choi, J.; Cho, K.R.; Song, S.E.; et al. MRI-based breast cancer radiogenomics using RNA profiling: Association with subtypes in a single-center prospective study. Breast Cancer Res. 2023, 25, 79. [Google Scholar] [CrossRef] [PubMed]
- Rabasco Meneghetti, A.; Zwanenburg, A.; Linge, A.; Lohaus, F.; Grosser, M.; Baretton, G.B.; Kalinauskaite, G.; Tinhofer, I.; Guberina, M.; Stuschke, M.; et al. Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC. Sci. Rep. 2022, 12, 16755. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Faraone, S.V. Interpreting estimates of treatment effects: Implications for managed care. Pharm. Ther. 2008, 33, 700–711. [Google Scholar]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to perform a meta-analysis with R: A practical tutorial. Evid. Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Luo, D.; Wan, X.; Liu, Y.; Liu, J.; Bian, Z.; Tong, T. Detecting the skewness of data from the five-number summary and its application in meta-analysis. Stat. Methods Med. Res. 2023, 32, 1338–1360. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Luo, D.; Wan, X.; Liu, Y.; Liu, J.; Bian, Z.; Tong, T. Detecting the skewness of data from the sample size and the five-number summary. arXiv 2020, arXiv:201005749. [Google Scholar]
- Ahn, Y.; Choi, Y.J.; Sung, Y.S.; Pfeuffer, J.; Suh, C.H.; Chung, S.R.; Baek, J.H.; Lee, J.H. Histogram analysis of arterial spin labeling perfusion data to determine the human papillomavirus status of oropharyngeal squamous cell carcinomas. Neuroradiology 2021, 63, 1345–1352. [Google Scholar] [CrossRef]
- Boot, P.A.; Mes, S.W.; de Bloeme, C.M.; Martens, R.M.; Leemans, C.R.; Boellaard, R.; van de Wiel, M.A.; de Graaf, P. Magnetic resonance imaging based radiomics prediction of Human Papillomavirus infection status and overall survival in oropharyngeal squamous cell carcinoma. Oral Oncol. 2023, 137, 106307. [Google Scholar] [CrossRef]
- Bos, P.; van den Brekel, M.W.M.; Gouw, Z.A.R.; Al-Mamgani, A.; Waktola, S.; Aerts, H.; Beets-Tan, R.G.H.; Castelijns, J.A.; Jasperse, B. Clinical variables and magnetic resonance imaging-based radiomics predict human papillomavirus status of oropharyngeal cancer. Head Neck 2021, 43, 485–495. [Google Scholar] [CrossRef]
- Bos, P.; van den Brekel, M.W.M.; Taghavi, M.; Gouw, Z.A.R.; Al-Mamgani, A.; Waktola, S.; Aerts, H.J.W.L.; Beets-Tan, R.G.H.; Castelijns, J.A.; Jasperse, B. Largest diameter delineations can substitute 3D tumor volume delineations for radiomics prediction of human papillomavirus status on MRI’s of oropharyngeal cancer. Phys. Medica 2022, 101, 36–43. [Google Scholar] [CrossRef]
- Chan, M.W.; Higgins, K.; Enepekides, D.; Poon, I.; Symons, S.P.; Moineddin, R.; Weinreb, I.; Shearkhani, O.; Chen, A.; Beelen, J.; et al. Radiologic Differences between Human Papillomavirus-Related and Human Papillomavirus-Unrelated Oropharyngeal Carcinoma on Diffusion-Weighted Imaging. ORL J. Oto-Rhino-Laryngol. Its Relat. Spec. 2016, 78, 344–352. [Google Scholar] [CrossRef]
- Choi, Y.S.; Park, M.; Kwon, H.J.; Koh, Y.W.; Lee, S.-K.; Kim, J. Human Papillomavirus and Epidermal Growth Factor Receptor in Oral Cavity and Oropharyngeal Squamous Cell Carcinoma: Correlation with Dynamic Contrast-Enhanced MRI Parameters. AJR Am. J. Roentgenol. 2016, 206, 408–413. [Google Scholar] [CrossRef]
- Chen, T.C.; Wu, C.T.; Wang, C.P.; Hsu, W.L.; Yang, T.L.; Lou, P.J.; Ko, J.Y.; Chang, Y.L. Associations among pretreatment tumor necrosis and the expression of HIF-1α and PD-L1 in advanced oral squamous cell carcinoma and the prognostic impact thereof. Oral Oncol. 2015, 51, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Dang, M.; Lysack, J.T.; Wu, T.; Matthews, T.W.; Chandarana, S.P.; Brockton, N.T.; Bose, P.; Bansal, G.; Cheng, H.; Mitchell, J.R.; et al. MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma. AJNR Am. J. Neuroradiol. 2015, 36, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, S.B.; Betts, G.; Bonington, S.C.; Homer, J.J.; Slevin, N.J.; Kershaw, L.E.; Valentine, H.; West, C.M.L.; Buckley, D.L. Perfusion estimated with rapid dynamic contrast-enhanced magnetic resonance imaging correlates inversely with vascular endothelial growth factor expression and pimonidazole staining in head-and-neck cancer: A pilot study. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- de Perrot, T.; Lenoir, V.; Domingo Ayllón, M.; Dulguerov, N.; Pusztaszeri, M.; Becker, M. Apparent Diffusion Coefficient Histograms of Human Papillomavirus-Positive and Human Papillomavirus-Negative Head and Neck Squamous Cell Carcinoma: Assessment of Tumor Heterogeneity and Comparison with Histopathology. AJNR Am. J. Neuroradiol. 2017, 38, 2153–2160. [Google Scholar] [CrossRef] [PubMed]
- Driessen, J.P.; van Bemmel, A.J.M.; van Kempen, P.M.W.; Janssen, L.M.; Terhaard, C.H.J.; Pameijer, F.A.; Willems, S.M.; Stegeman, I.; Grolman, W.; Philippens, M.E.P. Correlation of human papillomavirus status with apparent diffusion coefficient of diffusion-weighted MRI in head and neck squamous cell carcinomas. Head Neck 2016, 38, E613–E618. [Google Scholar] [CrossRef] [PubMed]
- Freihat, O.; Tóth, Z.; Pintér, T.; Kedves, A.; Sipos, D.; Cselik, Z.; Lippai, N.; Repa, I.; Kovács, Á. Pre-treatment PET/MRI based FDG and DWI imaging parameters for predicting HPV status and tumor response to chemoradiotherapy in primary oropharyngeal squamous cell carcinoma (OPSCC). Oral Oncol. 2021, 116, 105239. [Google Scholar] [CrossRef]
- Giannitto, C.; Marvaso, G.; Botta, F.; Raimondi, S.; Alterio, D.; Ciardo, D.; Volpe, S.; De Piano, F.; Ancona, E.; Tagliabue, M.; et al. Association of quantitative MRI-based radiomic features with prognostic factors and recurrence rate in oropharyngeal squamous cell carcinoma. Neoplasma 2020, 67, 1437–1446. [Google Scholar] [CrossRef]
- Han, M.; Lee, S.J.; Lee, D.; Kim, S.Y.; Choi, J.W. Correlation of human papilloma virus status with quantitative perfusion/diffusion/metabolic imaging parameters in the oral cavity and oropharyngeal squamous cell carcinoma: Comparison of primary tumour sites and metastatic lymph nodes. Clin. Radiol. 2018, 73, 757.e721–757.e727. [Google Scholar] [CrossRef]
- Hu, Y.; E, H.; Yu, X.; Li, F.; Zeng, L.; Lu, Q.; Xi, X.; Shen, L. Correlation of quantitative parameters of magnetic resonance perfusion-weighted imaging with vascular endothelial growth factor, microvessel density and hypoxia-inducible factor-1alpha in nasopharyngeal carcinoma: Evaluation on radiosensitivity study. Clin. Otolaryngol. 2018, 43, 425–433. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Q.; Wu, G.; Chen, P.P.; Li, J.; McCabe Gillen, K.; Spincemaille, P.; Chiang, G.C.; Gupta, A.; Wang, Y.; et al. DCE-MRI quantitative transport mapping for noninvasively detecting hypoxia inducible factor-1alpha, epidermal growth factor receptor overexpression, and Ki-67 in nasopharyngeal carcinoma patients. Radiother. Oncol. 2021, 164, 146–154. [Google Scholar] [CrossRef]
- Karabay, N.; Bülbül, H.; Doğan, E.; İkiz, A.; Bülbül, G.; Sarıoğlu, S. The correlations between dynamic contrast enhanced magnetic resonance imaging and immunohistochemical data in head and neck squamous cell carcinomas. Turk. J. Med. Sci. 2022, 52, 1950–1957. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hu, L.; Zeng, Q.; Peng, D.; Chen, Z.; Huang, C.; Liu, Z.; Wen, Q.; Zou, F.; Yan, L. Dynamic contrast-enhanced MRI of nasopharyngeal carcinoma: Correlation of quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters with hypoxia-inducible factor 1alpha expression and tumor grade/stage. Ann. Palliat. Med. 2021, 10, 2238–2253. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, M.; Kato, H.; Tomita, H.; Hara, A.; Suzui, N.; Miyazaki, T.; Matsuo, M. Comparison of Imaging Findings between Human Papillomavirus-positive and -Negative Squamous Cell Carcinomas of the Maxillary Sinus. J. Clin. Imaging Sci. 2020, 10, 59. [Google Scholar] [CrossRef]
- Lenoir, V.; Delattre, B.M.A.; M’Ra, D.Y.; De Vito, C.; de Perrot, T.; Becker, M. Diffusion-Weighted Imaging to Assess HPV-Positive versus HPV-Negative Oropharyngeal Squamous Cell Carcinoma: The Importance of b-Values. Am. J. Neuroradiol. 2022, 43, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Martens, R.M.; Noij, D.P.; Koopman, T.; Zwezerijnen, B.; Heymans, M.; de Jong, M.C.; Hoekstra, O.S.; Vergeer, M.R.; de Bree, R.; Leemans, C.R.; et al. Predictive value of quantitative diffusion-weighted imaging and 18-F-FDG-PET in head and neck squamous cell carcinoma treated by (chemo)radiotherapy. Eur. J. Radiol. 2019, 113, 39–50. [Google Scholar] [CrossRef]
- Marzi, S.; Piludu, F.; Avanzolini, I.; Muneroni, V.; Sanguineti, G.; Farneti, A.; D’Urso, P.; Benevolo, M.; Rollo, F.; Covello, R.; et al. Multifactorial Model Based on DWI-Radiomics to Determine HPV Status in Oropharyngeal Squamous Cell Carcinoma. Appl. Sci. 2022, 12, 7244. [Google Scholar] [CrossRef]
- Meyer, H.J.; Leifels, L.; Hamerla, G.; Höhn, A.K.; Surov, A. ADC-histogram analysis in head and neck squamous cell carcinoma. Associations with different histopathological features including expression of EGFR, VEGF, HIF-1 alpha, Her 2 and p53. A preliminary study. Magn. Reson. Imaging 2018, 54, 214–217. [Google Scholar] [CrossRef]
- Meyer, H.J.; Leifels, L.; Hamerla, G.; Höhn, A.K.; Surov, A. Associations between Histogram Analysis Parameters Derived from DCE-MRI and Histopathological Features including Expression of EGFR, p16, VEGF, Hif1-alpha, and p53 in HNSCC. Contrast Media Mol. Imaging 2019, 2019, 5081909. [Google Scholar] [CrossRef]
- Meyer, H.J.; Leifels, L.; Hamerla, G.; Höhn, A.K.; Surov, A. Histogram Analysis Parameters Derived from Conventional T1-and T2-Weighted Images Can Predict Different Histopathological Features Including Expression of Ki67, EGFR, VEGF, HIF-1 alpha, and p53 and Cell Count in Head and Neck Squamous Cell Carcinoma. Mol. Imaging Biol. 2019, 21, 740–746. [Google Scholar] [CrossRef]
- Meyer, H.J.; Hamerla, G.; Leifels, L.; Höhn, A.K.; Surov, A. Histogram analysis parameters derived from DCE-MRI in head and neck squamous cell cancer—Associations with microvessel density. Eur. J. Radiol. 2019, 120, 108669. [Google Scholar] [CrossRef]
- Meyer, H.J.; Hamerla, G.; Leifels, L.; Höhn, A.K.; Surov, A. Whole-lesion ADC histogram analysis is not able to reflect microvessel density in HNSCC. Medicine 2019, 98, e15520. [Google Scholar] [CrossRef] [PubMed]
- Nakahira, M.; Saito, N.; Yamaguchi, H.; Kuba, K.; Sugasawa, M. Use of quantitative diffusion-weighted magnetic resonance imaging to predict human papilloma virus status in patients with oropharyngeal squamous cell carcinoma. Eur. Arch. Oto-Rhino-Laryngol. 2014, 271, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.M.; Lim, J.Y.; Koh, Y.W.; Kim, S.H.; Choi, E.C. Machine learning and magnetic resonance imaging radiomics for predicting human papilloma virus status and prognostic factors in oropharyngeal squamous cell carcinoma. Head Neck 2022, 44, 897–903. [Google Scholar] [CrossRef]
- Piludu, F.; Marzi, S.; Gangemi, E.; Farneti, A.; Marucci, L.; Venuti, A.; Benevolo, M.; Pichi, B.; Pellini, R.; Sperati, F.; et al. Multiparametric MRI Evaluation of Oropharyngeal Squamous Cell Carcinoma. A Mono-Institutional Study. J. Clin. Med. 2021, 10, 3865. [Google Scholar] [CrossRef]
- Ravanelli, M.; Grammatica, A.; Tononcelli, E.; Morello, R.; Leali, M.; Battocchio, S.; Agazzi, G.M.; Bastia, M.; Maroldi, R.; Nicolai, P.; et al. Correlation between Human Papillomavirus Status and Quantitative MR Imaging Parameters including Diffusion-Weighted Imaging and Texture Features in Oropharyngeal Carcinoma. Am. J. Neuroradiol. 2018, 39, 1878–1883. [Google Scholar] [CrossRef] [PubMed]
- Samolyk-Kogaczewska, N.; Sierko, E.; Dziemianczyk-Pakiela, D.; Nowaszewska, K.B.; Lukasik, M.; Reszec, J. Usefulness of Hybrid PET/MRI in Clinical Evaluation of Head and Neck Cancer Patients. Cancers 2020, 12, 511. [Google Scholar] [CrossRef]
- Schouten, C.S.; de Graaf, P.; Bloemena, E.; Witte, B.I.; Braakhuis, B.J.M.; Brakenhoff, R.H.; Leemans, C.R.; Castelijns, J.A.; de Bree, R. Quantitative Diffusion-Weighted MRI Parameters and Human Papillomavirus Status in Oropharyngeal Squamous Cell Carcinoma. Am. J. Neuroradiol. 2015, 36, 763–767. [Google Scholar] [CrossRef]
- Sohn, B.; Choi, Y.S.; Ahn, S.S.; Kim, H.; Han, K.; Lee, S.K.; Kim, J. Machine Learning Based Radiomic HPV Phenotyping of Oropharyngeal SCC: A Feasibility Study Using MRI. Laryngoscope 2020, 131, E851–E856. [Google Scholar] [CrossRef]
- Suh, C.H.; Lee, K.H.; Choi, Y.J.; Chung, S.R.; Baek, J.H.; Lee, J.H.; Yun, J.; Ham, S.; Kim, N. Oropharyngeal squamous cell carcinoma: Radiomic machine-learning classifiers from multiparametric MR images for determination of HPV infection status. Sci. Rep. 2020, 10, 17525. [Google Scholar] [CrossRef]
- Rasmussen, J.H.; Olin, A.; Lelkaitis, G.; Hansen, A.E.; Andersen, F.L.; Johannesen, H.H.; Kjær, A.; Vogelius, I.R.; Specht, L.; Bentzen, S.M.; et al. Does multiparametric imaging with 18F-FDG-PET/MRI capture spatial variation in immunohistochemical cancer biomarkers in head and neck squamous cell carcinoma? Br. J. Cancer 2020, 123, 46–53. [Google Scholar] [CrossRef]
- Surov, A.; Stumpp, P.; Meyer, H.J.; Gawlitza, M.; Hohn, A.-K.; Boehm, A.; Sabri, O.; Kahn, T.; Purz, S. Simultaneous (18)F-FDG-PET/MRI: Associations between diffusion, glucose metabolism and histopathological parameters in patients with head and neck squamous cell carcinoma. Oral Oncol. 2016, 58, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Surov, A.; Meyer, H.J.; Gawlitza, M.; Hohn, A.-K.; Boehm, A.; Kahn, T.; Stumpp, P. Correlations between DCE MRI and Histopathological Parameters in Head and Neck Squamous Cell Carcinoma. Transl. Oncol. 2017, 10, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Surov, A.; Meyer, H.J.; Winter, K.; Richter, C.; Hoehn, A.-K. Histogram analysis parameters of apparent diffusion coefficient reflect tumor cellularity and proliferation activity in head and neck squamous cell carcinoma. Oncotarget 2018, 9, 23599–23607. [Google Scholar] [CrossRef]
- Surov, A.; Meyer, H.J.; Leifels, L.; Hohn, A.-K.; Richter, C.; Winter, K. Histogram analysis parameters of dynamic contrast-enhanced magnetic resonance imaging can predict histopathological findings including proliferation potential, cellularity, and nucleic areas in head and neck squamous cell carcinoma. Oncotarget 2018, 9, 21070–21077. [Google Scholar] [CrossRef] [PubMed]
- Swartz, J.E.; Driessen, J.P.; van Kempen, P.M.W.; de Bree, R.; Janssen, L.M.; Pameijer, F.A.; Terhaard, C.H.J.; Philippens, M.E.P.; Willems, S. Influence of tumor and microenvironment characteristics on diffusion-weighted imaging in oropharyngeal carcinoma: A pilot study. Oral Oncol. 2018, 77, 9–15. [Google Scholar] [CrossRef]
- Tekiki, N.; Fujita, M.; Okui, T.; Kawai, H.; Oo, M.W.; Kawazu, T.; Hisatomi, M.; Okada, S.; Takeshita, Y.; Barham, M.; et al. Dynamic contrast-enhanced MRI as a predictor of programmed death ligand-1 expression in patients with oral squamous cell carcinoma. Oncol. Lett. 2021, 22, 778. [Google Scholar] [CrossRef]
- Tse, G.M.; King, A.D.; Yu, A.M.; Lam, C.C.; Chan, A.W.; Chen, G.G.; Yeung, D.K.; Yu, K.H.; Bhatia, K.S.; Chan, A.B. Correlation of biomarkers in head and neck squamous cell carcinoma. Otolaryngol.-Head Neck Surg. 2010, 143, 795–800. [Google Scholar] [CrossRef]
- Unetsubo, T.; Konouchi, H.; Yanagi, Y.; Murakami, J.; Fujii, M.; Matsuzaki, H.; Hisatomi, M.; Nagatsuka, H.; Asaumi, J.-i. Dynamic contrast-enhanced magnetic resonance imaging for estimating tumor proliferation and microvessel density of oral squamous cell carcinomas. Oral Oncol. 2009, 45, 621–626. [Google Scholar] [CrossRef]
- Vidiri, A.; Marzi, S.; Gangemi, E.; Benevolo, M.; Rollo, F.; Farneti, A.; Marucci, L.; Spasiano, F.; Sperati, F.; Di Giuliano, F.; et al. Intravoxel incoherent motion diffusion-weighted imaging for oropharyngeal squamous cell carcinoma: Correlation with human papillomavirus Status. Eur. J. Radiol. 2019, 119, 108640. [Google Scholar] [CrossRef]
- Wong, K.H.; Panek, R.; Welsh, L.; McQuaid, D.; Dunlop, A.; Riddell, A.; Murray, I.; Du, Y.; Chua, S.; Koh, D.M.; et al. The Predictive Value of Early Assessment After 1 Cycle of Induction Chemotherapy with 18F-FDG PET/CT and Diffusion-Weighted MRI for Response to Radical Chemoradiotherapy in Head and Neck Squamous Cell Carcinoma. J. Nucl. Med. 2016, 57, 1843–1850. [Google Scholar] [CrossRef]
- Wu, W.; Jiang, G.; Xu, Z.; Wang, R.; Pan, A.; Gao, M.; Yu, T.; Huang, L.; Quan, Q.; Li, J. Three-dimensional pulsed continuous arterial spin labeling and intravoxel incoherent motion imaging of nasopharyngeal carcinoma: Correlations with Ki-67 proliferation status. Quant. Imaging Med. Surg. 2021, 11, 1394–1405. [Google Scholar] [CrossRef] [PubMed]
- Shima, T.; Fujima, N.; Yamano, S.; Kameda, H.; Suzuka, M.; Takeuchi, A.; Kinoshita, Y.; Iwai, N.; Kudo, K.; Minowa, K. Non-Gaussian model-based diffusion-weighted imaging of oral squamous cell carcinoma: Associations with Ki-67 proliferation status. Oral Radiol. 2023, 39, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Huang, L.; Li, B.; Li, H. Correlation between Diagnostic Value of Diffusion Kurtosis Imaging for Nasopharyngeal Carcinoma and Ki-67 Expression. B-Ent 2023, 19, 69–73. [Google Scholar] [CrossRef]
- Li, Q.; Xu, T.; Gong, J.; Xiang, S.; Shen, C.; Zhou, X.; Hu, C.; Wu, B.; Lu, X. Applying multisequence MRI radiomics of the primary tumor and lymph node to predict HPV-related p16 status in patients with oropharyngeal squamous cell carcinoma. Quant. Imaging Med. Surg. 2023, 13, 2234–2247. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dang, H.; Wu, X.; Zhang, Z.; Shi, X.; Zhang, T.; Chen, X.; Zhu, X.; Su, T.; Wang, Y.; et al. Correlation between 18F-FDG PET/MR parameters with the expression level of epidermal growth factor receptor and the diagnostic value of PET/MR in head and neck squamous cell carcinoma. Heliyon 2023, 9, e14822. [Google Scholar] [CrossRef]
- Gao, Y.; Mao, Y.; Lu, S.; Tan, L.; Li, G.; Chen, J.; Huang, D.; Zhang, X.; Qiu, Y.; Liu, Y. Magnetic resonance imaging-based radiogenomics analysis for predicting prognosis and gene expression profile in advanced nasopharyngeal carcinoma. Head Neck 2021, 43, 3730–3742. [Google Scholar] [CrossRef]
- Zhang, F.; Zhong, L.Z.; Zhao, X.; Dong, D.; Yao, J.J.; Wang, S.Y.; Liu, Y.; Zhu, D.; Wang, Y.; Wang, G.J.; et al. A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: A multi-cohort study. Ther. Adv. Med. Oncol. 2020, 12, 1758835920971416. [Google Scholar] [CrossRef]
- Sriyook, A.; Lertbutsayanukul, C.; Jittapiromsak, N. Value of dynamic contrast-enhanced magnetic resonance imaging for determining the plasma Epstein-Barr virus status and staging of nasopharyngeal carcinoma. Clin. Imaging 2021, 72, 1–7. [Google Scholar] [CrossRef]
- Konouchi, H.; Asaumi, J.; Yanagi, Y.; Shigehara, H.; Hisatomi, M.; Matsuzaki, H.; Kishi, K. Evaluation of tumor proliferation using dynamic contrast enhanced-MRI of oral cavity and oropharyngeal squamous cell carcinoma. Oral Oncol. 2003, 39, 290–295. [Google Scholar] [CrossRef]
- Newbold, K.; Castellano, I.; Charles-Edwards, E.; Mears, D.; Sohaib, A.; Leach, M.; Rhys-Evans, P.; Clarke, P.; Fisher, C.; Harrington, K.; et al. An exploratory study into the role of dynamic contrast-enhanced magnetic resonance imaging or perfusion computed tomography for detection of intratumoral hypoxia in head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 29–37. [Google Scholar] [CrossRef]
- Choi, J.W.; Lee, D.; Hyun, S.H.; Han, M.; Kim, J.H.; Lee, S.J. Intratumoural heterogeneity measured using FDG PET and MRI is associated with tumour-stroma ratio and clinical outcome in head and neck squamous cell carcinoma. Clin. Radiol. 2017, 72, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.J.; Höhn, A.K.; Surov, A. Associations between dynamic-contrast enhanced MRI and tumor infiltrating lymphocytes and tumor-stroma ratio in head and neck squamous cell cancer. Cancer Imaging 2021, 21, 60. [Google Scholar] [CrossRef] [PubMed]
- Galati, L.; Chiocca, S.; Duca, D.; Tagliabue, M.; Simoens, C.; Gheit, T.; Arbyn, M.; Tommasino, M. HPV and head and neck cancers: Towards early diagnosis and prevention. Tumour Virus Res. 2022, 14, 200245. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, J. Targeting the epidermal growth factor receptor for cancer therapy. J. Clin. Oncol. 2002, 20 (Suppl. S18), 1s–13s. [Google Scholar]
- Payabvash, S.; Chan, A.; Jabehdar Maralani, P.; Malhotra, A. Quantitative diffusion magnetic resonance imaging for prediction of human papillomavirus status in head and neck squamous-cell carcinoma: A systematic review and meta-analysis. Neuroradiol. J. 2019, 32, 232–240. [Google Scholar] [CrossRef]
- Vandecaveye, V.; Dirix, P.; De Keyzer, F.; de Beeck, K.O.; Vander Poorten, V.; Roebben, I.; Nuyts, S.; Hermans, R. Predictive value of diffusion-weighted magnetic resonance imaging during chemoradiotherapy for head and neck squamous cell carcinoma. Eur. Radiol. 2010, 20, 1703–1714. [Google Scholar] [CrossRef]
- Bammer, R. Basic principles of diffusion-weighted imaging. Eur. J. Radiol. 2003, 45, 169–184. [Google Scholar] [CrossRef]
- Westra, W.H. The morphologic profile of HPV-related head and neck squamous carcinoma: Implications for diagnosis, prognosis, and clinical management. Head. Neck Pathol. 2012, 6 (Suppl. S1), S48–S54. [Google Scholar] [CrossRef]
- Rahimi, S. HPV-related squamous cell carcinoma of oropharynx: A review. J. Clin. Pathol. 2020, 73, 624–629. [Google Scholar] [CrossRef]
- Prigge, E.-S.; Arbyn, M.; von Knebel Doeberitz, M.; Reuschenbach, M. Diagnostic accuracy of p16INK4a immunohistochemistry in oropharyngeal squamous cell carcinomas: A systematic review and meta-analysis. Int. J. Cancer 2017, 140, 1186–1198. [Google Scholar] [CrossRef]
- Schache, A.G.; Liloglou, T.; Risk, J.M.; Filia, A.; Jones, T.M.; Sheard, J.; Woolgar, J.A.; Helliwell, T.R.; Triantafyllou, A.; Robinson, M.; et al. Evaluation of human papilloma virus diagnostic testing in oropharyngeal squamous cell carcinoma: Sensitivity, specificity, and prognostic discrimination. Clin. Cancer Res. 2011, 17, 6262–6271. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.A.; Jung, M.; Zlobec, I.; Green, E.; Storck, C.; Tornillo, L.; Lugli, A.; Wolfensberger, M.; Terracciano, L.M. Co-overexpression of p21 and Ki-67 in head and neck squamous cell carcinoma relative to a significantly poor prognosis. Head Neck 2011, 33, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59 (Suppl. S2), 21–26. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Yasui, T.; Ishikawa-Fujiwara, T.; Morii, E.; Yamamoto, Y.; Yoshii, T.; Takenaka, Y.; Nakahara, S.; Todo, T.; Hongyo, T.; et al. Human papillomavirus and p53 mutations in head and neck squamous cell carcinoma among Japanese population. Cancer Sci. 2014, 105, 409–417. [Google Scholar] [CrossRef]
- Pitolli, C.; Wang, Y.; Mancini, M.; Shi, Y.; Melino, G.; Amelio, I. Do Mutations Turn p53 into an Oncogene? Int. J. Mol. Sci. 2019, 20, 6241. [Google Scholar] [CrossRef]
- Scholzen, T.; Gerdes, J. The Ki-67 protein: From the known and the unknown. J. Cell. Physiol. 2000, 182, 311–322. [Google Scholar] [CrossRef]
- Rehmani, H.S.; Issaeva, N. EGFR in head and neck squamous cell carcinoma: Exploring possibilities of novel drug combinations. Ann. Transl. Med. 2020, 8, 813. [Google Scholar] [CrossRef]
- Duffy, M.J.; Synnott, N.C.; O’Grady, S.; Crown, J. Targeting p53 for the treatment of cancer. Semin. Cancer Biol. 2022, 79, 58–67. [Google Scholar] [CrossRef]
- Surov, A.; Meyer, H.J.; Wienke, A. Associations between apparent diffusion coefficient (ADC) and KI 67 in different tumors: A meta-analysis. Part 1: ADC(mean). Oncotarget 2017, 8, 75434–75444. [Google Scholar] [CrossRef]
- Cantù, G. Nasopharyngeal carcinoma. A “different” head and neck tumour. Part A: From histology to staging. Acta Otorhinolaryngol. Ital. 2023, 43, 85–98. [Google Scholar] [CrossRef]
- Sourbron, S.P.; Buckley, D.L. On the scope and interpretation of the Tofts models for DCE-MRI. Magn. Reson. Med. 2011, 66, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, K.M.; Le, A.; Duong, H.; Wu, Y.; Zhang, Q.; Messadi, D.V. Correlation between VEGF and HIF-1α expression in human oral squamous cell carcinoma. Exp. Mol. Pathol. 2004, 76, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Pugh, C.W.; Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat. Med. 2003, 9, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Heukelom, J.; Hamming, O.; Bartelink, H.; Hoebers, F.; Giralt, J.; Herlestam, T.; Verheij, M.; van den Brekel, M.; Vogel, W.; Slevin, N.; et al. Adaptive and innovative Radiation Treatment FOR improving Cancer treatment outcomE (ARTFORCE); a randomized controlled phase II trial for individualized treatment of head and neck cancer. BMC Cancer 2013, 13, 84. [Google Scholar] [CrossRef]
- Xie, Q.; Wu, J.; Du, Z.; Di, N.; Yan, R.; Pang, H.; Jin, T.; Zhang, H.; Wu, Y.; Zhang, Y.; et al. DCE-MRI in Human Gliomas: A Surrogate for Assessment of Invasive Hypoxia Marker HIF-1A Based on MRI-Neuronavigation Stereotactic Biopsies. Acad. Radiol. 2019, 26, 179–187. [Google Scholar] [CrossRef]
- Kut, C.; Mac Gabhann, F.; Popel, A.S. Where is VEGF in the body? A meta-analysis of VEGF distribution in cancer. Br. J. Cancer 2007, 97, 978–985. [Google Scholar] [CrossRef]
- Andor, N.; Graham, T.A.; Jansen, M.; Xia, L.C.; Aktipis, C.A.; Petritsch, C.; Ji, H.P.; Maley, C.C. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 2016, 22, 105–113. [Google Scholar] [CrossRef]
- Clasen, K.; Leibfarth, S.; Hilke, F.J.; Admard, J.; Winter, R.M.; Welz, S.; Gatidis, S.; Nann, D.; Ossowski, S.; Breuer, T.; et al. PET/MRI and genetic intrapatient heterogeneity in head and neck cancers. Strahlenther. Onkol. 2020, 196, 542–551. [Google Scholar] [CrossRef]
Study, Year | Location Inclusion Center | Study Design | Inc. (N) | Age (mean) | Male (%) | Tumor Subside | Tumor Stage | HPV Testing | HPV+ (n) | HPV− (n) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Independent shape parameters | Sequence | Method | ||||||||||||
Driessen, 2016 [35] | Utrecht, NED | R | 73 | 61.6 | 64.4 | OC, OP, HP, LA | T2-T4 | p16+PCR | 6 | 67 | b0 | Volume | ||
Han, 2018 [38] | Suwon, KOR | R | 41 | 62.9 † | 73.2 | OC, OP | All | Hybrid cap | 16 | 25 | T1c | Volume | ||
Kawaguchi, 2020 [43] | Gifu, JAP | R | 37 | 61.5 | 81.1 | NA | All | p16 | 3 | 34 | T1 or T2 | Diameter | ||
Martens, 2019 [45] | Amsterdam, NED | R | 89 ⁑ | 64.6 | 75.2 | OC, OP, HP, LA | All | p16+PCR | 33 | 56 | T1 | GTV | ||
Samolyk-Kogaczewska, 2020 [56] | Bialystok, POL | P | 21 | 60 † | - | OC, OP, HP | All | p16 and p16+PCR | 4 | 17 | PET-MR | Volume, diameter | ||
Vidiri, 2019 [69] | Rome, ITA | P | 73 | 62.7 | 80.8 | OP | All | p16+PCR | 54 | 19 | b800 | Volume | ||
Stand-alone Histogram T1W and T2W parameters | Sequence | #Features | ||||||||||||
Giannitto, 2020 [37] | Milan, ITA | R | 32 | 60 † | 81.3 | OP | Tis-T4 | p16+PCR | 20 ‡ | 9 ‡ | 3DT1c | 1286 | ||
Meyer, 2019 [49] | Leipzig, DEU | P | 34 | 56.7 | 73.5 | OC, OP, HP, LA, NA | All | p16 | - | - | T1, T2 | 24 | ||
Ravanelli, 2018 [55] | Brescia, ITA | R | 59 | 64.9 | 72.9 | OP | T2-T4 | HC2 DNA | 28 | 31 | 3DT1c, T2, DWI | 60 | ||
Kawaguchi, 2020 [43] | Gifu, JAP | R | 37 | 61.5 | 81.1 | NA | All | p16 | 3 | 34 | T1, T2, DWI | 5 | ||
Radiomic models HPV | ||||||||||||||
Train (N) | Test (N) | Age (mean) | Male (%) | Tumor Subside | Tumor Stage | HPV Testing | HPV+ (n) | HPV− (n) | Modality | #Features | Total RQS | Domains: IM/ FR/VA/PI/LE/OS | ||
Boot, 2023 [26] | Amsterdam, NED | 249 | - | 61 | 68.7 | OP | All | p16+PCR | 91 | 158 | T1 | 498 | 8 | 1/−2/6/3/−1/0 |
Bos, 2021 [27] | Amsterdam, NED | 91 | 62 | 61 | 63 | OP | All | p16+p53 | 76 | 77 | 3DT1c | 1184 | 14 | 2/5/4/3/4/0 |
Bos, 2022 [28] | Amsterdam, NED | 91 | 62 | 61 | 63 | OP | All | p16+p53 | 76 | 77 | 3DT1c | 1184 | 14 | 2/5/4/3/4/0 |
Li, 2023 [74] | Shanghai, CHN | 116 | 25 | 58 † | 85.8 | OP | All | p16 | 78 | 63 | T1c, T2 | 2092 | 11 | 2/5/3/1/4/0 |
Marzi, 2022 [46] | Rome, ITA | 95 | 49 | 64.4 | 82.6 | OP | All | p16+PCR | 100 | 44 | DWI, IVIM | 157 | 14 | 2/5/4/3/4/0 |
Park, 2022 [53] | Seoul, KOR | 108 | 47 | 58.3 | 83.9 | OP | All | p16 | 136 | 19 | T1c | 140 | 10 | 2/5/1/2/2/0 |
Sohn, 2020 [58] | Seoul, KOR | 43 | 19 | 59.3 | 85.5 | OP | - | p16 | 52 | 10 | 3DT1c, T2 | 170 | 11 | 2/5/1/3/2/0 |
Suh, 2020 [59] | Seoul, KOR | 40 | 20 | 59 † | 83.3 | OP | T0-T4 | p16+PCR | 48 | 12 | T1(c), T2, DWI | 1618 | 11 | 1/5/1/4/2/0 |
Study, Year | Location Inclusion Center | Study Design | Inc. (N) | Age (mean) | Male (%) | Tumor Subside | Tumor Stage | HPV Testing | HPV+ (n) | HPV− (n) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Diffusion parameters | b-values (s/mm2) | ||||||||||
Chan, 2016 [29] | Toronto, CAN | R | 40 | 59.2 | 82.5 | OP | All | p16 | 28 | 12 | 0, 1000 |
De Perrot, 2017 [34] | Geneva, CHE | R | 105 | 64 | 71.4 | OC, OP | All | p16+PCR | 21 | 84 | 0, 1000 |
Driessen, 2016 [35] | Utrecht, NED | R | 73 | 61.6 | 64.4 | OC, OP, HP, LA | T2-T4 | p16+PCR | 6 | 67 | 0, 150, 800 |
Freihat, 2021 [36] | Pécs, HUN | R | 33 | 61.4 | 69.7 | OP | All | p16 | 16 | 17 | 0, 800, 1000 |
Han, 2018 [38] | Suwon, KOR | R | 41 | 62.9 † | 73.2 | OC, OP | All | Hybrid cap | 16 | 25 | 0, 1000 |
Kawaguchi, 2020 [43] | Gifu, JAP | R | 37 | 61.5 | 81.1 | NA | All | p16 | 3 | 34 | 0, 1000 |
Lenoir, 2022 [44] | Geneva, CHE | R | 34 | 62.0 † | 61.8 | OP | All | p16+PCR | 11 | 23 | 0, 50, 100, 500, 750, 1000 |
Martens, 2019 [45] | Amsterdam, NED | R | 89 ⁑ | 64.6 | 75.2 | OC, OP, HP, LA | All | p16+PCR | 33 | 56 | 0, 1000 |
Marzi, 2022 [46] | Rome, ITA | R | 95 * | 65.0 | 80.0 | OP | All | p16+PCR | 67 | 28 | 0, 500, 800, IVIM |
Meyer, 2018 [47] | Leipzig, DEU | P | 34 | 56.7 | 73.5 | OC, OP, HP, LA, NA | All | p16 | - | - | 0, 800 |
Nakahira, 2014 [52] | Saitama, JAP | R | 26 | 66 | 92.3 | OP | All | p16 | 12 | 14 | 0, 1000 |
Piludu, 2021 [54] | Rome, ITA | P | 100 | 65.7 | 82.0 | OP | T0-T4 | p16+PCR | 69 | 31 | 0, 25, 50, 75, 100, 150, 300, 500, 800, IVIM° |
Ravanelli, 2018 [55] | Brescia, ITA | R | 59 | 64.9 | 72.9 | OP | T2-T4 | HC2 DNA | 28 | 31 | 0, 1000 |
Schouten, 2015 [57] | Amsterdam, NED | R | 44 | 58.8 | 75.0 | OP | T2-T4 | p16+PCR | 22 | 22 | 0, 750, 1000 |
Vidiri, 2019 [69] | Rome, ITA | P | 73 | 62.7 | 80.8 | OP | All | p16+PCR | 54 | 19 | 0, 500, 800, IVIM |
Wong, 2016 [70] | Londen, GBR | P | 20 | 63 † | 90.0 | OP, HP | All | Unclear | 12 | 8 | 50, 400, 800 |
Perfusion parameters | Model | ||||||||||
Ahn, 2021 [25] | Seoul, KOR | P | 58 | 59.5 | 82.8 | OP | All | p16+PCR | 45 | 13 | Arterial Spin Labeling |
Choi, 2016 [30] | Seoul, KOR | R | 22 | 61.6 | 86.4 | OC, OP | - | p16 | 15 | 7 | Tofts and Brix |
Han, 2018 [38] | Suwon, KOR | R | 41 | 62.9 † | 73.2 | OC, OP | All | Hybrid cap | 16 | 25 | Extended Tofts |
Meyer, 2019 [48] | Leipzig, DEU | P | 30 | 57.0 | 73.3 | OC, OP, HP, LA, NA | All | p16 | 20 | 10 | Tofts and Kermode |
Piludu, 2021 [54] | Rome, ITA | P | 100 | 65.7 | 82.0 | OP | T0-T4 | p16+PCR | 69 | 31 | IVIM, Tofts, and Brix |
Vidiri, 2019 [69] | Rome, ITA | P | 73 | 62.7 | 80.8 | OP | All | p16+PCR | 54 | 19 | IVIM |
Study, Year | Location Inclusion Center | Study Design | Inc. (N) | Age (mean) | Male (%) | Tumor Subside | Tumor Stage | Testing Method | Biological Feature | |
---|---|---|---|---|---|---|---|---|---|---|
Diffusion parameters | b-values (s/mm2) | |||||||||
Chen Y., 2023 [75] | Beijing, CHN | R | 21 | 61.3 | 85.7 | OC, LA | All | IHC | EGFR | 0, 800 |
Dang, 2015 [32] | Calgary, CAN | P | 16 | 56.0 | 87.5 | OP | T2-T4 | IHC | p53 | - |
Meyer, 2018 [47] | Leipzig, DEU | P | 34 | 56.7 | 73.5 | All HSNCC | All | IHC | p53, HIF-1α, VGEF, EGFR | 0, 800 |
Meyer, 2019 [51] | Leipzig, DEU | R | 34 | 56.7 | 73.5 | All HNSCC | All | IHC | MVD (CD105) | 0, 800 |
Rasmussen, 2020 [60] | Copenhagen, DNK | P | 28 | 63 † | 57.1 | All HNSCC | All | IHC | p53, HIF-1α, VGEF, EGFR, Ki-67 | 0, 800 |
Shima, 2023 [72] | Sapporo, JPN | P | 24 | 68 † | 50 | OC | All | IHC | Ki-67 | 0, 500, 1000, 1500, 2000, 2500, DKI |
Surov, 2016 [61] | Leipzig, DEU | P | 11 | 56.0 | 81.8 | All HNSCC | All | IHC | Ki-67, CC | 0, 800 |
Surov, 2018 [63] | Leipzig, DEU | P | 32 | 56.5 | 75.0 | OC, OP, HP, LA | All | IHC | Ki-67, CC | 0, 800 |
Swartz, 2018 [65] | Utrecht, NED | R | 20 | 61.4 | 55.0 | OP | T2-T4 | IHC | HIF-1α, Ki-67 | 0, 150, 800 |
Tse, 2010 [67] | Shatin, HKG | P | 45 | - | - | HNSCC | - | IHC | VGEF, EGFR | 0, 100, 200, 300, 400, 500 |
Wu W., 2021 [71] | Foshan, CHN | P | 36 | 47.3 | 77.8 | NA | T2-T4 | IHC | Ki-67 | 0, 10, 20, 40. 60, 100, 120, 160, 200, 400, 600, 800, 1000, IVIM |
Wu Y., 2023 [73] | Kanton, CHN | R | 25 | 58.9 | 64 | NA | - | IHC | Ki-67 | 0, 1000, 2000 |
Perfusion parameters | Model | |||||||||
Chen Y., 2023 [75] | Beijing, CHN | R | 21 | 61.3 | 85.7 | OC, LA | All | IHC | EGFR | 1compartment NOS |
Choi, 2016 [30] | Seoul, KOR | R | 22 | 61.6 | 86.4 | OC, OP | - | IHC | EGFR | Tofts and Brix |
Donaldson, 2015 [33] | Manchester, GBR | P | 7 | 62.0 | 100 | OC, HP, LA | All | PCR | VGEF | 2CXM |
Hu, 2018 [39] | Changsha, CHN | P | 94 | - | 69.1 | NA | All | IHC | HIF-1α, VGEF, MVD (CD34) | 2compartment NOS |
Huang, 2021 [40] | Hainan, CHN | R | 87(70) * | 49 ⁑ | 79 ⁑ | NA | All | IHC | HIF-1α, EGFR, Ki-67 | Extended Tofts |
Karabay, 2022 [41] | Konak, TUR | R | 33 | 61.9 | 81.8 | OC, OP, LA | All | IHC | MVD (CD34,CD105) | Tofts |
Liu, 2021 [42] | Nanchang, CHN | P | 42 | 53.2 | 69.0 | NA | All | IHC | HIF-1α | TIC |
Meyer, 2019 [48] | Leipzig, DEU | P | 30 | 57.0 | 73.3 | All HNSCC | All | IHC | p53, HIF-1α, VGEF, EGFR | Tofts and Kermode |
Meyer, 2019 [50] | Leipzig, DEU | R | 30 | 57.2 | 76.7 | All HNSCC | All | IHC | MVD (CD105) | Tofts and Kermode |
Rasmussen, 2020 [60] | Copenhagen, DNK | P | 28 | 63 † | 57.1 | HNSCC+LN (25%) | All | IHC | p53, VGEF, EGFR, Ki-67, CC | Tofts and Brix |
Surov, 2017 [62] | Leipzig, DEU | P | 16(11) ‡ | 57.0 | 87.5 | HNSCC | All | IHC | Ki-67, MVD (CD31), CC | Tofts and Kermode |
Surov, 2018 [64] | Leipzig, DEU | P | 30 | 57.0 | 73.3 | All HNSCC | All | IHC | Ki-67, CC | Tofts and Kermode |
Tekiki, 2021 [66] | Okayama, JPN | P | 21 | 64 | 57.1 | OC | T1-T3 | IHC | VGEF, MVD (CD31) | Contrast index |
Unestubo, 2009 [68] | Okayama, JPN | P | 28 | 65.9 | 50.0 | OC | T2-T3 | IHC | MVD (CD34) | Contrast index |
Stand-alone Histogram T1W and T2W parameters | ||||||||||
Chen T., 2015 [31] | Taipei, TWN | R | 218 | 51.0 | 87.2 | OC | All | IHC | HIF-1α | |
Dang, 2015 [32] | Calgary, CAN | P | 16 | 56.0 | 87.5 | OP | T2-T4 | IHC | p53 | |
Meyer, 2019 [49] | Leipzig, DEU | P | 34 | 56.7 | 73.5 | All HNSCC | All | IHC | p53, HIF-1α, VGEF, EGFR, Ki-67, CC | |
Samolyk-Kogaczewska, 2020 [56] | Białystok, POL | P | 21 | 60 † | - | OC, OP, HP | All | IHC | Ki-67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Hulst, H.J.; Jansen, R.W.; Vens, C.; Bos, P.; Schats, W.; de Jong, M.C.; Martens, R.M.; Bodalal, Z.; Beets-Tan, R.G.H.; van den Brekel, M.W.M.; et al. The Prediction of Biological Features Using Magnetic Resonance Imaging in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 5077. https://doi.org/10.3390/cancers15205077
van der Hulst HJ, Jansen RW, Vens C, Bos P, Schats W, de Jong MC, Martens RM, Bodalal Z, Beets-Tan RGH, van den Brekel MWM, et al. The Prediction of Biological Features Using Magnetic Resonance Imaging in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cancers. 2023; 15(20):5077. https://doi.org/10.3390/cancers15205077
Chicago/Turabian Stylevan der Hulst, Hedda J., Robin W. Jansen, Conchita Vens, Paula Bos, Winnie Schats, Marcus C. de Jong, Roland M. Martens, Zuhir Bodalal, Regina G. H. Beets-Tan, Michiel W. M. van den Brekel, and et al. 2023. "The Prediction of Biological Features Using Magnetic Resonance Imaging in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis" Cancers 15, no. 20: 5077. https://doi.org/10.3390/cancers15205077
APA Stylevan der Hulst, H. J., Jansen, R. W., Vens, C., Bos, P., Schats, W., de Jong, M. C., Martens, R. M., Bodalal, Z., Beets-Tan, R. G. H., van den Brekel, M. W. M., de Graaf, P., & Castelijns, J. A. (2023). The Prediction of Biological Features Using Magnetic Resonance Imaging in Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cancers, 15(20), 5077. https://doi.org/10.3390/cancers15205077