Radiomics Analysis in Characterization of Salivary Gland Tumors on MRI: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Strategy
2.2. Literature Selection Criteria
- Original articles published in English.
- Participants: studies involving patients with SGTs who underwent pre-treatment head and neck MRI scans, including at least T1-weighted (T1W), T2-weighted (T2W), contrast-enhanced T1W (CE-T1W), CE-T2W, or diffusion-weighted imaging (DWI).
- Comparison: studies reporting the performance of radiomics analysis in characterizing SGTs on MRI.
- Outcomes: the primary outcome was the performance of radiomics analysis in characterizing benign and malignant SGTs on MRI; the second outcome was the performance of radiomics analysis in characterizing PA and WT on MRI.
- Articles in the form of reviews, guidelines, conference proceedings, or case reports/series.
- Studies that did not report the area under the curve (AUC) of the radiomics models in characterizing SGTs.
- Studies with patient populations overlapped with previous studies conducted in the same investigated institution for assessing the same outcomes. The exclusion criteria were based on the publication time, with later studies being excluded.
2.3. Data Extraction
- Study characteristics: first author, journal name, year of publication, city, patient recruitment period, and study design (prospective or retrospective).
- Patient characteristics: number of patients in the training, testing, and external datasets, methods for diagnosis of the nature of salivary gland tumors.
- MRI characteristics: MRI sequences used for analysis.
- Radiomics analysis procedure: segmentation method, number of features extracted, feature categories, methods for feature selection, number and categories of the selected features, names of the selected features, classifiers used for model build-up, and final model.
- Outcomes: model performance in training, testing, and external datasets.
2.4. Assessment of Study Quality
2.5. Statistical Analysis
3. Results
3.1. Literature Selection
3.2. Characteristics of the Eligible Studies
3.3. Characteristics of the Radiomics Analysis Procedures in the Eligible Studies
3.4. Performances of Radiomics Analysis in Characterizing SGTs
3.4.1. Performances of Radiomics Analysis in Characterizing Benign and Malignant SGTs
Shape (n = 5) | Exponential (n = 2) | Logarithm (n = 2) |
---|---|---|
DWI_Original_shape sphericity, DWI_SurfaceArea, DWI_Compactness2, DWI_VoxelValueSum, DWI_Maximum3DDiameter | FS_T2WI_exponential_glszm_SmallAreaEmphasis, FS-T2WI_exponential_firstorder_90Percentile | T1WI_logarithm_glszm_SmallAreaEmphasis, T1WI_logarithm_ngtdm_Complexity |
First Order (n = 11) | Texture (n = 13) | Filter (n = 28) |
T2WI_skewness value, T2WI_gray level mean, 1% percentile, T1WI_Original_first-order_10 Percentile, 95th percentile of Ktrans, Maximum, histogram variance, histogram skewness, 95th percentile of WIR, histogram standard deviation, DWI_histogram entropy | DWI_Gradient glcm_cluster tendency, DWI_Original glszm_small-area low-gray level emphasis, T2WI_autocorrelation value, DWI_SizeZoneVariability, DWI_LongRun-HighGreyLevelEmphasis angle45 offset7, DWI_RunLengthNonuniformity angle0 offset4, DWI_LongRunHighGreyLevelEmphasis angle90 offset1, CE-T1WI_Original_glszm_HighGrayLevelZoneEmphasis, S(0,1) angular second moment, S(5,5) Entrop, S(1,1,0) Entropy, FS-T2WI_ Original_glcm_Imc2, T2WI_GLRLM features | DWI_Wavelet-LHL_first-order mean, DWI_Wavelet-LHH_gldm large dependence low-gray level emphasis, DWI_Wavelet-HHL_first-order mean, DWI_Wavelet-HHL_glszm small-area low-gray level emphasis, DWI_Wavelet-LLL_glszm small-area low-gray level emphasis, T2WI_Wavelet-HLH_glrlm_RunEntropy, CE-T1WI_Wavelet-LHL_firstorder_Maximum, T1WI_Wavelet-HLH_glrlm_GrayLevelNonUniformityNormalized, CE-T1WI_Wavelet-LLL_glcm_JointAverage, T1WI_Wavelet-LLL_firstorder_Kurtosis, WavEnHH (s-4), T1WI_Wavelet HLL_glcm_Idn, T1WI_Wavelet LHL_gldm_Dependence entropy, T1WI_Wavelet LHH_gldm_Dependence variance, T1WI_Wavelet LHH_first-order_Energy, T1WI_Wavelet LHH_first-order_Total energy, T1WI_Wavelet HLH_gldm_Small dependence low gray level emphasis, T1WI_Wavelet HLH_glcm_Correlation, T1WI_Wavelet HHL_gldm_Small dependence low gray level emphasis, T1WI_Wavelet HHL_glcm_Correlation, T1WI_Wavelet LLL_first-order_Minimum, FS-T2WI_Wavelet LHL_first-order_Mean, FS-T2WI_Wavelet LHL_ngtdm_Busyness, FS-T2WI_Wavelet-HLH_gldm_Dependence entropy, T2WI_wavelet_HLH_glcm_JointEnergy, FS-T2WI_Wavelet HLH_glszm_Gray level nonuniformity normalized, FS-T2WI_Wavelet LLL_first-order_Kurtosis, T2WI_wavelet_LHL_gldm_LargeDependenceEmphasis, |
Number of Features (Percentage) | |||
---|---|---|---|
MRI sequence | BT vs. MT | T1WI | 15 (24.59%) |
T2WI | 7 (11.48%) | ||
CE-T1WI | 3 (4.92%) | ||
FS-T2WI | 8 (13.11%) | ||
DWI | 17 (27.87%) | ||
Uncategorized | 11 (15.49%) | ||
PA vs. WT | T1WI | 1 (2.78%) | |
T2WI | 11 (30.56%) | ||
FS-T2WI | 11 (30.56%) | ||
DWI | 13 (36.11%) | ||
Number of studies (Percentage) | |||
Feature category | BT vs. MT | Texture features | 7 (77.78%) |
Filter-based features | 5 (55.56%) | ||
First-order features | 4 (44.44%) | ||
Shape features | 2 (22.22%) | ||
Logarithm-based features | 1 (11.11%) | ||
Exponential-based features | 1 (11.11%) | ||
PA vs. WT | First-order features | 4 (100%) | |
Filter-based features | 3 (75%) | ||
Texture features | 2 (50%) | ||
Shape features | 1 (25%) |
3.4.2. Performances of Radiomics Analysis in Characterizing PA and WT
3.5. Quality Assessment
3.5.1. QUADAS-2
3.5.2. RQS
4. Discussion
4.1. MRI Sequences Selection
4.2. Image Preprocessing and Feature Extraction
4.3. Feature Selection and Model Build-Up
4.4. Suggestions
- Focus on non-contrast-enhanced MRIs.
- Implement image preprocessing.
- Limit the number of features extracted and consider the feature categories.
- Evaluate inter-observer agreement for the extracted features and select those with high repeatability for further analysis.
- Use multiple feature selection methods.
- Ensure feature stability by different approaches.
- Build models using different approaches and identify the best model.
- Validate models using at least cross-validation dataset with/without internal or external datasets.
- Report the final models for future validations.
- Open datasets (not necessarily the original images) for future validations.
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Meyer, M.T.; Watermann, C.; Dreyer, T.; Ergün, S.; Karnati, S. 2021 update on diagnostic markers and translocation in salivary gland tumors. Int. J. Mol. Sci. 2021, 22, 6771. [Google Scholar] [CrossRef] [PubMed]
- Razek, A.A.K.A.; Mukherji, S.K. State-of-the-art imaging of salivary gland tumors. Neuroimaging Clin. 2018, 28, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Lobo, R.; Hawk, J.; Srinivasan, A. A review of salivary gland malignancies: Common histologic types, anatomic considerations, and imaging strategies. Neuroimaging Clin. 2018, 28, 171–182. [Google Scholar] [CrossRef]
- El-Naggar, A.K.; Chan, J.K.; Grandis, J.R.; Takata, T.; Slootweg, P. WHO Classification of Head and Neck Tumours. WHO/IARC Classification of Tumours; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Lewis, A.G.; Tong, T.; Maghami, E. Diagnosis and management of malignant salivary gland tumors of the parotid gland. Otolaryngol. Clin. N. Am. 2016, 49, 343–380. [Google Scholar] [CrossRef] [PubMed]
- Zbären, P.; Schär, C.; Hotz, M.A.; Loosli, H. Value of fine-needle aspiration cytology of parotid gland masses. Laryngoscope 2001, 111, 1989–1992. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, J.K.; Ajan, A.; Abtahi, J. The accuracy of fine-needle aspiration cytology for diagnosis of parotid gland masses: A clinicopathological study of 114 patients. J. Appl. Oral Sci. 2016, 24, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Taniuchi, M.; Terada, T.; Kawata, R. Fine-Needle Aspiration Cytology for Parotid Tumors. Life 2022, 12, 1897. [Google Scholar] [CrossRef]
- Takumi, K.; Nagano, H.; Kikuno, H.; Kumagae, Y.; Fukukura, Y.; Yoshiura, T. Differentiating malignant from benign salivary gland lesions: A multiparametric non-contrast MR imaging approach. Sci. Rep. 2021, 11, 2780. [Google Scholar] [CrossRef]
- Eravcı, F.C.; Cılız, D.S.; Özcan, K.M.; Çolak, M.; Çavuşoğlu, M.; Karakurt, S.E.; Karakuş, M.F. Conventional and diffusion-weighted MR imaging findings of parotid gland tumors. Turk. Arch. Otorhinolaryngol. 2020, 58, 174. [Google Scholar] [CrossRef]
- Paris, J.; Facon, F.; Pascal, T.; Chrestian, M.; Moulin, G.; Zanaret, M. Preoperative diagnostic values of fine-needle cytology and MRI in parotid gland tumors. Eur. Arch. Oto-Rhino-Laryngol. Head Neck 2005, 262, 27–31. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.; Deist, T.M.; Peerlings, J.; De Jong, E.E.; Van Timmeren, J.; Sanduleanu, S.; Larue, R.T.; Even, A.J.; Jochems, A. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Zhang, Z.; Zhu, J.; Liu, L.; Li, Y.; Huang, H.; Zhang, Y.; Cheng, J. Apparent diffusion coefficient map–based radiomics features for differential diagnosis of pleomorphic adenomas and warthin tumors from malignant tumors. Front. Oncol. 2022, 12, 830496. [Google Scholar] [CrossRef] [PubMed]
- Gabelloni, M.; Faggioni, L.; Attanasio, S.; Vani, V.; Goddi, A.; Colantonio, S.; Germanese, D.; Caudai, C.; Bruschini, L.; Scarano, M. Can magnetic resonance radiomics analysis discriminate parotid gland tumors? A pilot study. Diagnostics 2020, 10, 900. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Chen, J.; Xu, Q.; Zhao, W.; Wang, X.; Yuan, M.; Liu, Z.; Wu, Z.; Dong, C. Development and validation of an MRI-based radiomics nomogram for distinguishing Warthin’s tumour from pleomorphic adenomas of the parotid gland. Dentomaxillofacial Radiol. 2021, 50, 20210023. [Google Scholar] [CrossRef] [PubMed]
- Vernuccio, F.; Arnone, F.; Cannella, R.; Verro, B.; Comelli, A.; Agnello, F.; Stefano, A.; Gargano, R.; Rodolico, V.; Salvaggio, G. Diagnostic performance of qualitative and radiomics approach to parotid gland tumors: Which is the added benefit of texture analysis? Br. J. Radiol. 2021, 94, 20210340. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.; Mao, N.; Liu, W.; Cui, J.; Xue, X.; Cheng, J.; Zheng, N.; Wang, B. Epithelial salivary gland tumors: Utility of radiomics analysis based on diffusion-weighted imaging for differentiation of benign from malignant tumors. J. X-ray Sci. Technol. 2020, 28, 799–808. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Mao, Y.; Lu, S.; Tan, L.; Xiao, J.; Tan, P.; Zhang, H.; Li, G.; Yan, H.; Tan, J. Machine learning–based radiomics for histological classification of parotid tumors using morphological MRI: A comparative study. Eur. Radiol. 2022, 32, 8099–8110. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, J.; Zhao, J.; Yu, L.; Lu, X.; Zhu, Z.; Guo, C.; Zhang, T. Magnetic resonance image biomarkers improve differentiation of benign and malignant parotid tumors through diagnostic model analysis. Oral Radiol. 2021, 37, 658–668. [Google Scholar] [CrossRef]
- Zheng, Y.-m.; Li, J.; Liu, S.; Cui, J.-f.; Zhan, J.-f.; Pang, J.; Zhou, R.-z.; Li, X.-l.; Dong, C. MRI-Based radiomics nomogram for differentiation of benign and malignant lesions of the parotid gland. Eur. Radiol. 2021, 31, 4042–4052. [Google Scholar] [CrossRef]
- Kazerooni, A.F.; Nabil, M.; Alviri, M.; Koopaei, S.; Salahshour, F.; Assili, S.; Rad, H.S.; Aghaghazvini, L. Radiomic Analysis of Multi-parametric MR Images (MRI) for Classification of Parotid Tumors. J. Biomed. Phys. Eng. 2022, 12, 599. [Google Scholar]
- Song, L.-l.; Chen, S.-j.; Chen, W.; Shi, Z.; Wang, X.-d.; Song, L.-n.; Chen, D.-s. Radiomic model for differentiating parotid pleomorphic adenoma from parotid adenolymphoma based on MRI images. BMC Med. Imaging 2021, 21, 54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Ai, Q.Y.H.; Wong, L.M.; Green, C.; Qamar, S.; So, T.Y.; Vlantis, A.C.; King, A.D. Radiomics for discriminating benign and malignant salivary gland tumors; which radiomic feature categories and MRI sequences should be used? Cancers 2022, 14, 5804. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zheng, J.; Lu, X.; Wang, Y.; Meng, F.; Zhao, J.; Guo, C.; Yu, L.; Zhu, Z.; Zhang, T. Radiomics-based comparison of MRI and CT for differentiating pleomorphic adenomas and Warthin tumors of the parotid gland: A retrospective study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 131, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Guo, J.; Feng, J.; Huang, Y.; Xu, H.; Zhou, Q. Value of T2-weighted-based radiomics model in distinguishing Warthin tumor from pleomorphic adenoma of the parotid. Eur. Radiol. 2023, 33, 4453–4463. [Google Scholar] [CrossRef] [PubMed]
- Faggioni, L.; Gabelloni, M.; De Vietro, F.; Frey, J.; Mendola, V.; Cavallero, D.; Borgheresi, R.; Tumminello, L.; Shortrede, J.; Morganti, R. Usefulness of MRI-based radiomic features for distinguishing Warthin tumor from pleomorphic adenoma: Performance assessment using T2-weighted and post-contrast T1-weighted MR images. Eur. J. Radiol. Open 2022, 9, 100429. [Google Scholar] [CrossRef] [PubMed]
- Committeri, U.; Barone, S.; Salzano, G.; Arena, A.; Borriello, G.; Giovacchini, F.; Fusco, R.; Vaira, L.A.; Scarpa, A.; Abbate, V. Support Tools in the Differential Diagnosis of Salivary Gland Tumors through Inflammatory Biomarkers and Radiomics Metrics: A Preliminary Study. Cancers 2023, 15, 1876. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Piludu, F.; Marzi, S.; Ravanelli, M.; Pellini, R.; Covello, R.; Terrenato, I.; Farina, D.; Campora, R.; Ferrazzoli, V.; Vidiri, A. MRI-based radiomics to differentiate between benign and malignant parotid tumors with external validation. Front. Oncol. 2021, 11, 656918. [Google Scholar] [CrossRef]
- Shao, S.; Zheng, N.; Mao, N.; Xue, X.; Cui, J.; Gao, P.; Wang, B. A triple-classification radiomics model for the differentiation of pleomorphic adenoma, Warthin tumour, and malignant salivary gland tumours on the basis of diffusion-weighted imaging. Clin. Radiol. 2021, 76, 472.e11–472.e18. [Google Scholar] [CrossRef]
- Qi, J.; Gao, A.; Ma, X.; Song, Y.; Bai, J.; Gao, E.; Zhao, K.; Wen, B.; Zhang, Y.; Cheng, J. Differentiation of benign from malignant parotid gland tumors using conventional MRI based on radiomics nomogram. Front. Oncol. 2022, 12, 937050. [Google Scholar] [CrossRef] [PubMed]
- Gökçe, E.; Beyhan, M. Advanced magnetic resonance imaging findings in salivary gland tumors. World J. Radiol. 2022, 14, 256. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.M.; Ai, Q.Y.H.; Mo, F.K.; Poon, D.M.; King, A.D. Convolutional neural network in nasopharyngeal carcinoma: How good is automatic delineation for primary tumor on a non-contrast-enhanced fat-suppressed T2-weighted MRI? Jpn. J. Radiol. 2021, 39, 571–579. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, G.; Song, X.; Wan, J.; Li, M.; Zhang, F.; Chen, Q.; Cao, X.; Li, S.; Wang, Y. Machine learning based on MRI DWI radiomics features for prognostic prediction in nasopharyngeal carcinoma. Cancers 2022, 14, 3201. [Google Scholar] [CrossRef]
- Depeursinge, A.; Foncubierta-Rodriguez, A.; Van De Ville, D.; Müller, H. Three-dimensional solid texture analysis in biomedical imaging: Review and opportunities. Med. Image Anal. 2014, 18, 176–196. [Google Scholar] [CrossRef] [PubMed]
- Collewet, G.; Strzelecki, M.; Mariette, F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn. Reson. Imaging 2004, 22, 81–91. [Google Scholar] [CrossRef]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Zhao, Z.; Zheng, H.; Liang, P.; Ying, M.T.; Ahuja, A.T.; Chen, D.Z. Boxnet: Deep learning based biomedical image segmentation using boxes only annotation. arXiv 2018, arXiv:1806.00593. [Google Scholar]
- Alhamzawi, R.; Ali, H.T.M. The Bayesian adaptive lasso regression. Math. Biosci. 2018, 303, 75–82. [Google Scholar] [CrossRef]
- Peng, H.; Long, F.; Ding, C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1226–1238. [Google Scholar] [CrossRef]
- Parmar, C.; Grossmann, P.; Rietveld, D.; Rietbergen, M.M.; Lambin, P.; Aerts, H.J. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front. Oncol. 2015, 5, 272. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Xia, W.; Xie, P.; Zhang, R.; Li, W.; Wang, M.; Xiong, F.; Liu, Y.; Fan, X.; Xie, Y. Preoperative radiomic signature based on multiparametric magnetic resonance imaging for noninvasive evaluation of biological characteristics in rectal cancer. Eur. Radiol. 2019, 29, 3200–3209. [Google Scholar] [CrossRef] [PubMed]
- Si, N.; Shi, K.; Li, N.; Dong, X.; Zhu, C.; Guo, Y.; Hu, J.; Cui, J.; Yang, F.; Zhang, T. Identification of patients with acute myocardial infarction based on coronary CT angiography: The value of pericoronary adipose tissue radiomics. Eur. Radiol. 2022, 32, 6868–6877. [Google Scholar] [CrossRef]
- Wong, L.M.; Ai, Q.Y.H.; Zhang, R.; Mo, F.; King, A.D. Radiomics for discrimination between early-stage nasopharyngeal carcinoma and benign hyperplasia with stable feature selection on MRI. Cancers 2022, 14, 3433. [Google Scholar] [CrossRef] [PubMed]
Study ID | Year | Number of Cases (n) | Number of External Cases (n) | Number of Features for Different Tasks (Selected/Extracted) | Final Models | BT vs. MT (AUC) | PA vs. WT (AUC) |
---|---|---|---|---|---|---|---|
1 [13] | 2022 | 130 | NA | BT vs. MT 8/944 PA vs. WT 13/944 | BT vs. MT: the LDA model based on 8 features on DWI, PA vs. WT: 13 features on DWI | 0.7637 | 0.925 |
2 [14] | 2020 | 75 | NA | BT vs. MT 5/29 PA vs. WT 4/29 | BT vs. MT: SVM with a radiomics signature with 5 features on T2WI PA vs. WT: SVM with 4 features on T2WI | 0.7365 | 0.8179 |
3 [15] | 2021 | 127 | 52 | PA vs. WT 12/1702 | The radiomics nomogram incorporating the age and radiomics signature with 12 radiomics features on T1WI and FS-T2WI | NA | 0.953 |
4 [16] | 2021 | 57 | NA | BT vs. MT PA vs. WT NA/289 | BT vs. MT: radiomics models based on texture analysis through manual segmentation on T1-T2WI; PA vs. WT: radiomics models based on texture analysis through manual segmentation on T2WI | 0.927 | 0.802 |
5 [17] | 2020 | 269 | NA | BT vs. MT 8/396 | Eight features with LR or SVM models on DWI | 0.893 | NA |
6 [18] | 2022 | 298 | NA | BT vs. MT 6/3396 | Six features with XGBoost on the combination of T2WI, T2WI, and CE-T1WI | 0.857 | NA |
7 [19] | 2021 | 109 | NA | BT vs. MT 5/1059 | Model with clinical data + 2D and 3D biomarkers (5 features) on T1-T2WI | 0.85 | NA |
8 [20] | 2021 | 115 | 35 | BT vs. MT 17/1702 | Radiomics nomogram incorporating the clinical factors and radiomics signature (17 features from T1WI and FS-T2WI) | 0.952 | NA |
9 [21] | 2022 | 31 | NA | BT vs. MT 8/77 | Radiomics analysis of the combination of T2WI, ADC-map, and DCE-MRI parametric maps with SVM or LDA with 8 features | 1 | NA |
10 [22] | 2021 | 252 | NA | PA vs. WT 7/429 T1WI 8/414 T2WI 8 T1-2WI | T1-2WI radiomics model using MLR with selected features | NA | 0.952 |
11 [23] | 2022 | 91 | NA | BT vs. MT 4/1015 | A combination of T1WI + logarithm and FS-T2WI + exponential features with LR classifier | 0.846 | NA |
12 [24] | 2021 | 334 | NA | PA vs. WT NA/30 | NA | NA | 0.911 |
13 [25] | 2022 | 117 | NA | PA vs. WT 8/971 | The radiomics–clinical model with 8 features on T2WI | NA | 0.962 |
14 [27] | 2023 | 117 | NA | BT vs. MT 2/851 | SVM with 2 radiomics features on T2WI and 4 inflammatory biomarkers | 0.79 | NA |
Salivary Gland | MT | BT |
---|---|---|
Parotid | 285 | 1690 |
Submandibular | 14 | 21 |
Sublingual | 8 | - |
Minor | 4 | 1 |
Uncategorized | 28 | 89 |
Characteristics | Number of Studies (Percentage) | ||
---|---|---|---|
MRI sequence | BT vs. MT(10) | T1WI or T2WI | 8 (80% for BT vs. MT) |
CE | 4 (40% for BT vs. MT) | ||
FS | 2 (20% for BT vs. MT) | ||
DCE | 1 (10% for BT vs. MT) | ||
DWI | 3 (30% for BT vs. MT) | ||
PA vs. WT(7) | T1WI or T2WI | 6 (85.71% for PA vs. WT) | |
CE | 1 (14.29% for PA vs. WT) | ||
FS | 1 (14.29% for PA vs. WT) | ||
DWI | 1 (14.29% for PA vs. WT) | ||
Segmentation | Manual segmentation | 12 (85.71%) | |
Semi or automatic segmentation | 3 (21.43%) | ||
Region/volume of interest | Two slices | 1 (7.14%) | |
Whole tumor | 10 (71.43%) | ||
Not reported | 3 (21.43%) | ||
Image preprocessing | Reported | 5 (35.71%) | |
Data augmentation | Reported | 1 (7.14%) | |
Inter-observer agreement for feature selection | Reported | 7 (50%) | |
Validation for feature selection | Reported | 11 (78.57%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, K.; Wong, L.M.; Zhang, R.; So, T.Y.; Shan, Z.; Hung, K.F.; Ai, Q.Y.H. Radiomics Analysis in Characterization of Salivary Gland Tumors on MRI: A Systematic Review. Cancers 2023, 15, 4918. https://doi.org/10.3390/cancers15204918
Mao K, Wong LM, Zhang R, So TY, Shan Z, Hung KF, Ai QYH. Radiomics Analysis in Characterization of Salivary Gland Tumors on MRI: A Systematic Review. Cancers. 2023; 15(20):4918. https://doi.org/10.3390/cancers15204918
Chicago/Turabian StyleMao, Kaijing, Lun M. Wong, Rongli Zhang, Tiffany Y. So, Zhiyi Shan, Kuo Feng Hung, and Qi Yong H. Ai. 2023. "Radiomics Analysis in Characterization of Salivary Gland Tumors on MRI: A Systematic Review" Cancers 15, no. 20: 4918. https://doi.org/10.3390/cancers15204918
APA StyleMao, K., Wong, L. M., Zhang, R., So, T. Y., Shan, Z., Hung, K. F., & Ai, Q. Y. H. (2023). Radiomics Analysis in Characterization of Salivary Gland Tumors on MRI: A Systematic Review. Cancers, 15(20), 4918. https://doi.org/10.3390/cancers15204918