Exploring the Significance of Immune Checkpoints and EBV Reactivation in Antibody Deficiencies with Near-Normal Immunoglobulin Levels or Hyperimmunoglobulinemia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Characteristics
- a.
- Having an ongoing viral, bacterial, or fungal infection;
- b.
- Suffering from severe allergies;
- c.
- Having a history of hematopoietic cell or organ allotransplantation;
- d.
- Undergoing treatment for an active malignancy or any other autoimmune disease;
- e.
- Being pregnant or lactating;
- f.
- Using investigational drugs;
- g.
- Having tumor metastases in the central nervous system or mental illness.
2.2. Quantification of EBV Genomic Copies in PBMC-Derived DNA
2.3. Serological Profiling of Anti-EBV Specific Antibodies
2.4. Assessment of Soluble Immune Checkpoint and Ligand Concentrations in Serum
2.5. Lymphocyte Immunophenotyping
2.6. Statistical Analysis of Obtained Results
3. Results
3.1. Analysis of the History and Basic Clinical Parameters of Patients with Antibody Deficiencies with Near-Normal Immunoglobulin Levels or Hyperimmunoglobulinemia
3.2. Evaluation of the Expression of PD-1/PD-L1, CTLA-4/CD86, and CD200R/CD200 on T and B Lymphocytes in Patients with Antibody Deficiencies with Near-Normal Immunoglobulin Levels or Hyperimmunoglobulinemia in Relation to Healthy Volunteers
3.3. Evaluation of PD-1/PD-L1, CTLA-4/CD86, and CD200R/CD200 Concentrations in the Serum of Patients with Antibody Deficiencies with Near-Normal Immunoglobulin Levels or Hyperimmunoglobulinemia in Relation to Healthy Volunteers
3.4. Effect of EBV Reactivation on the Tested Pathways of Immune Checkpoints in the Course of Antibody Deficiencies with Near-Normal Immunoglobulin Levels or Hyperimmunoglobulinemia
3.5. Evaluation of the Usefulness of the Tested Immune Checkpoint Pathways as a Potential Marker in Patients with Antibody Deficiencies with Near-Normal Immunoglobulin Levels or Hyperimmunoglobulinemia, Including EBV Reactivation and in Relation to Healthy Volunteers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Keefe, A.; Halbrich, M.; Ben-Shoshan, M.; McCusker, C. Primary Immunodeficiency for the Primary Care Provider. Paediatr. Child. Health 2016, 21, e10–e14. [Google Scholar] [CrossRef] [PubMed]
- Teku, G.N.; Vihinen, M. Simulation of the Dynamics of Primary Immunodeficiencies in B Cells. Front. Immunol. 2018, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Gies, V.; Korganow, A.-S.; Guffroy, A. Primary Immunodeficiencies with Defects in Innate Immunity: Focus on Orofacial Manifestations. Front. Immunol. 2020, 11, 1065. [Google Scholar] [CrossRef] [PubMed]
- Bousfiha, A.; Moundir, A.; Tangye, S.G.; Picard, C.; Jeddane, L.; Al-Herz, W.; Rundles, C.C.; Franco, J.L.; Holland, S.M.; Klein, C.; et al. The 2022 Update of IUIS Phenotypical Classification for Human Inborn Errors of Immunity. J. Clin. Immunol. 2022, 42, 1508–1520. [Google Scholar] [CrossRef] [PubMed]
- Justiz Vaillant, A.A.; Ramphul, K. Antibody Deficiency Disorder. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Nicholson, L.B. The Immune System. Essays Biochem. 2016, 60, 275–301. [Google Scholar] [CrossRef] [PubMed]
- Sathe, A.; Cusick, J.K. Biochemistry, Immunoglobulin M. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Selective Antibody Deficiency with Normal Immunoglobulins (SADNI)-Immunology; Allergic Disorders. Available online: https://www.msdmanuals.com/professional/immunology-allergic-disorders/immunodeficiency-disorders/selective-antibody-deficiency-with-normal-immunoglobulins-sadni (accessed on 14 August 2023).
- Srivastava, S.; Wood, P. Secondary Antibody Deficiency—Causes and Approach to Diagnosis. Clin. Med. 2016, 16, 571–576. [Google Scholar] [CrossRef]
- Albin, S.; Cunningham-Rundles, C. An Update on the Use of Immunoglobulin for the Treatment of Immunodeficiency Disorders. Immunotherapy 2014, 6, 1113–1126. [Google Scholar] [CrossRef]
- Świerkot, J.; Lewandowicz-Uszyńska, A. Autoimmune Disorders in the Course of Primary Immunodeficiency. Cent. Eur. J. Immunol. 2007, 32, 27–33. [Google Scholar]
- Patel, S.Y.; Carbone, J.; Jolles, S. The Expanding Field of Secondary Antibody Deficiency: Causes, Diagnosis, and Management. Front. Immunol. 2019, 10, 33. [Google Scholar] [CrossRef]
- Selective Antibody Deficiency with Normal Immunoglobulins-Immune Disorders. Available online: https://www.msdmanuals.com/home/immune-disorders/immunodeficiency-disorders/selective-antibody-deficiency-with-normal-immunoglobulins (accessed on 14 August 2023).
- Perez, E.; Bonilla, F.A.; Orange, J.S.; Ballow, M. Specific Antibody Deficiency: Controversies in Diagnosis and Management. Front. Immunol. 2017, 8, 586. [Google Scholar] [CrossRef]
- Hopp, R.J.; Niebur, H.B. Persistent Hyper IgA as a Marker of Immune Deficiency: A Case Report. Antibodies 2022, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, R.U.; Harvey, T.; Leiva, L.E.; Sorensen, R.U.; Harvey, T.; Leiva, L.E. Selective Antibody Deficiency with Normal Immunoglobulins. In Immunodeficiency; IntechOpen: London, UK, 2012; ISBN 978-953-51-0791-0. [Google Scholar]
- Mayor, P.C.; Eng, K.H.; Singel, K.L.; Abrams, S.I.; Odunsi, K.; Moysich, K.B.; Fuleihan, R.; Garabedian, E.; Lugar, P.; Ochs, H.D.; et al. Cancer in Primary Immunodeficiency Diseases: Cancer Incidence in the United States Immune Deficiency Network Registry. J. Allergy Clin. Immunol. 2018, 141, 1028–1035. [Google Scholar] [CrossRef] [PubMed]
- Maffeis, M.; Notarangelo, L.D.; Schumacher, R.F.; Soncini, E.; Soresina, A.; Lanfranchi, A.; Porta, F. Primary Immunodeficiencies and Oncological Risk: The Experience of the Children’s Hospital of Brescia. Front. Pediatr. 2019, 7, 232. [Google Scholar] [CrossRef] [PubMed]
- Mortaz, E.; Tabarsi, P.; Mansouri, D.; Khosravi, A.; Garssen, J.; Velayati, A.; Adcock, I.M. Cancers Related to Immunodeficiencies: Update and Perspectives. Front. Immunol. 2016, 7, 365. [Google Scholar] [CrossRef]
- Fujiwara, S.; Nakamura, H. Chronic Active Epstein–Barr Virus Infection: Is It Immunodeficiency, Malignancy, or Both? Cancers 2020, 12, 3202. [Google Scholar] [CrossRef]
- Worth, A.J.J.; Houldcroft, C.J.; Booth, C. Severe Epstein–Barr Virus Infection in Primary Immunodeficiency and the Normal Host. Br. J. Haematol. 2016, 175, 559–576. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.D.; Alghareeb, R.; Hussain, A.; Maheshwari, M.V.; Khalid, N. The Association of Epstein-Barr Virus with Cancer. Cureus 2022, 14, e26314. [Google Scholar] [CrossRef]
- Aguayo, F.; Boccardo, E.; Corvalán, A.; Calaf, G.M.; Blanco, R. Interplay between Epstein-Barr Virus Infection and Environmental Xenobiotic Exposure in Cancer. Infect. Agents Cancer 2021, 16, 50. [Google Scholar] [CrossRef]
- Pardoll, D.M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
- Ibis, B.; Aliazis, K.; Cao, C.; Yenyuwadee, S.; Boussiotis, V.A. Immune-Related Adverse Effects of Checkpoint Immunotherapy and Implications for the Treatment of Patients with Cancer and Autoimmune Diseases. Front. Immunol. 2023, 14, 1197364. [Google Scholar] [CrossRef]
- Huang, C.; Zhu, H.-X.; Yao, Y.; Bian, Z.-H.; Zheng, Y.-J.; Li, L.; Moutsopoulos, H.M.; Gershwin, M.E.; Lian, Z.-X. Immune Checkpoint Molecules. Possible Future Therapeutic Implications in Autoimmune Diseases. J. Autoimmun. 2019, 104, 102333. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Wang, Y.; Zhao, W.; Li, H.; Zhang, L.; Li, X.; Zhang, T.; Zhang, H.; Huang, H.; et al. Application of Immune Checkpoint Targets in the Anti-Tumor Novel Drugs and Traditional Chinese Medicine Development. Acta Pharm. Sin. B 2021, 11, 2957–2972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Liu, C.; Wang, Z.; Wu, W.; Zhang, N.; Zhang, L.; Hu, J.; Luo, P.; Zhang, J.; et al. Immune Checkpoint Modulators in Cancer Immunotherapy: Recent Advances and Emerging Concepts. J. Hematol. Oncol. 2022, 15, 111. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Zhan, H.; Ye, Y.; Yang, J.; Zhang, M.; Li, J.; Zhuang, Y. Current Progress and Future Perspectives of Immune Checkpoint in Cancer and Infectious Diseases. Front. Genet. 2021, 12, 785153. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Ren, Y.; Zhang, Q.; Yi, P.; Cheng, C. Metabolic Modulation of Immune Checkpoints and Novel Therapeutic Strategies in Cancer. Semin. Cancer Biol. 2022, 86, 542–565. [Google Scholar] [CrossRef]
- Fried, A.J.; Bonilla, F.A. Pathogenesis, Diagnosis, and Management of Primary Antibody Deficiencies and Infections. Clin. Microbiol. Rev. 2009, 22, 396–414. [Google Scholar] [CrossRef] [PubMed]
- Laurent, C.; Fabiani, B.; Do, C.; Tchernonog, E.; Cartron, G.; Gravelle, P.; Amara, N.; Malot, S.; Palisoc, M.M.; Copie-Bergman, C.; et al. Immune-Checkpoint Expression in Epstein-Barr Virus Positive and Negative Plasmablastic Lymphoma: A Clinical and Pathological Study in 82 Patients. Haematologica 2016, 101, 976–984. [Google Scholar] [CrossRef]
- Biggi, A.F.B.; Elgui de Oliveira, D. The Epstein-Barr Virus Hacks Immune Checkpoints: Evidence and Consequences for Lymphoproliferative Disorders and Cancers. Biomolecules 2022, 12, 397. [Google Scholar] [CrossRef]
- Kuehn, H.S.; Niemela, J.E.; Sreedhara, K.; Stoddard, J.L.; Grossman, J.; Wysocki, C.A.; de la Morena, M.T.; Garofalo, M.; Inlora, J.; Snyder, M.P.; et al. Novel Nonsense Gain-of-Function NFKB2 Mutations Associated with a Combined Immunodeficiency Phenotype. Blood 2017, 130, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- Angulo, I.; Vadas, O.; Garçon, F.; Banham-Hall, E.; Plagnol, V.; Leahy, T.R.; Baxendale, H.; Coulter, T.; Curtis, J.; Wu, C.; et al. Phosphoinositide 3-Kinase δ Gene Mutation Predisposes to Respiratory Infection and Airway Damage. Science 2013, 342, 866–871. [Google Scholar] [CrossRef]
- Lucas, C.L.; Kuehn, H.S.; Zhao, F.; Niemela, J.E.; Deenick, E.K.; Palendira, U.; Avery, D.T.; Moens, L.; Cannons, J.L.; Biancalana, M.; et al. Dominant-Activating Germline Mutations in the Gene Encoding the PI(3)K Catalytic Subunit P110δ Result in T Cell Senescence and Human Immunodeficiency. Nat. Immunol. 2014, 15, 88–97. [Google Scholar] [CrossRef]
- Carpier, J.-M.; Lucas, C.L. Epstein-Barr Virus Susceptibility in Activated PI3Kδ Syndrome (APDS) Immunodeficiency. Front. Immunol. 2017, 8, 2005. [Google Scholar] [CrossRef]
- Alkhairy, O.K.; Abolhassani, H.; Rezaei, N.; Fang, M.; Andersen, K.K.; Chavoshzadeh, Z.; Mohammadzadeh, I.; El-Rajab, M.A.; Massaad, M.; Chou, J.; et al. Spectrum of Phenotypes Associated with Mutations in LRBA. J. Clin. Immunol. 2016, 36, 33–45. [Google Scholar] [CrossRef]
- Alangari, A.; Alsultan, A.; Adly, N.; Massaad, M.J.; Kiani, I.S.; Aljebreen, A.; Raddaoui, E.; Almomen, A.-K.; Al-Muhsen, S.; Geha, R.S.; et al. LPS-Responsive Beige-like Anchor (LRBA) Gene Mutation in a Family with Inflammatory Bowel Disease and Combined Immunodeficiency. J. Allergy Clin. Immunol. 2012, 130, 481–488.e2. [Google Scholar] [CrossRef] [PubMed]
- Price, S.; Shaw, P.A.; Seitz, A.; Joshi, G.; Davis, J.; Niemela, J.E.; Perkins, K.; Hornung, R.L.; Folio, L.; Rosenberg, P.S.; et al. Natural History of Autoimmune Lymphoproliferative Syndrome Associated with FAS Gene Mutations. Blood 2014, 123, 1989–1999. [Google Scholar] [CrossRef] [PubMed]
- Pace, R.; Vinh, D.C. Autoimmune Lymphoproliferative Syndrome and Epstein-Barr Virus-Associated Lymphoma: An Adjunctive Diagnostic Role for Monitoring EBV Viremia? Case Rep. Immunol. 2013, 2013, 245893. [Google Scholar] [CrossRef] [PubMed]
- Palendira, U.; Rickinson, A.B. Primary Immunodeficiencies and the Control of Epstein–Barr Virus Infection. Ann. N. Y. Acad. Sci. 2015, 1356, 22–44. [Google Scholar] [CrossRef]
- Rohr, J.; Beutel, K.; Maul-Pavicic, A.; Vraetz, T.; Thiel, J.; Warnatz, K.; Bondzio, I.; Gross-Wieltsch, U.; Schündeln, M.; Schütz, B.; et al. Atypical Familial Hemophagocytic Lymphohistiocytosis Due to Mutations in UNC13D and STXBP2 Overlaps with Primary Immunodeficiency Diseases. Haematologica 2010, 95, 2080–2087. [Google Scholar] [CrossRef] [PubMed]
- Newell, A.; Dadi, H.; Goldberg, R.; Ngan, B.-Y.; Grunebaum, E.; Roifman, C.M. Diffuse Large B-Cell Lymphoma as Presenting Feature of Zap-70 Deficiency. J. Allergy Clin. Immunol. 2011, 127, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, M.; Hattori, H.; Maeda, N.; Akita, N.; Muramatsu, H.; Moritani, S.; Kawasaki, T.; Maejima, M.; Ode, H.; Hachiya, A.; et al. Compound Heterozygous TYK2 Mutations Underlie Primary Immunodeficiency with T-Cell Lymphopenia. Sci. Rep. 2018, 8, 6956. [Google Scholar] [CrossRef]
- Wright, J.R.; Baker, P.B.; Shimada, H. Pioneer in Pediatric Pathology: William A (Bill) Newton Jr (1923-). Pediatr. Dev. Pathol. 2019, 22, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Sasahara, Y.; Fujie, H.; Kumaki, S.; Ohashi, Y.; Minegishi, M.; Tsuchiya, S. Epstein-Barr Virus-Associated Hodgkin’s Disease in a Patient with Wiskott-Aldrich Syndrome. Acta Paediatr. 2001, 90, 1348–1351. [Google Scholar] [CrossRef] [PubMed]
- Sebire, N.J.; Haselden, S.; Malone, M.; Davies, E.G.; Ramsay, A.D. Isolated EBV Lymphoproliferative Disease in a Child with Wiskott-Aldrich Syndrome Manifesting as Cutaneous Lymphomatoid Granulomatosis and Responsive to Anti-CD20 Immunotherapy. J. Clin. Pathol. 2003, 56, 555–557. [Google Scholar] [CrossRef] [PubMed]
- Vasen, H.; Ibrahim, I.; Ponce, C.G.; Slater, E.P.; Matthäi, E.; Carrato, A.; Earl, J.; Robbers, K.; van Mil, A.M.; Potjer, T.; et al. Benefit of Surveillance for Pancreatic Cancer in High-Risk Individuals: Outcome of Long-Term Prospective Follow-Up Studies from Three European Expert Centers. J. Clin. Oncol. 2016, 34, 2010–2019. [Google Scholar] [CrossRef]
- Gunnarsson, R.; Mansouri, L.; Isaksson, A.; Göransson, H.; Cahill, N.; Jansson, M.; Rasmussen, M.; Lundin, J.; Norin, S.; Buhl, A.M.; et al. Array-Based Genomic Screening at Diagnosis and during Follow-up in Chronic Lymphocytic Leukemia. Haematologica 2011, 96, 1161–1169. [Google Scholar] [CrossRef]
- Neff, J.L.; Chen, D. Hepatosplenic T-Cell Lymphoma with Blastoid Morphology in a Patient with Crohn Disease. Blood 2016, 128, 2275. [Google Scholar] [CrossRef]
- Münz, C. Modification of EBV-Associated Pathologies and Immune Control by Coinfections. Front. Oncol. 2021, 11, 756480. [Google Scholar] [CrossRef]
Parameter | Study Group | Healthy Volunteers | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
WBC | 7.75 ± 1.33 | 7.65 (5.03–9.99) | 6.15 ± 0.96 | 6.14 (4.75–7.73) | 0.000 * |
LYM | 2.10 ± 0.7 | 2.03 (1.03–3.96) | 1.84 ± 0.32 | 1.85 (1.23–2.76) | 0.181 |
MON | 0.43 ± 0.11 | 0.45 (0.20–0.61) | 0.47 ± 0.11 | 0.48 (0.28–0.63) | 0.176 |
NEU | 4.32 ± 1.38 | 4.92 (2.08–6.18) | 3.7 ± 1.07 | 3.48 (1.83–5.44) | 0.070 |
RBC | 3.98 ± 0.66 | 4.07 (2.54–5.10) | 4.56 ± 0.31 | 4.57 (3.95–5.10) | 0.000 * |
HGB | 12.97 ± 2.32 | 13.47 (8.25–16.05) | 13.48 ± 1.28 | 13.30 (11.80–15.50) | 0.797 |
PLT | 213.53 ± 59.99 | 212.82 (93.28–351.00) | 243.85 ± 51.21 | 231.50 (155.00–346.00) | 0.052 |
IgG | 14.55 ± 2.34 | 14.78 (9.86–18.92) | 13.1 ±1 1.66 | 12.85 (10.16–15.94) | 0.020 * |
IgM | 1.49 ± 0.56 | 1.45 (0.55–2.63) | 1.31 ± 0.51 | 1.17 (0.60–2.21) | 0.203 |
IgA | 1.76 ± 0.73 | 1.85 (0.59–3.18) | 2.05 ± 0.80 | 1.84 (0.70–4.00) | 0.353 |
Parameter | Study Group | Healthy Volunteers | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
CD45+ [%] | 91.08 ± 4.31 | 91.35 (82.29–97.33) | 93.97 ± 2.35 | 94.38 (90.38–97.91) | 0.147 |
CD3+ [%] | 65.76 ± 11.38 | 67.53 (40.84–89.89) | 74.32 ± 5.61 | 73.61 (67.20–94.58) | 0.000 * |
CD19+ [%] | 9.90 ± 5.82 | 9.58 (2.56–24.22) | 13.29 ± 1.74 | 12.76 (11.05–16.82) | 0.000 * |
CD4+ [%] | 34.23 ± 19.36 | 29.19 (11.38–67.92) | 48.35 ± 4.53 | 47.49 (42.25–61.31) | 0.000 * |
CD8+ [%] | 30.03 ± 15.21 | 25.88 (11.49–57.29) | 27.24 ± 2.31 | 27.30 (22.25–31.07) | 0.602 |
CD4+/CD8+ ratio | 1.48 ± 1.32 | 1.02 (0.25–5.08) | 1.79 ± 0.21 | 1.78 (1.53–2.13) | 0.001 * |
Parameter | Study Group | Healthy Volunteers | p-Value | |||
---|---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | |||
PD-1 | CD4+ PD-1+ | 15.38 ± 5.16 | 15.29 (6.52–27.72) | 3.32 ± 1.18 | 3.00 (1.18–5.68) | 0.000 * |
CD8+ PD-1+ | 20.38 ± 9.74 | 17.41 (5.17–37.47) | 2.39 ± 1.09 | 2.15 (0.79–4.28) | 0.000 * | |
CD19+ PD-1+ | 7.68 ± 4.98 | 6.92 (2.01–17.59) | 4.31 ± 1.42 | 4.22 (1.97–6.82) | 0.004 * | |
PD-L1 | CD4+ PD-L1+ | 8.37 ± 3.49 | 7.51 (2.55–13.92) | 0.82 ± 0.33 | 0.87 (0.21–1.33) | 0.000 * |
CD8+ PD-L1+ | 7.35 ± 4.62 | 6.36 (0.97–17.00) | 0.55 ± 0.29 | 0.57 (0.01–1.01) | 0.000 * | |
CD19+ PD-L1+ | 9.03 ± 4.84 | 7.37 (1.62–17.87) | 0.28 ± 0.13 | 0.28 (0.03–0.48) | 0.000 * | |
CTLA-4 | CD4+ CTLA-4+ | 9.44 ± 5.11 | 8.29 (4.17–23.55) | 3.39 ± 0.66 | 3.27 (2.18–4.41) | 0.000 * |
CD8+ CTLA-4+ | 16.09 ± 9.52 | 12.89 (4.16–36.89) | 3.51 ± 0.90 | 3.52 (2.10–5.12) | 0.000 * | |
CD19+ CTLA-4+ | 12.57 ± 6.58 | 11.97 (3.12–29.42) | 1.88 ± 0.70 | 1.93 (0.59–3.17) | 0.000 * | |
CD86 | CD4+ CD86+ | 6.17 ± 1.48 | 6.03 (4.08–8.89) | 2.97 ± 0.65 | 2.94 (2.02–3.97) | 0.000 * |
CD8+ CD86+ | 5.78 ± 2.09 | 4.85 (3.14–9.90) | 1.98 ± 0.60 | 1.96 (1.13–3.00) | 0.000 * | |
CD19+ CD86+ | 25.11 ± 3.04 | 25.59 (20.05–29.88) | 13.80 ± 3.86 | 13.36 (8.03–20.89) | 0.000 * | |
CD200R | CD4+ CD200R+ | 4.04 ± 2.89 | 3.13 (1.13–11.52) | 4.84 ± 1.88 | 5.04 (1.89–7.44) | 0.000 * |
CD8+ CD200R + | 8.33 ± 5.49 | 7.53 (2.25–21.02) | 2.58 ± 1.16 | 2.24 ?(0.74–5.06) | 0.003 * | |
CD19+ CD200R + | 10.06 ± 4.40 | 9.22 (3.51–18.41) | 22.35 ± 5.56 | 21.39 (15.27–33.00) | 0.000 * | |
CD200 | CD4+ CD200+ | 15.98 ± 7.61 | 15.82 (5.80–29.38) | 2.58 ± 0.51 | 2.70 (1.58–3.30) | 0.000 * |
CD8+ CD200+ | 14.28 ± 10.11 | 10.96 (3.21–35.29) | 3.67 ± 1.19 | 3.58 (1.88–5.81) | 0.000 * | |
CD19+ CD200+ | 61.06 ± 23.84 | 67.50 (16.83–96.82) | 32.64 ± 9.09 | 35.13 (18.15–46.58) | 0.000 * |
Serum Concentration [ng/mL] | Study Group | Healthy Volunteers | p-Value | ||
---|---|---|---|---|---|
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | ||
sPD-1 | 17.70 ± 4.52 | 17.09 (7.53–26.49) | 2.44 ± 1.52 | 2.19 (0.52–5.42) | 0.000 * |
sPD-L1 | 7.41 ± 1.95 | 7.08 (4.35–12.73) | 0.92 ± 0.63 | 0.71 (01.0–2.50) | 0.000 * |
sCTLA-4 | 14.96 ± 4.93 | 14.64 (6.75–32.53) | 1.73 ± 1.14 | 1.45 (0.40–4.74) | 0.000 * |
sCD86 | 12.19 ± 3.52 | 11.89 (4.94–19.71) | 1.99 ± 0.58 | 1.82 (1.06–2.91) | 0.000 * |
sCD200R | 15.92 ± 4.40 | 16.24 (6.12–26.22) | 2.48 ± 1.49 | 2.00 (0.89–6.29) | 0.002 * |
sCD200 | 38.09 ± 10.64 | 37.12 (8.34–55.46) | 1.55 ± 0.97 | 1.67 (0.11–4.08) | 0.000 * |
Antibody Serum Concentration [U/mL] | Study Group | HV | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EBV+ (Group 1) | EBV− (Group 2) | EBV− (Group 3) | |||||||||
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | All Groups | 1 vs. 2 | 1 vs. 3 | 2 vs. 3 | ||
Anti-EBV EA | IgA | 46.46 ± 10.22 | 44.68 (31.76–69.49) | 4.84 ± 1.14 | 4.61 (3.07–6.70) | 4.89 ± 1.59 | 5.31 (2.29–6.96) | 0.000 * | 0.000 * | 0.000 * | 0.778 |
IgM | 6.68 ± 1.71 | 6.49 (4.03–9.20) | 4.88 ± 0.50 | 4.75 (4.13–5.85) | 4.98 ± 1.03 | 4.82 (3.15–6.98) | 0.000 * | 0.000 * | 0.003 * | 0.639 | |
IgG | 74.30 ± 11.78 | 74.98 (52.67–91.16) | 4.21 ± 1.08 | 4.29 (2.20–5.95) | 3.68 ± 1.17 | 3.24 (2.16–5.62) | 0.000 * | 0.000 * | 0.000 * | 0.201 | |
Anti-EBV VCA | IgA | 16.79 ± 2.81 | 16.77 (12.50–21.17) | 2.94 ± 1.10 | 2.91 (1.05–4.91) | 5.04 ± 0.92 | 4.92 (3.47–6.80) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
IgM | 4.23 ± 8.55 | 44.63 (26.01–56.58) | 4.57 ± 1.67 | 4.48 (2.22–6.96) | 5.63 ± 1.87 | 6.06 (2.59–8.83) | 0.000 * | 0.000 * | 0.000 * | 0.067 | |
IgG | 167.76 ± 23.44 | 158.67 (132.67–209.87) | 154.17 ± 23.34 | 160.77 (113.07–189.16) | 112.29 ± 22.97 | 118.41 (76.58–151.11) | 0.000 * | 0.191 | 0.000 * | 0.000 * | |
Anti-EBV EBNA-1 | IgA | 13.75 ± 1.07 | 13.79 (12.24–15.77) | 2.92 ± 1.03 | 3.28 (1.02–4.62) | 3.34 ± 1.39 | 2.97 (1.22–5.65) | 0.000 * | 0.000 * | 0.000 * | 0.429 |
IgM | 6.96 ± 2.51 | 7.04 (2.73–10.63) | 3.98 ± 1.00 | 4.12 (2.47–5.42) | 5.34 ± 1.42 | 5.26 (3.22–7.96) | 0.000 * | 0.000 * | 0.04 * | 0.005 * | |
IgG | 235.16 ± 16.86 | 240.70 (207.77–259.26) | 67.58 ± 7.20 | 67.82 (52.78–79.56) | 62.65 ± 10.92 | 61.17 (45.62–78.50) | 0.000 * | 0.000 * | 0.000 * | 0.231 |
Parameter | Study Group | HV | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
EBV+ (Group 1) | EBV− (Group 2) | EBV− (Group 3) | ||||||||
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | All Groups | 1 vs. 2 | 1 vs. 3 | 2 vs. 3 | |
WBC | 7.31 ± 1.19 | 7.57 (5.03–8.99) | 8.18 ± 1.32 | 7.98 (5.90–9.99) | 6.15 ± 0.96 | 6.14 (4.75–7.73) | 0.000 * | 0.052 | 0.002 * | 0.000 * |
LYM | 1.61 ± 0.40 | 1.56 (1.03–2.57) | 2.59 ± 0.61 | 2.54 (1.45–3.96) | 1.84 ± 0.32 | 1.85 (1.23–2.76) | 0.181 | 0.000 * | 0.067 | 0.000 * |
MON | 0.40 ± 0.10 | 0.41 (0.20–0.52) | 0.46 ± 0.10 | 0.48 (0.25–0.61) | 0.47 ± 0.11 | 0.48 (0.28–0.63) | 0.176 | 0.063 | 0.037 * | 0.799 |
NEU | 4.41 ± 1.49 | 5.13 (2.16–6.18) | 4.23 ± 1.26 | 4.72 (2.08–5.98) | 3.7 ± 1.07 | 3.48 (1.83–5.44) | 0.070 | 0.231 | 0.114 | 0.140 |
RBC | 3.61 ± 0.68 | 3.53 (2.54–5.10) | 4.35 ± 0.36 | 4.33 (3.79–5.10) | 4.56 ± 0.31 | 4.57 (3.95–5.10) | 0.000 * | 0.000 * | 0.000 * | 0.049 * |
HGB | 11.34 ± 2.11 | 11.22 (8.25–15.70) | 14.61 ± 1.02 | 14.79 (12.14–16.05) | 13.48 ± 1.28 | 13.30 (11.80–15.50) | 0.797 | 0.000 * | 0.001 * | 0.006 * |
PLT | 176.06 ± 48.09 | 172.03 (93.28–292.00) | 251.00 ± 45.58 | 233.62 (196.73–351.00) | 243.85 ± 51.21 | 231.50 (155.00–346.00) | 0.052 | 0.000 * | 0.000 * | 0.758 |
IgG | 15.95 ± 1.38 | 15.62 (13.97–18.92) | 13.14 ± 2.25 | 12.89 (9.86–16.83) | 13.11 ± 1.66 | 12.85 (10.16–15.94) | 0.020 * | 0.000 * | 0.000 * | 0.883 |
IgM | 1.61 ± 0.56 | 1.61 (0.74–2.58) | 1.38 ± 0.53 | 1.33 (0.55–2.63) | 1.31 ± 0.51 | 1.17 (0.60–2.21) | 0.203 | 0.253 | 0.096 | 0.601 |
IgA | 1.83 ± 0.67 | 1.91 (0.59–3.18) | 1.69 ± 0.77 | 1.5 (0.71–3.03) | 2.05 ± 0.80 | 1.84 (0.70–4.00) | 0.353 | 0.698 | 0.601 | 0.298 |
CD3+ [%] | 62.00 ± 9.05 | 62.34 (40.84–78.49) | 69.53 ± 12.20 | 71.03 (46.43–89.89) | 74.32 ± 5.61 | 73.61 (67.20–94.58) | 0.000 * | 0.013 * | 0.000 * | 0.141 |
CD19+ [%] | 7.09 ± 2.46 | 7.46 (2.65–10.63) | 12.72 ± 6.77 | 11.81 (2.56–24.22) | 13.29 ± 1.74 | 12.76 (11.05–16.82) | 0.000 * | 0.002 * | 0.000 * | 0.327 |
CD4+ [%] | 26.29 ± 9.70 | 24.98 (11.38–43.29) | 42.16 ± 21.31 | 46.59 (14.09–67.92) | 48.35 ± 4.53 | 47.49 (42.25–61.31) | 0.000 * | 0.040 * | 0.000 * | 0.738 |
CD8+ [%] | 25.98 ± 12.08 | 26.51 (11.49–54.43) | 34.08 ± 16.85 | 46.59 (14.09–67.92) | 27.24 ± 2.31 | 27.30 (22.25–31.07) | 0.672 | 0.368 | 0.564 | 0.758 |
CD4+/CD8+ ratio | 1.20 ± 0.83 | 0.87 (0.37–3.38) | 1.76 ± 1.62 | 1.13 (0.25–5.08) | 1.79 ± 0.21 | 1.78 (1.53–2.13) | 0.001 * | 0.461 | 0.000 * | 0.045 * |
Parameter | Study Group | HV | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EBV+ (Group 1) | EBV− (Group 2) | EBV− (Group 3) | |||||||||
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | All Groups | 1 vs. 2 | 1 vs. 3 | 2 vs. 3 | ||
PD-1 | CD4+ PD-1+ | 19.31 ± 3.34 | 17.81 (14.83–24.72) | 11.44 ± 3.33 | 13.11 (5.93–16.02) | 3.32 ± 1.18 | 3.00 (1.18–5.68) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
CD8+ PD-1+ | 26.0 ± 7.78 | 25.39 (14.33–37.47) | 14.76 ± 8.11 | 13.85 (7.70–37.47) | 2.39 ± 1.09 | 2.15 (0.79–4.28) | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
CD19+ PD-1+ | 10.11 ± 5.67 | 7.13 (2.93–17.59) | 5.26 ± 2.39 | 5.69 (1.83–8.32) | 4.31 ± 1.42 | 4.22 (1.97–6.82) | 0.000 * | 0.022 * | 0.000 * | 0.242 | |
PD-L1 | CD4+ PD-L1+ | 9.55 ± 3.43 | 9.74 (5.01–13.92) | 7.20 ± 3.14 | 7.07 (2.32–13.35) | 0.82 ± 0.33 | 0.87 (0.21–1.33) | 0.000 * | 0.08 | 0.000 * | 0.000 * |
CD8+ PD-L1+ | 9.43 ± 5.34 | 10.82 (0.97–17.00) | 5.27 ± 2.34 | 4.87 (0.96–9.16) | 0.55 ± 0.29 | 0.57 (0.01–1.01) | 0.000 * | 0.009 * | 0.000 * | 0.000 * | |
CD19+ PD-L1+ | 11.44 ± 5.27 | 13.18 (4.44–17.87) | 6.61 ± 2.73 | 6.52 (1.47–11.19) | 0.28 ± 0.13 | 0.28 (0.03–0.48) | 0.000 * | 0.001 * | 0.000 * | 0.000 * | |
CTLA-4 | CD4+ CTLA-4+ | 10.20 ± 6.43 | 6.52 (5.04–23.55) | 8.67 ± 3.11 | 9.13 (3.79–14.09) | 3.39 ± 0.66 | 3.27 (2.18–4.41) | 0.000 * | 0.841 | 0.000 * | 0.000 * |
CD8+ CTLA-4+ | 19.38 ± 11.38 | 13.65 (6.64–36.89) | 12.80 ± 5.50 | 11.71 (3.79–26.43) | 3.51 ± 0.90 | 3.52 (2.10–5.12) | 0.000 * | 0.231 | 0.000 * | 0.000 * | |
CD19+ CTLA-4+ | 13.07 ± 8.49 | 9.25 (4.96–29.42) | 12.07 ± 3.74 | 12.93 (2.84–16.40) | 1.88 ± 0.70 | 1.93 (0.59–3.17) | 0.000 * | 0.698 | 0.000 * | 0.000 * | |
CD86 | CD4+ CD86+ | 7.45 ± 0.96 | 7.14 (6.24–8.89) | 4.90 ± 0.46 | 4.87 (4.08–5.81) | 2.97 ± 0.65 | 2.94 (2.02–3.97) | 0.000 * | 0.000 * | 0.000 * | 0.000 * |
CD8+ CD86+ | 7.50 ± 1.60 | 7.65 (4.75–9.90) | 4.07 ± 0.56 | 4.11 (3.14–4.94) | 1.98 ±0.60 | 1.96 (1.13–3.00) | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
CD19+ CD86+ | 27.82 ± 1.20 | 27.40 (26.25–29.88) | 22.39 ± 1.53 | 22.26 (20.05–24.93) | 13.80 ± 3.86 | 13.36 (8.03–20.89) | 0.000 * | 0.000 * | 0.000 * | 0.000 * | |
CD200R | CD4+ CD200R+ | 4.42 ± 3.67 | 2.04 (1.34–11.52) | 3.66 ± 1.70 | 3.75 (1.03–7.13) | 4.84 ± 1.88 | 5.04 (1.89–7.44) | 0.121 | 0.841 | 0.091 | 0.067 |
CD8+ CD200R + | 9.33 ± 6.35 | 9.92 (2.25–21.02) | 7.34 ± 4.23 | 6.96 (2.24–18.51) | 2.58 ± 1.16 | 2.24 (0.74–5.06) | 0.000 * | 0.383 | 0.000 * | 0.000 * | |
CD19+ CD200R + | 11.90 ± 4.72 | 9.38 (5.98–18.41) | 8.22 ± 3.12 | 8.32 (3.19–14.93) | 22.35 ± 5.56 | 21.39 (15.27–33.00) | 0.000 * | 0.055 | 0.000 * | 0.000 * | |
CD200 | CD4+ CD200+ | 17.81 ± 8.86 | 22.50 (5.80–29.38) | 14.14 ± 5.53 | 14.41 (5.81–24.28) | 2.58 ± 0.51 | 2.70 (1.58–3.30) | 0.000 * | 0.173 | 0.000 * | 0.000 * |
CD8+ CD200+ | 18.34 ± 12.21 | 12.37 (4.34–35.29) | 11.42 ± 5.62 | 9.62 (3.21–24.43) | 3.67 ± 1.19 | 3.58 (1.88–5.81) | 0.000 * | 0.141 | 0.000 * | 0.000 * | |
CD19+ CD200+ | 62.54 ± 24.06 | 65.21 (23.83–96.82) | 59.59 ± 23.52 | 67.69 (16.83–90.26) | 32.64 ± 9.09 | 35.13 (18.15–46.58) | 0.000 * | 0.601 | 0.000 * | 0.000 * |
Serum Concentration [ng/mL] | Study Group | HV | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
EBV+ (Group 1) | EBV− (Group 2) | EBV− (Group 3) | ||||||||
Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | Mean ± SD | Median (Range) | All Groups | 1 vs. 2 | 1 vs. 3 | 2 vs. 3 | |
sPD-1 | 19.43 ± 4.11 | 20.34 (13.28–26.49) | 15.96 ± 4.23 | 15.61 (7.53–24.53) | 2.44 ± 1.52 | 2.19 (0.52–5.42) | 0.000 * | 0.016 * | 0.000 * | 0.000 * |
sPD-L1 | 7.74 ± 1.64 | 6.98 (5.72–10.89) | 7.08 ± 2.16 | 7.20 (4.06–12.73) | 0.92 ± 0.63 | 0.71 (01.0–2.50) | 0.000 * | 0.410 | 0.000 * | 0.000 * |
sCTLA-4 | 15.48 ± 2.99 | 16.36 (10.11–19.96) | 14.43 ± 6.25 | 13.39 (6.14–32.53) | 1.73 ± 1.14 | 1.45 (0.40–4.74) | 0.000 * | 0.076 | 0.000 * | 0.000 * |
sCD86 | 12.94 ± 4.77 | 14.24 (4.34–19.71) | 11.44 ± 0.97 | 11.32 (10.00–12.93) | 1.99 ± 0.58 | 1.82 (1.06–2.91) | 0.000 * | 0.102 | 0.000 * | 0.000 * |
sCD200R | 17.53 ± 4.09 | 16.45 (13.43–26.22) | 14.30 ± 4.10 | 14.63 (6.12–19.09) | 2.48 ± 1.49 | 2.00 (0.89–6.29) | 0.000 * | 0.157 | 0.002 * | 0.002 * |
sCD200 | 44.01 ± 8.14 | 44.06 (32.85–55.46) | 32.17 ± 9.49 | 35.36 (8.74–42.78) | 1.55 ± 0.97 | 1.67 (0.11–4.08) | 0.000 * | 0.001 * | 0.000 * | 0.000 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mertowska, P.; Mertowski, S.; Smolak, K.; Pasiarski, M.; Smok-Kalwat, J.; Góźdź, S.; Grywalska, E. Exploring the Significance of Immune Checkpoints and EBV Reactivation in Antibody Deficiencies with Near-Normal Immunoglobulin Levels or Hyperimmunoglobulinemia. Cancers 2023, 15, 5059. https://doi.org/10.3390/cancers15205059
Mertowska P, Mertowski S, Smolak K, Pasiarski M, Smok-Kalwat J, Góźdź S, Grywalska E. Exploring the Significance of Immune Checkpoints and EBV Reactivation in Antibody Deficiencies with Near-Normal Immunoglobulin Levels or Hyperimmunoglobulinemia. Cancers. 2023; 15(20):5059. https://doi.org/10.3390/cancers15205059
Chicago/Turabian StyleMertowska, Paulina, Sebastian Mertowski, Konrad Smolak, Marcin Pasiarski, Jolanta Smok-Kalwat, Stanisław Góźdź, and Ewelina Grywalska. 2023. "Exploring the Significance of Immune Checkpoints and EBV Reactivation in Antibody Deficiencies with Near-Normal Immunoglobulin Levels or Hyperimmunoglobulinemia" Cancers 15, no. 20: 5059. https://doi.org/10.3390/cancers15205059
APA StyleMertowska, P., Mertowski, S., Smolak, K., Pasiarski, M., Smok-Kalwat, J., Góźdź, S., & Grywalska, E. (2023). Exploring the Significance of Immune Checkpoints and EBV Reactivation in Antibody Deficiencies with Near-Normal Immunoglobulin Levels or Hyperimmunoglobulinemia. Cancers, 15(20), 5059. https://doi.org/10.3390/cancers15205059