Targeting the Heterogeneous Tumour-Associated Macrophages in Hepatocellular Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Heterogeneity and Plasticity of TAMs in HCC
Zhang et al. [25] | |||||||||
Mφ-THBS1+ | Mφ-C1QA+ | Mφ-APOE+ | Mφ-GPX3+ | Mφ-VCAN+ | Mφ-MARCO+ | ||||
CST3, LYZ, CD68, THBS1, S100A8, S100A9 | CST3, LYZ, CD68, CD163, CD169, C1QA, SLC40A1, GPNMB | CST3, LYZ, CD68, CD163, CD169, APOE | CST3, LYZ, CD68, FCGR3A, SAT1, LST1, HLA-DQB1 | CST3, LYZ, CD68, S100A4, HLA-DRA, HLA-DQA1 | CST3, LYZ, CD68, MARCO, S100A9, CD163 | ||||
Sharma et al. [21] | |||||||||
TAM 1 | TAM 2 | TAM 3 | |||||||
C1QC, C1QA, SEPP1, LGMN, APOC1, CTSD, CD68, MS4A4A, PLD3, FOLR2, GPNMB, CD63, CTSB, FCGR3A, PSAP, FTL, CD14, LIPA, TYROBP, NPC2, DAB2, FCGRT, RNASE1, CTSC, FCER1G, C1QB, SLC40A1, APOE, CCL3, CCL3L3, MS4A7, CCL4L2, CD5L, VCAM1, CST3, SDC3, ITM2B, CCL4, CXCL2, IGF1, CD163, HES1, FOS, IER3 | RNASE1, CTSD, CSTB, NUPR1, FTL, APOC1, GPNMB, CTSB, APOE, CTSZ, LGALS1, PLTP, FABP5, TREM2, CXCL3, COLEC12, HSPA1A, PLIN2, SCD, CTSL, HSPA1B, MMP19, PLD3, ABL2, CEBPB | MT1H, MT1X, MT1M, MT1E, MT1F, APOC3, ORM1, FTL, APOA2, APOC1, MT1A, ALB, ORM2, MT2A, AMBP, APOA1, AHSG, SAA1, RBP4, SIRPG, KNG1, LINC00520, OTOA, UCHL1, APOB | |||||||
Song et al. [20] | |||||||||
Mφ-IL1B+ | Mφ-VSIG4+ | Mφ-FABP5+ | Mφ-S100A6+ | Mφ-S100A12+ | |||||
TNFAIP3, IL1B, HSPA1B, AREG, CXCL10, WARS, CCL3L1, DNAJB1, GBP1, APOB, C3A, EREG, GBP5, G0S2, CXCL9 | GLDN, VSIG4, ADAMTS2, RPS26, TREM2, ALB, APOC3, RNASE1, SAA1, VWF, APOA1, GPR34, MS4A4A, STAB1, MSR1, SLCO2B1, A2M, HP, SELENOP, ABCC5, FOLR3, AL355075.4, FCER2, CLEC5A, OLR1, ALOX5AP, FN1, MT1G | FABP4, PDK4, DHRS9, CXCL12, LIPA, ATP1B1, CLEC10A, MGLL, NRP1, ITGB5, MMP9, IGF1, TIMP3, SCN1B, HRH1, WWP1, FABP5, LPL, VCAM1, LILRB5, MATK, EGFL7, PHLDA1, CCL2, TM4SF19 | AL391807.1, S100A8, S100A9, VCAN, SULT1A1, RETN, CCR2, CDA, NRG1, CYP1B1, SELL, IL17RA, S1PR3, POU2F2, RFLNB, IGHA1, F5, AC007952.4, MGST1, CX3CR1 | MNDA, S100A8, S100A12, NFE2, CDA, CRISPLD2, TMEM154, SHROOM1, S1PR3, PRAM1, SLC46A2, NLRP12, LFNG, CX3CR1, NHSL2, S100Z | |||||
Mφ-CCL18+ | Mφ-AQP9+ | ||||||||
CCL18, NUPR1, SCD, GATM, PLTP, GPNMB, APOC1, LGMN, RGS1, ARL4C, ATP6V0D2, APOE, SELENOP, A2M, PMP22, CTSB, CREM, SLC40A1, IGF1, CTSL, PLXDC1, ABCA1, DAB2, SPP1, C2, SLCO2B1, MSR1, CD163L1, SDC3, ABCG1, SLC2A1, CD59, FOLR2, RARRES1, AVPI1, RNASE1, FABP3, SLC7A8, ELL2, TNFRSF21, PLD3, HLA-DQA1, FUCA1, ACP5, CTSD, CD28, SMPDL3A, ENPP2, NRP1, IL2RA, ANKRD37, TSC22D1, OTOA, NPL, KCNMA1, SLC2A5, FABP5, ZNF331, AKR1B1, PLA2G7, ME1, VAT1, CSTB, SDS, SLC19A2, COLEC12, GAL3ST4, TFRC, ADM, ANKH, NRP2, FRMD4A, GPR137B, SGPL1, PKD2L1, HS3ST2, TCEAL9, MMP19, SDC2, BEX3, HSD17B14, CD209, ARRDC3, IL18BP, FARP1, EPHX1, VCAM1, SLC16A10, BNIP3, HLA-DRB5, FAM213A, GPX3, MAFF, CXCL3, RAB42, TMIGD3, CHCHD6, IGSF21, MMP14, CXCL2, INSIG1, EGLN3, ZNF395, ADAMDEC1, ADAM8, CHMP1B, CD5L, PLAU, HILPDA, HK2, GADD45A, SERPINF1, CXCL8, IL4I1, CCL4L2 | AQP9, VCAN, SLC11A1, IFI44L, S100A12, NAMPT, FPR1, S100A8, CD55, IFI6, LILRA5, S100A9, IFITM2, VNN2, AC245128.3, SOCS3, CD300E, VSTM1, SLC25A37, MX2, ACSL1, IFITM3, LY6E, HMGB2, PLSCR1, PHC2, NLRP3, CLEC4E, ISG15, SLC2A3, SERPINB1, MX1, SELL, IFI44, ICAM3, FPR2, TREM1, THBS1, NFIL3, CLU, TIMP1, EREG, IRF7, UPP1, RIPOR2, GCA, RETN, MEGF9, CLEC4D, XAF1, MCTP2, OSCAR, LRRK2, MXD1, NFE2, RNASE2, CDA, AGFG1, OAS2, LINC02207, PGD, CRISPLD2, IL1R2, FES, CDKN2D, AL034397.3, CPD, AREG, GK, PROK2, FYN, LINC00937, MPHOSPH6, ECE1, CCDC69, RSAD2, RAB27A, CKAP4, OASL, MBOAT7, TMEM71, CR1, PADI4, MCEMP1, F5, CRIP1, CREB5, IL1RAP, MFGE8, GK5, CYP1B1, HBEGF, THBD, LTB4R, HERC5, ANXA6, FCAR, ADM, PLBD1, PDE4D, SPATA13, CEACAM4, MAN2A2, OAS3, VNN1, BCL3, TSPAN2, PTGER2, OSM, SPRY1, TOR1B, TOB1, TRMT6 | ||||||||
Sun et al. [24] | |||||||||
Mφ-c1 | Mφ-c2 | Mφ-c3 | Mφ-c4 | Mφ-c5 | |||||
CD163, CD68, SLC40A1, SELENOP, FOLR2, APOA2, IGLL5 | SLC16A10, CTNNB1, WTAP, SERINC5, PHACTR1 | SPP1, CSTB, RNASE1, MMP12, HK2 | BAG3, HSPB1, ZFAND2A, HSPH1, HSPA6, DNAJA4 | APOA2, BAG3, HSPB1, ZFAND2A, HSPH1, HSPA6, DNAJA4 | |||||
Lu et al. [27] | |||||||||
Mφ-MARCO+ | Mφ-TREM2+ | MoMFs-c1 | MoMFs-c2 | Mφ-VEGFA+ | Mφ-MMP9+ | ||||
MARCO, CD5L, C1QB, C1QA, SLC40A1, LIPA, MS4A7, MS4A6A, CFD, CD163 | C1QC, C1QB, C1QA, RNASE1, LGMN, HLA-DRA, MS4A4A, HLA-DPA1, SLC40A1, CD74 | S100A8, S100A9, IL1B, CXCL8, CXCL3, G0S2, EREG, PLAUR, CCL20, CXCL2 | FCN1, S100A8, S100A9, G0S2, LST1, BCL2A1, AIF1, LYZ, BAG3, C15orf48 | RNASE1, CCL3L3, CCL4L2, C1QA, LGMN, CCL3L3, CEBPB, CD83, BAG3, CCL18 | SSP1, MMP12, MMP9, FABP5, CSTB, GPNMB, LGALS1, RNASE1, C15orf48, CXCL8 | ||||
Liu et al. [26] | |||||||||
Mφ-SPP1+ | |||||||||
CSTB, SPP1, FTL, FABP5, CTSD, RNASE1, GPNMB, LGALS1, TM4SF19, NUPR1, CTSL, LGALS3, CCL7, VIM, SLAMF9, FABP4, BNIP3, MIF, ATP6V1F, CD68 |
3. The Dynamic Crosstalk between HCC Tumour Cells and TAMs
3.1. The Effect of HCC Tumour Cells Inducing M2 Polarization of TAMs in the TME
3.1.1. Signalling-Molecule Mediated Crosstalk
3.1.2. Exosome-Mediated Crosstalk
Molecule | Type of Crosstalk | Mechanism of Action and Effect on TAMs | References |
---|---|---|---|
IL-8 | Signalling molecule-mediated |
| [36] |
IL-6 | Signalling molecule-mediated |
| [37,38] |
CSF1 | Signalling molecule-mediated |
| [40,41] |
SPP1 | Signalling molecule-mediated |
| [43] |
CCL5 | Signalling molecule-mediated |
| [44] |
CCL2 | Signalling molecule-mediated |
| [45] |
Acetoacetate | Signalling molecule-mediated |
| [46,48] |
HGF | Signalling molecule-mediated |
| [47,48] |
WNT ligands | Signalling molecule-mediated |
| [49] |
HMGB1 | Signalling molecule-mediated |
| [52] |
NO | Signalling molecule-mediated |
| [53] |
miR-21-5p | Exosome-mediated |
| [57] |
miR-23a-3p | Exosome-mediated |
| [58] |
PD-L1 | Exosome-mediated |
| [59] |
miR-146a-5p | Exosome-mediated |
| [60] |
miR452-5p | Exosome-mediated |
| [61] |
circTMEM181 | Exosome-mediated |
| [63] |
hsa_circ_0074854 | Exosome-mediated |
| [64] |
3.2. The Effect of M2-Like TAMs Promoting the Progression, Growth and Invasiveness of HCC
3.2.1. Signalling Molecule-Mediated Crosstalk
3.2.2. Exosome-Mediated Crosstalk
Molecule | Type of Crosstalk | Mechanism of Action and Effect on HCC Tumour Cells | References |
---|---|---|---|
IL-1β | Signalling molecule-mediated |
| [65] |
IL-6 | Signalling molecule-mediated |
| [66,67,68] |
IL-8 | Signalling molecule-mediated |
| [69] |
TNF-α | Signalling molecule-mediated |
| [70] |
CCL17 | Signalling molecule-mediated |
| [71] |
TGF-β | Signalling molecule-mediated |
| [72] |
S100A9 | Signalling molecule-mediated |
| [73] |
Gal-1 | Signalling molecule-mediated |
| [74] |
miR-17-92 cluster | Exosome-mediated |
| [77] |
miR-27a-3p | Exosome-mediated |
| [78] |
miR-92a-2-5p | Exosome-mediated |
| [79] |
miR-660-5p | Exosome-mediated |
| [80] |
lncMMPA | Exosome-mediated |
| [81] |
miR-628-5p | Exosome-mediated |
| [82] |
4. Current Strategies Targeting TAMs in HCC
Molecular Target | Agent | Combination Therapy | Results | Clinical Trial Number | References |
---|---|---|---|---|---|
CCL2/CCR2 axis | CCR2 antagonist (RDC018) | N/A | Inhibits tumour growth and metastasis and prolongs the survival of mice. | [83] | |
CCR2 antagonist (747) | Sorafenib (low-dose) | Enhances the therapeutic efficacy of low-dose sorafenib, elevating the numbers of intra-tumoural CD8+ T cells and increasing death of tumour cells. | [84] | ||
CCL2/CCR2 and CCL5/CCR5 axis | CCR2/CCR5 inhibitor (BMS-813160) | Anti-PD1 mAb (Nivolumab) | Clinical trial Phase II (ongoing) | NCT04123379 | |
CSF1/CSFR1 axis | Gö6976, a protein kinase inhibitor, lenvatinib, or using a CSF-1R inhibitor (BLZ945) | Anti-PD1 therapy | Gö6976 or BLZ945 combined with anti-PD1 inhibit tumour growth. Lenvatinib and anti-PD1 exert synergistic anti-tumour effects and prolongs the survival of mice | [40,88] | |
CSF1R inhibitor (PLX3397) | N/A | CSF1R blockade delays tumour growth by shifting the polarization of TAMs toward an M1-like phenotype. | [41] | ||
CSF1R inhibitor (PLX3397) | Anti-PD-L1 | Blocking CSF1/CSF1R prevents TAM trafficking and enhances the efficacy of anti-PD-L1. | [42] | ||
Anti-CSF1R mAb (Cabiralizumab) | Anti-PD1 mAb (Nivolumab) | Clinical trial Phase II (ongoing) | NCT04050462 | ||
PI3Kγ | TG100-115 | Sorafenib | Higher anti-tumour efficiency than the free drug solutions. | [93] | |
Pan-PI3K inhibitor (SF1126) | Anti-PD1 mAb (Nivolumab) | Clinical trial Phase I | NCT03059147 | ||
C/EBPα | saRNA; MTL-CEBPA | Sorafenib | A marked reduction in tumour growth following MTL-CEBPA treatment is observed in preclinical mouse HCC models. | [95] | |
saRNA; MTL-CEBPA | Sorafenib | Clinical trial Phase Ib. MTL-CEBPA causes radiologic regression of tumours in 26.7% of patients with HCC with an underlying viral etiology. | NCT02716012 | [95] | |
saRNA; MTL-CEBPA | Anti-PD1 mAb (Pembrolizumab) | Clinical trial Phase Ia/Ib (ongoing) | NCT04105335 | ||
GSK3β | GSK3β inhibitor | Anti-PD1 mAb | Macrophage GSK3β-deficiency inhibits the progression of HCC and enhances the sensitivity of anti-PD1 immunotherapy. | [96] | |
RIPK3 | RIPK3 inhibitor (GSK872) | N/A | Enhances M2 markers (CD206 and Arg1) and PPARs (Ppara and Pparg) in macrophages. | [97] | |
TLR7 and TLR8 agonists | R848@M2pep-MPsAFP | Anti-PD-1 mAb | R848@M2pep-MPsAFP efficiently reprograms M2-like macrophages and activates CD8+ T cells decreasing the tumour growth and prolonging the survival of mice improving the anti-tumour immune response of anti-PD-1 antibody. | [99] | |
TLR7 agonist (RO7119929) | N/A | Clinical trial Phase I. Combination therapy with ICIs may be needed to enhance its anti-tumour activity. | NCT04338685 | [100] | |
CD47-SIRPα | Anti-CD47 mAb | N/A | CD47 blockade inhibits tumour growth in mouse heterotopic and orthotopic models of HCC. | [102] | |
Anti-CD47 mAb | Doxorubicin | Anti-CD47 Ab in combination with doxorubicin exerts maximal effects on tumour suppression in a patient-derived HCC xenograft mouse model, as compared to monotherapies alone. | [103] | ||
Anti-hSIRPα Ab | N/A | Clinical trial. Collection of human samples | NCT02868255 | ||
CAR macrophages | LNP-mediated dual mRNA co-delivery of Siglec-GΔITIMs-expressing GPC3-specific CAR macrophages | N/A | LNP-engineered Siglec-GΔITIMs-expressing GPC3-specific CAR-Ms present augmented HCC-specific engulfment of macrophages, subsequently stimulating an adaptive anti-tumour immune response and preventing tumour growth in an orthotopic HCC mouse model. | [105] | |
Anti-HER2 CAR-M (CT-0508) in patients with HER2 overexpressing solid tumours | Anti-PD1 mAb (Pembrolizumab) | Clinical trial Phase I (ongoing) | NCT04660929 |
5. Future Perspectives and Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Yang, J.D.; Hainaut, P.; Gores, G.J.; Amadou, A.; Plymoth, A.; Roberts, L.R. A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H.; et al. Nivolumab in Patients with Advanced Hepatocellular Carcinoma (CheckMate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose Escalation and Expansion Trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab as Second-Line Therapy in Patients with Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for Patients with Hepatocellular Carcinoma Who Progressed on Sorafenib Treatment (RESORCE): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Kang, Y.-K.; Yen, C.-J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after Sorafenib in Patients with Advanced Hepatocellular Carcinoma and Increased α-Fetoprotein Concentrations (REACH-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated Efficacy and Safety Data from IMbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Montironi, C.; Castet, F.; Haber, P.K.; Pinyol, R.; Torres-Martin, M.; Torrens, L.; Mesropian, A.; Wang, H.; Puigvehi, M.; Maeda, M.; et al. Inflamed and Non-Inflamed Classes of HCC: A Revised Immunogenomic Classification. Gut 2023, 72, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Donne, R.; Lujambio, A. The Liver Cancer Immune Microenvironment: Therapeutic Implications for Hepatocellular Carcinoma. Hepatology 2023, 77, 1773–1796. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Cai, N.; Zhu, J.; Yang, X.; Liang, H.; Zhang, W. Tumor-Associated Macrophages in Liver Cancer: From Mechanisms to Therapy. Cancer Commun. 2022, 42, 1112–1140. [Google Scholar] [CrossRef]
- Cassetta, L.; Pollard, J.W. Targeting Macrophages: Therapeutic Approaches in Cancer. Nat. Rev. Drug Discov. 2018, 17, 887–904. [Google Scholar] [CrossRef] [PubMed]
- Krenkel, O.; Tacke, F. Liver Macrophages in Tissue Homeostasis and Disease. Nat. Rev. Immunol. 2017, 17, 306–321. [Google Scholar] [CrossRef]
- Zheng, H.; Peng, X.; Yang, S.; Li, X.; Huang, M.; Wei, S.; Zhang, S.; He, G.; Liu, J.; Fan, Q.; et al. Targeting Tumor-Associated Macrophages in Hepatocellular Carcinoma: Biology, Strategy, and Immunotherapy. Cell Death Discov. 2023, 9, 65. [Google Scholar] [CrossRef]
- Ye, Y.-C.; Zhao, J.-L.; Lu, Y.-T.; Gao, C.-C.; Yang, Y.; Liang, S.-Q.; Lu, Y.-Y.; Wang, L.; Yue, S.-Q.; Dou, K.-F.; et al. NOTCH Signaling via WNT Regulates the Proliferation of Alternative, CCR2-Independent Tumor-Associated Macrophages in Hepatocellular Carcinoma. Cancer Res. 2019, 79, 4160–4172. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Shi, Y.; Zhang, M.; Goswami, S.; Afridi, S.; Meng, L.; Ma, J.; Chen, Y.; Lin, Y.; Zhang, J.; et al. Global Immune Characterization of HBV/HCV-Related Hepatocellular Carcinoma Identifies Macrophage and T-Cell Subsets Associated with Disease Progression. Cell Discov. 2020, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Seow, J.J.W.; Dutertre, C.-A.; Pai, R.; Blériot, C.; Mishra, A.; Wong, R.M.M.; Singh, G.S.N.; Sudhagar, S.; Khalilnezhad, S.; et al. Onco-Fetal Reprogramming of Endothelial Cells Drives Immunosuppressive Macrophages in Hepatocellular Carcinoma. Cell 2020, 183, 377–394.e21. [Google Scholar] [CrossRef] [PubMed]
- Guilliams, M.; Scott, C.L. Liver Macrophages in Health and Disease. Immunity 2022, 55, 1515–1529. [Google Scholar] [CrossRef]
- Qu, X.; Zhao, X.; Lin, K.; Wang, N.; Li, X.; Li, S.; Zhang, L.; Shi, Y. M2-like Tumor-Associated Macrophage-Related Biomarkers to Construct a Novel Prognostic Signature, Reveal the Immune Landscape, and Screen Drugs in Hepatocellular Carcinoma. Front. Immunol. 2022, 13, 994019. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, L.; Zhong, Y.; Zhou, K.; Hou, Y.; Wang, Z.; Zhang, Z.; Xie, J.; Wang, C.; Chen, D.; et al. Single-Cell Landscape of the Ecosystem in Early-Relapse Hepatocellular Carcinoma. Cell 2021, 184, 404–421.e16. [Google Scholar] [CrossRef]
- Zhang, Q.; He, Y.; Luo, N.; Patel, S.J.; Han, Y.; Gao, R.; Modak, M.; Carotta, S.; Haslinger, C.; Kind, D.; et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma. Cell 2019, 179, 829–845.e20. [Google Scholar] [CrossRef]
- Liu, Y.; Xun, Z.; Ma, K.; Liang, S.; Li, X.; Zhou, S.; Sun, L.; Liu, Y.; Du, Y.; Guo, X.; et al. Identification of a Tumour Immune Barrier in the HCC Microenvironment That Determines the Efficacy of Immunotherapy. J. Hepatol. 2023, 78, 770–782. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, A.; Quan, C.; Pan, Y.; Zhang, H.; Li, Y.; Gao, C.; Lu, H.; Wang, X.; Cao, P.; et al. A Single-Cell Atlas of the Multicellular Ecosystem of Primary and Metastatic Hepatocellular Carcinoma. Nat. Commun. 2022, 13, 4594. [Google Scholar] [CrossRef]
- Gao, J.; Li, Z.; Lu, Q.; Zhong, J.; Pan, L.; Feng, C.; Tang, S.; Wang, X.; Tao, Y.; Lin, J.; et al. Single-Cell RNA Sequencing Reveals Cell Subpopulations in the Tumor Microenvironment Contributing to Hepatocellular Carcinoma. Front. cell Dev. Biol. 2023, 11, 1194199. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, L.; Ju, X.; Wang, S.; Qie, J. Single-Cell Transcriptomic Analysis Reveals Macrophage-Tumor Crosstalk in Hepatocellular Carcinoma. Front. Immunol. 2022, 13, 955390. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.W.-H.; Tsui, Y.-M.; Chan, L.-K.; Sze, K.M.-F.; Zhang, X.; Cheu, J.W.-S.; Chiu, Y.-T.; Lee, J.M.-F.; Chan, A.C.-Y.; Cheung, E.T.-Y.; et al. Single-Cell RNA Sequencing Shows the Immunosuppressive Landscape and Tumor Heterogeneity of HBV-Associated Hepatocellular Carcinoma. Nat. Commun. 2021, 12, 3684. [Google Scholar] [CrossRef]
- Dong, L.-Q.; Peng, L.-H.; Ma, L.-J.; Liu, D.-B.; Zhang, S.; Luo, S.-Z.; Rao, J.-H.; Zhu, H.-W.; Yang, S.-X.; Xi, S.-J.; et al. Heterogeneous Immunogenomic Features and Distinct Escape Mechanisms in Multifocal Hepatocellular Carcinoma. J. Hepatol. 2020, 72, 896–908. [Google Scholar] [CrossRef]
- Liu, P.; Kong, L.; Liu, Y.; Li, G.; Xie, J.; Lu, X. A Key Driver to Promote HCC: Cellular Crosstalk in Tumor Microenvironment. Front. Oncol. 2023, 13, 1135122. [Google Scholar] [CrossRef]
- Sung, P.S. Crosstalk between Tumor-Associated Macrophages and Neighboring Cells in Hepatocellular Carcinoma. Clin. Mol. Hepatol. 2022, 28, 333–350. [Google Scholar] [CrossRef]
- Yeung, O.W.H.; Lo, C.-M.; Ling, C.-C.; Qi, X.; Geng, W.; Li, C.-X.; Ng, K.T.P.; Forbes, S.J.; Guan, X.-Y.; Poon, R.T.P.; et al. Alternatively Activated (M2) Macrophages Promote Tumour Growth and Invasiveness in Hepatocellular Carcinoma. J. Hepatol. 2015, 62, 607–616. [Google Scholar] [CrossRef]
- Dranoff, G. Cytokines in Cancer Pathogenesis and Cancer Therapy. Nat. Rev. Cancer 2004, 4, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Long, X.; Zhang, L.; Ye, Y.; Guo, J.; Liu, P.; Zhang, R.; Ning, J.; Yu, W.; Wei, F.; et al. Neurotensin/IL-8 Pathway Orchestrates Local Inflammatory Response and Tumor Invasion by Inducing M2 Polarization of Tumor-Associated Macrophages and Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma Cells. Oncoimmunology 2018, 7, e1440166. [Google Scholar] [CrossRef]
- Zhou, T.-Y.; Zhou, Y.-L.; Qian, M.-J.; Fang, Y.-Z.; Ye, S.; Xin, W.-X.; Yang, X.-C.; Wu, H.-H. Interleukin-6 Induced by YAP in Hepatocellular Carcinoma Cells Recruits Tumor-Associated Macrophages. J. Pharma. Sci. 2018, 138, 89–95. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Yan, Z.; Yang, H.; Sun, W.; Yao, Y.; Chen, Y.; Jiang, R. IL-6 Promotes PD-L1 Expression in Monocytes and Macrophages by Decreasing Protein Tyrosine Phosphatase Receptor Type O Expression in Human Hepatocellular Carcinoma. J. Immunother. Cancer 2020, 8, e000285. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liu, M.; Huang, W.; Chen, X.; Zhang, B.; Zhang, T.; Wang, Y.; Liu, D.; Xie, M.; Ji, X.; et al. IL-1β-Induced Elevation of Solute Carrier Family 7 Member 11 Promotes Hepatocellular Carcinoma Metastasis Through Up-Regulating Programmed Death Ligand 1 and Colony-Stimulating Factor 1. Hepatology 2021, 74, 3174–3193. [Google Scholar] [CrossRef]
- Wei, C.-Y.; Zhu, M.-X.; Zhang, P.-F.; Huang, X.-Y.; Wan, J.-K.; Yao, X.-Z.; Hu, Z.-T.; Chai, X.-Q.; Peng, R.; Yang, X.; et al. PKCα/ZFP64/CSF1 Axis Resets the Tumor Microenvironment and Fuels Anti-PD1 Resistance in Hepatocellular Carcinoma. J. Hepatol. 2022, 77, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Ao, J.-Y.; Zhu, X.-D.; Chai, Z.-T.; Cai, H.; Zhang, Y.-Y.; Zhang, K.-Z.; Kong, L.-Q.; Zhang, N.; Ye, B.-G.; Ma, D.-N.; et al. Colony-Stimulating Factor 1 Receptor Blockade Inhibits Tumor Growth by Altering the Polarization of Tumor-Associated Macrophages in Hepatocellular Carcinoma. Mol. Cancer Ther. 2017, 16, 1544–1554. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yang, J.; Xu, D.; Gao, X.-M.; Zhang, Z.; Hsu, J.L.; Li, C.-W.; Lim, S.-O.; Sheng, Y.-Y.; Zhang, Y.; et al. Disruption of Tumour-Associated Macrophage Trafficking by the Osteopontin-Induced Colony-Stimulating Factor-1 Signalling Sensitises Hepatocellular Carcinoma to Anti-PD-L1 Blockade. Gut 2019, 68, 1653–1666. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, R.; Deng, J.; Dai, X.; Zhu, X.; Fu, Q.; Zhang, H.; Tong, Z.; Zhao, P.; Fang, W.; et al. Construction of TME and Identification of Crosstalk between Malignant Cells and Macrophages by SPP1 in Hepatocellular Carcinoma. Cancer Immunol. Immunother. 2022, 71, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Ma, B.; Sun, D.; Zhang, W.; Qiu, J.; Qin, L.; Xue, X. Hsa_circ_0003410 Promotes Hepatocellular Carcinoma Progression by Increasing the Ratio of M2/M1 Macrophages through the MiR-139-3p/CCL5 Axis. Cancer Sci. 2022, 113, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Bao, D.; Zhao, J.; Zhou, X.; Yang, Q.; Chen, Y.; Zhu, J.; Yuan, P.; Yang, J.; Qin, T.; Wan, S.; et al. Mitochondrial Fission-Induced MtDNA Stress Promotes Tumor-Associated Macrophage Infiltration and HCC Progression. Oncogene 2019, 38, 5007–5020. [Google Scholar] [CrossRef]
- Yang, T.; Wang, Y.; Dai, W.; Zheng, X.; Wang, J.; Song, S.; Fang, L.; Zhou, J.; Wu, W.; Gu, J. Increased B3GALNT2 in Hepatocellular Carcinoma Promotes Macrophage Recruitment via Reducing Acetoacetate Secretion and Elevating MIF Activity. J. Hematol. Oncol. 2018, 11, 50. [Google Scholar] [CrossRef]
- Dong, N.; Shi, X.; Wang, S.; Gao, Y.; Kuang, Z.; Xie, Q.; Li, Y.; Deng, H.; Wu, Y.; Li, M.; et al. M2 Macrophages Mediate Sorafenib Resistance by Secreting HGF in a Feed-Forward Manner in Hepatocellular Carcinoma. Br. J. Cancer 2019, 121, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, H.; Zhao, S.; Wang, E.; Zhu, J.; Feng, D.; Zhu, Y.; Dou, W.; Fan, Q.; Hu, J.; et al. Epigenetic Silencing of MiR-144/451a Cluster Contributes to HCC Progression via Paracrine HGF/MIF-Mediated TAM Remodeling. Mol. Cancer 2021, 20, 46. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, Y.-C.; Chen, Y.; Zhao, J.-L.; Gao, C.-C.; Han, H.; Liu, W.-C.; Qin, H.-Y. Crosstalk between Hepatic Tumor Cells and Macrophages via Wnt/β-Catenin Signaling Promotes M2-like Macrophage Polarization and Reinforces Tumor Malignant Behaviors. Cell Death Dis. 2018, 9, 793. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, Q.; Zhao, H.; Zhang, J. Promotion of Epithelial-Mesenchymal Transformation by Hepatocellular Carcinoma-Educated Macrophages through Wnt2b/β-Catenin/c-Myc Signaling and Reprogramming Glycolysis. J. Exp. Clin. Cancer Res. 2021, 40, 13. [Google Scholar] [CrossRef]
- Tian, X.; Wu, Y.; Yang, Y.; Wang, J.; Niu, M.; Gao, S.; Qin, T.; Bao, D. Long Noncoding RNA LINC00662 Promotes M2 Macrophage Polarization and Hepatocellular Carcinoma Progression via Activating Wnt/β-Catenin Signaling. Mol. Oncol. 2020, 14, 462–483. [Google Scholar] [CrossRef] [PubMed]
- Shiau, D.-J.; Kuo, W.-T.; Davuluri, G.V.N.; Shieh, C.-C.; Tsai, P.-J.; Chen, C.-C.; Lin, Y.-S.; Wu, Y.-Z.; Hsiao, Y.-P.; Chang, C.-P. Hepatocellular Carcinoma-Derived High Mobility Group Box 1 Triggers M2 Macrophage Polarization via a TLR2/NOX2/Autophagy Axis. Sci. Rep. 2020, 10, 13582. [Google Scholar] [CrossRef]
- Cui, X.; Zhao, H.; Wei, S.; Du, Q.; Dong, K.; Yan, Y.; Geller, D.A. Hepatocellular Carcinoma-Derived FOXO1 Inhibits Tumor Progression by Suppressing IL-6 Secretion from Macrophages. Neoplasia 2023, 40, 100900. [Google Scholar] [CrossRef]
- Baig, M.S.; Roy, A.; Rajpoot, S.; Liu, D.; Savai, R.; Banerjee, S.; Kawada, M.; Faisal, S.M.; Saluja, R.; Saqib, U.; et al. Tumor-Derived Exosomes in the Regulation of Macrophage Polarization. Inflamm. Res. 2020, 69, 435–451. [Google Scholar] [CrossRef]
- Han, Q.; Zhao, H.; Jiang, Y.; Yin, C.; Zhang, J. HCC-Derived Exosomes: Critical Player and Target for Cancer Immune Escape. Cells 2019, 8, 558. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, Z.; Gao, J.; Lin, Z.; Wang, Y.; Shan, P.; Li, M.; Zhou, T.; Li, P. Noncoding RNA-Mediated Macrophage and Cancer Cell Crosstalk in Hepatocellular Carcinoma. Mol. Ther. oncolytics 2022, 25, 98–120. [Google Scholar] [CrossRef]
- Yu, H.; Pan, J.; Zheng, S.; Cai, D.; Luo, A.; Xia, Z.; Huang, J. Hepatocellular Carcinoma Cell-Derived Exosomal MiR-21-5p Induces Macrophage M2 Polarization by Targeting RhoB. Int. J. Mol. Sci. 2023, 24, 4593. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Fan, L.; Yu, H.; Zhang, J.; He, Y.; Feng, D.; Wang, F.; Li, X.; Liu, Q.; Li, Y.; et al. Endoplasmic Reticulum Stress Causes Liver Cancer Cells to Release Exosomal MiR-23a-3p and Up-Regulate Programmed Death Ligand 1 Expression in Macrophages. Hepatology 2019, 70, 241–258. [Google Scholar] [CrossRef]
- Chen, J.; Lin, Z.; Liu, L.; Zhang, R.; Geng, Y.; Fan, M.; Zhu, W.; Lu, M.; Lu, L.; Jia, H.; et al. GOLM1 Exacerbates CD8+ T Cell Suppression in Hepatocellular Carcinoma by Promoting Exosomal PD-L1 Transport into Tumor-Associated Macrophages. Signal Transduct. Target. Ther. 2021, 6, 397. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Han, Q.; Xu, D.; Zheng, B.; Zhao, X.; Zhang, J. SALL4-Mediated Upregulation of Exosomal MiR-146a-5p Drives T-Cell Exhaustion by M2 Tumor-Associated Macrophages in HCC. Oncoimmunology 2019, 8, 1601479. [Google Scholar] [CrossRef] [PubMed]
- Zongqiang, H.; Jiapeng, C.; Yingpeng, Z.; Chuntao, Y.; Yiting, W.; Jiashun, Z.; Li, L. Exosomal MiR-452-5p Induce M2 Macrophage Polarization to Accelerate Hepatocellular Carcinoma Progression by Targeting TIMP3. J. Immunol. Res. 2022, 2022, 1032106. [Google Scholar] [CrossRef]
- Guan, L.; Hao, Q.; Shi, F.; Gao, B.; Wang, M.; Zhou, X.; Han, T.; Ren, W. Regulation of the Tumor Immune Microenvironment by Cancer-Derived Circular RNAs. Cell Death Dis. 2023, 14, 132. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-C.; Zhang, P.-F.; Huang, X.-Y.; Guo, X.-J.; Gao, C.; Zeng, H.-Y.; Zheng, Y.-M.; Wang, S.-W.; Cai, J.-B.; Sun, Q.-M.; et al. Amplification of Spatially Isolated Adenosine Pathway by Tumor-Macrophage Interaction Induces Anti-PD1 Resistance in Hepatocellular Carcinoma. J. Hematol. Oncol. 2021, 14, 200. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, R.; Li, J.; Tang, S.; Li, S.; Tong, Q.; Li, S. Downregulation of Hsa_circ_0074854 Suppresses the Migration and Invasion in Hepatocellular Carcinoma via Interacting with HuR and via Suppressing Exosomes-Mediated Macrophage M2 Polarization. Int. J. Nanomed. 2021, 16, 2803–2818. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.; Lou, Y.; Fu, Q.; Chen, Q.; Wei, T.; Yang, J.; Tang, J.; Wang, J.; Chen, Y.; et al. Hypoxia-Inducible Factor-1α/Interleukin-1β Signaling Enhances Hepatoma Epithelial-Mesenchymal Transition through Macrophages in a Hypoxic-Inflammatory Microenvironment. Hepatology 2018, 67, 1872–1889. [Google Scholar] [CrossRef]
- Wan, S.; Zhao, E.; Kryczek, I.; Vatan, L.; Sadovskaya, A.; Ludema, G.; Simeone, D.M.; Zou, W.; Welling, T.H. Tumor-Associated Macrophages Produce Interleukin 6 and Signal via STAT3 to Promote Expansion of Human Hepatocellular Carcinoma Stem Cells. Gastroenterology 2014, 147, 1393–1404. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhou, Y.; Bu, H.; Lv, T.; Shi, Y.; Yang, J. Deletion of Interleukin-6 in Monocytes/Macrophages Suppresses the Initiation of Hepatocellular Carcinoma in Mice. J. Exp. Clin. Cancer Res. 2016, 35, 131. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, G.-Z.; Wang, Y.; Huang, H.-Z.; Li, W.-T.; Qu, X.-D. Hypoxia-Induced HMGB1 Expression of HCC Promotes Tumor Invasiveness and Metastasis via Regulating Macrophage-Derived IL-6. Exp. Cell Res. 2018, 367, 81–88. [Google Scholar] [CrossRef]
- Fu, X.-T.; Dai, Z.; Song, K.; Zhang, Z.-J.; Zhou, Z.-J.; Zhou, S.-L.; Zhao, Y.-M.; Xiao, Y.-S.; Sun, Q.-M.; Ding, Z.-B.; et al. Macrophage-Secreted IL-8 Induces Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma Cells by Activating the JAK2/STAT3/Snail Pathway. Int. J. Oncol. 2015, 46, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wen, H.; Zhou, C.; Su, Q.; Lin, Y.; Xie, Y.; Huang, Y.; Qiu, Q.; Lin, J.; Huang, X.; et al. TNF-α Derived from M2 Tumor-Associated Macrophages Promotes Epithelial-Mesenchymal Transition and Cancer Stemness through the Wnt/β-Catenin Pathway in SMMC-7721 Hepatocellular Carcinoma Cells. Exp. Cell Res. 2019, 378, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Li, X.; Chen, S.; Zeng, Q.; Zhao, Y.; Luo, F. Tumor-Associated Macrophage or Chemokine Ligand CCL17 Positively Regulates the Tumorigenesis of Hepatocellular Carcinoma. Med. Oncol. 2016, 33, 17. [Google Scholar] [CrossRef]
- Fan, Q.-M.; Jing, Y.-Y.; Yu, G.-F.; Kou, X.-R.; Ye, F.; Gao, L.; Li, R.; Zhao, Q.-D.; Yang, Y.; Lu, Z.-H.; et al. Tumor-Associated Macrophages Promote Cancer Stem Cell-like Properties via Transforming Growth Factor-Beta1-Induced Epithelial-Mesenchymal Transition in Hepatocellular Carcinoma. Cancer Lett. 2014, 352, 160–168. [Google Scholar] [CrossRef]
- Wei, R.; Zhu, W.-W.; Yu, G.-Y.; Wang, X.; Gao, C.; Zhou, X.; Lin, Z.-F.; Shao, W.-Q.; Wang, S.-H.; Lu, M.; et al. S100 Calcium-Binding Protein A9 from Tumor-Associated Macrophage Enhances Cancer Stem Cell-like Properties of Hepatocellular Carcinoma. Int. J. Cancer 2021, 148, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Davuluri, G.V.N.; Chen, C.-C.; Chiu, Y.-C.; Tsai, H.-W.; Chiu, H.-C.; Chen, Y.-L.; Tsai, P.-J.; Kuo, W.-T.; Tsao, N.; Lin, Y.-S.; et al. Autophagy Drives Galectin-1 Secretion From Tumor-Associated Macrophages Facilitating Hepatocellular Carcinoma Progression. Front. Cell Dev. Biol. 2021, 9, 741820. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, J.; Xu, Y.; Wang, J.; Zhao, H.; Lei, J.; Zhou, Y.; Chen, Y.; Wu, L.; Zhou, M.; et al. OIT3 Mediates Macrophage Polarization and Facilitates Hepatocellular Carcinoma Progression. Cancer Immunol. Immunother. 2022, 71, 2677–2689. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Yang, S.; Yan, G.; Lei, J.; Liu, X.; Zhang, N.; Zhang, J.; Deng, H.; Wu, L.; Li, Y. Increased OIT3 in Macrophages Promotes PD-L1 Expression and Hepatocellular Carcinogenesis via NF-ΚB Signaling. Exp. Cell Res. 2023, 428, 113651. [Google Scholar] [CrossRef]
- Ning, J.; Ye, Y.; Bu, D.; Zhao, G.; Song, T.; Liu, P.; Yu, W.; Wang, H.; Li, H.; Ren, X.; et al. Imbalance of TGF-Β1/BMP-7 Pathways Induced by M2-Polarized Macrophages Promotes Hepatocellular Carcinoma Aggressiveness. Mol. Ther. 2021, 29, 2067–2087. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xin, X.; Li, X.; Geng, J.; Sun, Y. Exosomes Secreted by M2 Macrophages Promote Cancer Stemness of Hepatocellular Carcinoma via the MiR-27a-3p/TXNIP Pathways. Int. Immunopharmacol. 2021, 101, 107585. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Ouyang, X.; Sun, Y.; Xiao, Y.; You, B.; Gao, Y.; Yeh, S.; Li, Y.; Chang, C. The MiR-92a-2-5p in Exosomes from Macrophages Increases Liver Cancer Cells Invasion via Altering the AR/PHLPP/p-AKT/β-Catenin Signaling. Cell Death Differ. 2020, 27, 3258–3272. [Google Scholar] [CrossRef]
- Tian, B.; Zhou, L.; Wang, J.; Yang, P. MiR-660-5p-Loaded M2 Macrophages-Derived Exosomes Augment Hepatocellular Carcinoma Development through Regulating KLF3. Int. Immunopharmacol. 2021, 101, 108157. [Google Scholar] [CrossRef]
- Xu, M.; Zhou, C.; Weng, J.; Chen, Z.; Zhou, Q.; Gao, J.; Shi, G.; Ke, A.; Ren, N.; Sun, H.; et al. Tumor Associated Macrophages-Derived Exosomes Facilitate Hepatocellular Carcinoma Malignance by Transferring LncMMPA to Tumor Cells and Activating Glycolysis Pathway. J. Exp. Clin. Cancer Res. 2022, 41, 253. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yi, X.; Xiao, X.; Zheng, Q.; Ma, L.; Li, B. Exosomal MiR-628-5p from M1 Polarized Macrophages Hinders M6A Modification of CircFUT8 to Suppress Hepatocellular Carcinoma Progression. Cell. Mol. Biol. Lett. 2022, 27, 106. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yao, W.; Yuan, Y.; Chen, P.; Li, B.; Li, J.; Chu, R.; Song, H.; Xie, D.; Jiang, X.; et al. Targeting of Tumour-Infiltrating Macrophages via CCL2/CCR2 Signalling as a Therapeutic Strategy against Hepatocellular Carcinoma. Gut 2017, 66, 157–167. [Google Scholar] [CrossRef]
- Yao, W.; Ba, Q.; Li, X.; Li, H.; Zhang, S.; Yuan, Y.; Wang, F.; Duan, X.; Li, J.; Zhang, W.; et al. A Natural CCR2 Antagonist Relieves Tumor-Associated Macrophage-Mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer. EBioMedicine 2017, 22, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Stanley, E.R.; Chitu, V. CSF-1 Receptor Signaling in Myeloid Cells. Cold Spring Harb. Perspect. Biol. 2014, 6, a021857. [Google Scholar] [CrossRef]
- Ries, C.H.; Cannarile, M.A.; Hoves, S.; Benz, J.; Wartha, K.; Runza, V.; Rey-Giraud, F.; Pradel, L.P.; Feuerhake, F.; Klaman, I.; et al. Targeting Tumor-Associated Macrophages with Anti-CSF-1R Antibody Reveals a Strategy for Cancer Therapy. Cancer Cell 2014, 25, 846–859. [Google Scholar] [CrossRef]
- Kim, S.-M.; Kim, S.Y.; Park, C.S.; Chang, H.-S.; Park, K.C. Impact of Age-Related Genetic Differences on the Therapeutic Outcome of Papillary Thyroid Cancer. Cancers 2020, 12, 448. [Google Scholar] [CrossRef]
- Kato, Y.; Tabata, K.; Kimura, T.; Yachie-Kinoshita, A.; Ozawa, Y.; Yamada, K.; Ito, J.; Tachino, S.; Hori, Y.; Matsuki, M.; et al. Lenvatinib plus Anti-PD-1 Antibody Combination Treatment Activates CD8+ T Cells through Reduction of Tumor-Associated Macrophage and Activation of the Interferon Pathway. PLoS ONE 2019, 14, e0212513. [Google Scholar] [CrossRef]
- Kowal, J.; Kornete, M.; Joyce, J.A. Re-Education of Macrophages as a Therapeutic Strategy in Cancer. Immunotherapy 2019, 11, 677–689. [Google Scholar] [CrossRef]
- Kaneda, M.M.; Messer, K.S.; Ralainirina, N.; Li, H.; Leem, C.J.; Gorjestani, S.; Woo, G.; Nguyen, A.V.; Figueiredo, C.C.; Foubert, P.; et al. PI3Kγ Is a Molecular Switch That Controls Immune Suppression. Nature 2016, 539, 437–442. [Google Scholar] [CrossRef]
- Chen, Y.; Ramjiawan, R.R.; Reiberger, T.; Ng, M.R.; Hato, T.; Huang, Y.; Ochiai, H.; Kitahara, S.; Unan, E.C.; Reddy, T.P.; et al. CXCR4 Inhibition in Tumor Microenvironment Facilitates Anti-Programmed Death Receptor-1 Immunotherapy in Sorafenib-Treated Hepatocellular Carcinoma in Mice. Hepatology 2015, 61, 1591–1602. [Google Scholar] [CrossRef]
- Wang, H.-C.; Haung, L.-Y.; Wang, C.-J.; Chao, Y.-J.; Hou, Y.-C.; Yen, C.-J.; Shan, Y.-S. Tumor-Associated Macrophages Promote Resistance of Hepatocellular Carcinoma Cells against Sorafenib by Activating CXCR2 Signaling. J. Biomed. Sci. 2022, 29, 99. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhao, L. Sorafenib-Loaded Hydroxyethyl Starch-TG100-115 Micelles for the Treatment of Liver Cancer Based on Synergistic Treatment. Drug Deliv. 2019, 26, 756–764. [Google Scholar] [CrossRef]
- Lourenço, A.R.; Coffer, P.J. A Tumor Suppressor Role for C/EBPα in Solid Tumors: More than Fat and Blood. Oncogene 2017, 36, 5221–5230. [Google Scholar] [CrossRef]
- Hashimoto, A.; Sarker, D.; Reebye, V.; Jarvis, S.; Sodergren, M.H.; Kossenkov, A.; Sanseviero, E.; Raulf, N.; Vasara, J.; Andrikakou, P.; et al. Upregulation of C/EBPα Inhibits Suppressive Activity of Myeloid Cells and Potentiates Antitumor Response in Mice and Patients with Cancer. Clin. Cancer Res. 2021, 27, 5961–5978. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Liu, H.; Zhao, J.; Zhang, J.; Huang, T.; Sun, G.; Zhao, S.; Zhang, Z.; Cao, H.; Rong, D.; et al. Macrophage GSK3β-Deficiency Inhibits the Progression of Hepatocellular Carcinoma and Enhances the Sensitivity of Anti-PD1 Immunotherapy. J. Immunother. Cancer 2022, 10, e005655. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Zheng, L.; Zhao, H.; Yan, G.; Zhang, Q.; Zhou, Y.; Lei, J.; Zhang, J.; Wang, J.; et al. RIPK3 Orchestrates Fatty Acid Metabolism in Tumor-Associated Macrophages and Hepatocarcinogenesis. Cancer Immunol. Res. 2020, 8, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Rodell, C.B.; Arlauckas, S.P.; Cuccarese, M.F.; Garris, C.S.; Li, R.; Ahmed, M.S.; Kohler, R.H.; Pittet, M.J.; Weissleder, R. TLR7/8-Agonist-Loaded Nanoparticles Promote the Polarization of Tumour-Associated Macrophages to Enhance Cancer Immunotherapy. Nat. Biomed. Eng. 2018, 2, 578–588. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Z.; Yong, T.; Li, S.; Bie, N.; Li, J.; Li, X.; Liu, H.; Xu, H.; Yan, Y.; et al. Cell Microparticles Loaded with Tumor Antigen and Resiquimod Reprogram Tumor-Associated Macrophages and Promote Stem-like CD8+ T Cells to Boost Anti-PD-1 Therapy. Nat. Commun. 2023, 14, 5653. [Google Scholar] [CrossRef]
- Yoo, C.; Verdaguer, H.; Lin, C.-C.; Qvortrup, C.; Yau, T.; Oh, D.-Y.; Lichtenegger, F.; Franjkovic, I.; Kratochwil, N.; Bessa, J.; et al. Abstract CT096: Phase 1 Study of RO7119929 (TLR7 Agonist Prodrug) in Patients (Pts) with Advanced Primary or Metastatic Liver Cancers. Cancer Res. 2023, 83, CT096. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, D.-X.; Yu, X.-J.; Sun, H.-W.; Xu, Y.-T.; Zhang, Y.-J.; Xu, J. Macrophages Induce CD47 Upregulation via IL-6 and Correlate with Poor Survival in Hepatocellular Carcinoma Patients. Oncoimmunology 2019, 8, e1652540. [Google Scholar] [CrossRef]
- Xiao, Z.; Chung, H.; Banan, B.; Manning, P.T.; Ott, K.C.; Lin, S.; Capoccia, B.J.; Subramanian, V.; Hiebsch, R.R.; Upadhya, G.A.; et al. Antibody Mediated Therapy Targeting CD47 Inhibits Tumor Progression of Hepatocellular Carcinoma. Cancer Lett. 2015, 360, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.; Lau, E.Y.T.; So, F.T.Y.; Lu, P.; Chan, V.S.F.; Cheung, V.C.H.; Ching, R.H.H.; Cheng, B.Y.L.; Ma, M.K.F.; Ng, I.O.L.; et al. Anti-CD47 Antibody Suppresses Tumour Growth and Augments the Effect of Chemotherapy Treatment in Hepatocellular Carcinoma. Liver Int. 2016, 36, 737–745. [Google Scholar] [CrossRef]
- Klichinsky, M.; Ruella, M.; Shestova, O.; Lu, X.M.; Best, A.; Zeeman, M.; Schmierer, M.; Gabrusiewicz, K.; Anderson, N.R.; Petty, N.E.; et al. Human Chimeric Antigen Receptor Macrophages for Cancer Immunotherapy. Nat. Biotechnol. 2020, 38, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, Y.; Zhao, K.; Jing, W.; Gao, L.; Dong, X.; Wang, Y.; Han, M.; Shi, C.; Tang, C.; et al. Dual MRNA Co-Delivery for in Situ Generation of Phagocytosis-Enhanced CAR Macrophages Augments Hepatocellular Carcinoma Immunotherapy. J. Control. Release 2023, 360, 718–733. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.P.; Du, J.; Lagoudas, G.; Jiao, Y.; Sawyer, A.; Drummond, D.C.; Lauffenburger, D.A.; Raue, A. Analysis of Single-Cell RNA-Seq Identifies Cell-Cell Communication Associated with Tumor Characteristics. Cell Rep. 2018, 25, 1458–1468.e4. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agirre-Lizaso, A.; Huici-Izagirre, M.; Urretabizkaia-Garmendia, J.; Rodrigues, P.M.; Banales, J.M.; Perugorria, M.J. Targeting the Heterogeneous Tumour-Associated Macrophages in Hepatocellular Carcinoma. Cancers 2023, 15, 4977. https://doi.org/10.3390/cancers15204977
Agirre-Lizaso A, Huici-Izagirre M, Urretabizkaia-Garmendia J, Rodrigues PM, Banales JM, Perugorria MJ. Targeting the Heterogeneous Tumour-Associated Macrophages in Hepatocellular Carcinoma. Cancers. 2023; 15(20):4977. https://doi.org/10.3390/cancers15204977
Chicago/Turabian StyleAgirre-Lizaso, Aloña, Maider Huici-Izagirre, Josu Urretabizkaia-Garmendia, Pedro M. Rodrigues, Jesus M. Banales, and Maria J. Perugorria. 2023. "Targeting the Heterogeneous Tumour-Associated Macrophages in Hepatocellular Carcinoma" Cancers 15, no. 20: 4977. https://doi.org/10.3390/cancers15204977
APA StyleAgirre-Lizaso, A., Huici-Izagirre, M., Urretabizkaia-Garmendia, J., Rodrigues, P. M., Banales, J. M., & Perugorria, M. J. (2023). Targeting the Heterogeneous Tumour-Associated Macrophages in Hepatocellular Carcinoma. Cancers, 15(20), 4977. https://doi.org/10.3390/cancers15204977