Monoclonal Gammopathy of Thrombotic Significance
Abstract
:Simple Summary
Abstract
1. Introduction
2. Literature Review
2.1. Clinical Trial Data
2.2. Biomarker Studies (See Table 2 and Table 3)
2.2.1. Evidence of In Vitro Hypercoagulability in MGUS Patients
Study Population | Results | Thrombotic Events | Strengths | Limitations | |
---|---|---|---|---|---|
1 |
|
| 2 MGUS 1 AL 14 NDMM (on anthracycline-based Tx) |
| Limited patients’ number to establish a relationship between coagulation abnormalities and VTE |
2 |
|
| Not reported | Case control study |
|
3 |
|
| No symptomatic VTE |
|
|
4 |
|
| Not reported |
|
|
5 |
|
| Not reported |
| SMM patients were included in the MM group |
8 |
|
| Not reported |
| Small cohort |
MGUS vs. HCs | MM vs. HCs | MM vs. MGUS | |
---|---|---|---|
Hereditary thrombophilia | NS [27] | NS [27] | x |
vWf activity | Increased [27], NS [28] | Increased [27,28] | NS [27] |
vWf antigen | NS [27] | Increased [27,28] | NS [27] |
FVIII | Increased [27], NS [28] | Increased [27,28] | NS [27] |
Fibrinogen | Increased [28], NS [28] | Increased [27], NS [28] | NS [27] |
D-dimer | NS [28] | Increased [28], NS [27] | NS [27] Increased |
TEG | NS [28] | NS [28] | x |
TG | Increased [9] | Increased [9] | NS [9] |
PPL activity | Increased [9] | Increased [9] | NS [9] |
MV TF activity | NS [9] | Increased [9] | Increased [9] |
cf DNA | NS [9] | Increased [9] | NS [9] |
Platelet aggregation in PRP | NS [37] | NS [37] | Decreased (except in ADP) [37] |
Platelet aggregation in washed platelets | NS [38] | NS [38] | x |
P-selectin, CD63, Annexin V, PAC1 at resting | Increased [8] | NS [8] | x |
P-selectin expression upon activation | Decreased [8] | NS [8] | Decreased [37] |
Soluble GPVI levels | NS [38] | NS [8] | NS [37] |
Circulating levels of PAC-1 and P-selectin | NS [37] | NS [37] | x |
2.2.2. Platelet Reactivity in MGUS Patients
2.2.3. Hyperviscosity in MGUS Patients
2.2.4. The Role of Genetic Abnormalities in Thrombosis in MGUS Patients
2.2.5. The Role of the Microenvironment in MG-Related Thrombogenesis
2.3. Thrombogenic Properties of the M-Protein Predisposing to Arterial, Venous, or Microthrombosis
2.3.1. Cryoproteins
- i.
- Cryoglobulinemia
- ii.
- Cryofibrinogenemia
- iii.
- Cryo-crystaloglobulinemia
- iv.
- Cold agglutinin disease and cold agglutinin syndrome
2.3.2. Autoantibody
- i.
- Antiphospholipid (aPL) autoantibodies
2.3.3. Disorders of Coagulation Pathway Inhibitors
- ii.
- MG-induced thrombotic microangiopathy
- iii.
- Other rare entities
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fermand, J.P.; Bridoux, F.; Kyle, R.A.; Kastritis, E.; Weiss, B.M.; Cook, M.A.; Drayson, M.T.; Dispenzieri, A.; Leung, N.; International, K.; et al. How I treat monoclonal gammopathy of renal significance (MGRS). Blood 2013, 122, 3583–3590. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Durie, B.G.; Rajkumar, S.V.; Landgren, O.; Blade, J.; Merlini, G.; Kroger, N.; Einsele, H.; Vesole, D.H.; Dimopoulos, M.; et al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 2010, 24, 1121–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, T.J.; Rögnvaldsson, S.; Thorsteinsdottir, S.; Aspelund, T.; Reed, E.R.; Vidarsson, B.; Onundarson, P.T.; Agnarsson, B.A.; Sigurdardottir, M.; Thorsteinsdottir, I.; et al. Prevalence of MGUS Is High in the Istopmm Study but the Prevalence of IgA MGUS Does Not Increase with Age in the Way Other Immunoglobulin Subtypes Do. In Proceedings of the 64th ASH Annual Meeting and Exposition, New Orleans, LA, USA, 10–13 December 2022. [Google Scholar]
- Landgren, O.; Kyle, R.A.; Pfeiffer, R.M.; Katzmann, J.A.; Caporaso, N.E.; Hayes, R.B.; Dispenzieri, A.; Kumar, S.; Clark, R.J.; Baris, D.; et al. Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: A prospective study. Blood 2009, 113, 5412–5417. [Google Scholar] [CrossRef] [Green Version]
- De Stefano, V.; Za, T.; Rossi, E. Venous thromboembolism in multiple myeloma. Semin. Thromb. Hemost. 2014, 40, 338–347. [Google Scholar] [CrossRef]
- Kristinsson, S.Y.; Bjorkholm, M.; Schulman, S.; Landgren, O. Hypercoagulability in multiple myeloma and its precursor state, monoclonal gammopathy of undetermined significance. Semin. Hematol. 2011, 48, 46–54. [Google Scholar] [CrossRef]
- Lindqvist, E.K.; Lund, S.H.; Costello, R.; Burton, D.; Korde, N.S.; Mailankody, S.; Gudnason, V.; Eiriksdottir, G.; Launer, L.; Harris, T.B.; et al. No Risk of Arterial or Venous Thrombosis in Monoclonal Gammopathy of Undetermined Significance: Results from a Population-Based Study. Blood 2015, 126, 4252. [Google Scholar] [CrossRef]
- O’Sullivan, L.R.; Meade-Murphy, G.; Gilligan, O.M.; Mykytiv, V.; Young, P.W.; Cahill, M.R. Platelet hyperactivation in multiple myeloma is also evident in patients with premalignant monoclonal gammopathy of undetermined significance. Br. J. Haematol. 2021, 192, 322–332. [Google Scholar] [CrossRef]
- Nielsen, T.; Kristensen, S.R.; Gregersen, H.; Teodorescu, E.M.; Pedersen, S. Prothrombotic abnormalities in patients with multiple myeloma and monoclonal gammopathy of undetermined significance. Thromb. Res. 2021, 202, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.J.; Breen, K.A.; Hunt, B.J. Antiphospholipid Syndrome with Monoclonal Gammopathy-A Mechanism for Recurrent Thrombosis? Thromb. Haemost. 2021, 121, 1387–1390. [Google Scholar] [CrossRef]
- Dammacco, F.; Sansonno, D.; Piccoli, C.; Tucci, F.A.; Racanelli, V. The cryoglobulins: An overview. Eur J Clin Invest 2001, 31, 628–638. [Google Scholar] [CrossRef]
- Terpos, E.; Kleber, M.; Engelhardt, M.; Zweegman, S.; Gay, F.; Kastritis, E.; van de Donk, N.W.; Bruno, B.; Sezer, O.; Broijl, A.; et al. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica 2015, 100, 1254–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palumbo, A.; Rajkumar, S.V.; San Miguel, J.F.; Larocca, A.; Niesvizky, R.; Morgan, G.; Landgren, O.; Hajek, R.; Einsele, H.; Anderson, K.C.; et al. International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation. J. Clin. Oncol. 2014, 32, 587–600. [Google Scholar] [CrossRef]
- Eby, C.S. Bleeding and thrombosis risks in plasma cell dyscrasias. Hematology 2007, 2007, 158–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srkalovic, G.; Cameron, M.G.; Rybicki, L.; Deitcher, S.R.; Kattke-Marchant, K.; Hussein, M.A. Monoclonal gammopathy of undetermined significance and multiple myeloma are associated with an increased incidence of venothromboembolic disease. Cancer 2004, 101, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Sallah, S.; Husain, A.; Wan, J.; Vos, P.; Nguyen, N.P. The risk of venous thromboembolic disease in patients with monoclonal gammopathy of undetermined significance. Ann. Oncol. 2004, 15, 1490–1494. [Google Scholar] [CrossRef] [PubMed]
- Kristinsson, S.Y.; Fears, T.R.; Gridley, G.; Turesson, I.; Mellqvist, U.H.; Bjorkholm, M.; Landgren, O. Deep vein thrombosis after monoclonal gammopathy of undetermined significance and multiple myeloma. Blood 2008, 112, 3582–3586. [Google Scholar] [CrossRef] [Green Version]
- Kristinsson, S.Y.; Pfeiffer, R.M.; Bjorkholm, M.; Goldin, L.R.; Schulman, S.; Blimark, C.; Mellqvist, U.H.; Wahlin, A.; Turesson, I.; Landgren, O. Arterial and venous thrombosis in monoclonal gammopathy of undetermined significance and multiple myeloma: A population-based study. Blood 2010, 115, 4991–4998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, A.L.; Sarid, R. The relationship between monoclonal gammopathy of undetermined significance and venous thromboembolic disease. Thromb. Res. 2010, 125, 216–219. [Google Scholar] [CrossRef]
- Muslimani, A.A.; Spiro, T.P.; Chaudhry, A.A.; Taylor, H.C.; Jaiyesimi, I.; Daw, H.A. Venous thromboembolism in patients with monoclonal gammopathy of undetermined significance. Clin. Adv. Hematol. Oncol. 2009, 7, 827–832. [Google Scholar]
- Bida, J.P.; Kyle, R.A.; Therneau, T.M.; Melton, L.J., 3rd; Plevak, M.F.; Larson, D.R.; Dispenzieri, A.; Katzmann, J.A.; Rajkumar, S.V. Disease associations with monoclonal gammopathy of undetermined significance: A population-based study of 17,398 patients. Mayo Clin. Proc. 2009, 84, 685–693. [Google Scholar] [CrossRef]
- Gregersen, H.; Norgaard, M.; Severinsen, M.T.; Engebjerg, M.C.; Jensen, P.; Sorensen, H.T. Monoclonal gammopathy of undetermined significance and risk of venous thromboembolism. Eur. J. Haematol. 2011, 86, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Za, T.; De Stefano, V.; Rossi, E.; Petrucci, M.T.; Andriani, A.; Annino, L.; Cimino, G.; Caravita, T.; Pisani, F.; Ciminello, A.; et al. Arterial and venous thrombosis in patients with monoclonal gammopathy of undetermined significance: Incidence and risk factors in a cohort of 1491 patients. Br. J. Haematol. 2013, 160, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, M.D.; Heit, J.A.; Mohr, D.N.; Petterson, T.M.; O’Fallon, W.M.; Melton, L.J., 3rd. Trends in the incidence of deep vein thrombosis and pulmonary embolism: A 25-year population-based study. Arch. Intern. Med. 1998, 158, 585–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigurbergsdóttir, A.; Rögnvaldsson, S.; Thorsteinsdottir, S.; Sverrisdottir, I.S.; Sigurdardottir, G.A.; Vidarsson, B.; Onundarson, P.T.; Agnarsson, B.A.; Sigurdardottir, M.; Olafsson, I.; et al. Estimating Selection Bias in Previous Monoclonal Gammopathy of Undetermined Significance Research—The Importance of Screening: Results from the Population-Based Screening Study Iceland Screens, Treats or Prevents Multiple Myeloma (iStopMM). Blood 2021, 138, 1618. [Google Scholar] [CrossRef]
- El-Khoury, H.; Lee, D.J.; Alberge, J.B.; Redd, R.; Cea-Curry, C.J.; Perry, J.; Barr, H.; Murphy, C.; Sakrikar, D.; Barnidge, D.; et al. Prevalence of monoclonal gammopathies and clinical outcomes in a high-risk US population screened by mass spectrometry: A multicentre cohort study. Lancet Haematol. 2022, 9, e340–e349. [Google Scholar] [CrossRef]
- Auwerda, J.J.; Sonneveld, P.; de Maat, M.P.; Leebeek, F.W. Prothrombotic coagulation abnormalities in patients with paraprotein-producing B-cell disorders. Clin. Lymphoma Myeloma Leuk. 2007, 7, 462–466. [Google Scholar] [CrossRef]
- Crowley, M.P.; Quinn, S.; Coleman, E.; Eustace, J.A.; Gilligan, O.M.; O’Shea, S.I. Differing coagulation profiles of patients with monoclonal gammopathy of undetermined significance and multiple myeloma. J. Thromb. Thrombolysis 2015, 39, 245–249. [Google Scholar] [CrossRef]
- Ye, R.; Ye, C.; Huang, Y.; Liu, L.; Wang, S. Circulating tissue factor positive microparticles in patients with acute recurrent deep venous thrombosis. Thromb. Res. 2012, 130, 253–258. [Google Scholar] [CrossRef]
- Tug, S.; Helmig, S.; Deichmann, E.R.; Schmeier-Jurchott, A.; Wagner, E.; Zimmermann, T.; Radsak, M.; Giacca, M.; Simon, P. Exercise-induced increases in cell free DNA in human plasma originate predominantly from cells of the haematopoietic lineage. Exerc. Immunol. Rev. 2015, 21, 164–173. [Google Scholar]
- Zhu, Y.J.; Zhang, H.B.; Liu, Y.H.; Zhang, F.L.; Zhu, Y.Z.; Li, Y.; Bai, J.P.; Liu, L.R.; Qu, Y.C.; Qu, X.; et al. Quantitative cell-free circulating EGFR mutation concentration is correlated with tumor burden in advanced NSCLC patients. Lung Cancer 2017, 109, 124–127. [Google Scholar] [CrossRef]
- O’Connell, G.C.; Petrone, A.B.; Tennant, C.S.; Lucke-Wold, N.; Kabbani, Y.; Tarabishy, A.R.; Chantler, P.D.; Barr, T.L. Circulating extracellular DNA levels are acutely elevated in ischaemic stroke and associated with innate immune system activation. Brain Inj. 2017, 31, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, H.; Hoon, D.S.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer 2011, 11, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Lin, C.; Deng, H.; Strnad, J.; Bernabei, L.; Vogl, D.T.; Burke, J.J.; Nefedova, Y. A Novel Peptidylarginine Deiminase 4 (PAD4) Inhibitor BMS-P5 Blocks Formation of Neutrophil Extracellular Traps and Delays Progression of Multiple Myeloma. Mol. Cancer Ther. 2020, 19, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, L.; Alhaj Hussen, K.; Thouroude, S.; Mbemba, E.; Cost, H.; Garderet, L.; Elalamy, I.; Larsen, A.; Van Dreden, P.; Dimopoulos, M.A.; et al. Modelization of Blood-Borne Hypercoagulability in Myeloma: A Tissue-Factor-Bearing Microparticle-Driven Process. TH Open 2019, 3, e340–e347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auwerda, J.J.; Sonneveld, P.; de Maat, M.P.; Leebeek, F.W. Prothrombotic coagulation abnormalities in patients with newly diagnosed multiple myeloma. Haematologica 2007, 92, 279–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, K.; Cooke, N.; Dunne, E.; Murphy, P.; Quinn, J.; Kenny, D. Platelet hyporeactivity in active myeloma. Thromb. Res. 2014, 134, 747–749. [Google Scholar] [CrossRef]
- Gibbins, J.; Rana, R.; Khan, D.; Shapiro, S.; Grech, H.; Ramasamy, K. Multiple Myeloma Treatment Is Associated with Enhanced Platelet Reactivity. Blood 2018, 132, 3300. [Google Scholar] [CrossRef]
- Libourel, E.J.; Sonneveld, P.; van der Holt, B.; de Maat, M.P.; Leebeek, F.W. High incidence of arterial thrombosis in young patients treated for multiple myeloma: Results of a prospective cohort study. Blood 2010, 116, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Larocca, A.; Cavallo, F.; Bringhen, S.; Di Raimondo, F.; Falanga, A.; Evangelista, A.; Cavalli, M.; Stanevsky, A.; Corradini, P.; Pezzatti, S.; et al. Aspirin or enoxaparin thromboprophylaxis for patients with newly diagnosed multiple myeloma treated with lenalidomide. Blood 2012, 119, 933–939, quiz 1093. [Google Scholar] [CrossRef] [Green Version]
- Czestochowska, E.; Tyminski, W.; Gorski, J.; Umiastowski, J. Disturbances of platelet function in patients with multiple myeloma. Folia Haematol. 1987, 114, 845–851. [Google Scholar]
- Dmoszynska-Giannopoulou, A.; Kowalewski, J.; Sokolowska, B. Disorders of blood platelet homeostasis in patients with multiple myeloma before the treatment and during remission. Pol. Arch. Intern. Med. 1990, 84, 378–382. [Google Scholar]
- Riedl, J.; Kaider, A.; Marosi, C.; Prager, G.W.; Eichelberger, B.; Assinger, A.; Pabinger, I.; Panzer, S.; Ay, C. Decreased platelet reactivity in patients with cancer is associated with high risk of venous thromboembolism and poor prognosis. Thromb. Haemost. 2017, 117, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Penny, R.; Castaldi, P.A.; Whitsed, H.M. Inflammation and haemostasis in paraproteinaemias. Br. J. Haematol. 1971, 20, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Cohen, I.; Amir, J.; Ben-Shaul, Y.; Pick, A.; De Vries, A. Plasma cell myeloma associated with an unusual myeloma protein causing impairment of fibrin aggregation and platelet function in a patient with multiple malignancy. Am. J. Med. 1970, 48, 766–776. [Google Scholar] [CrossRef]
- Vigliano, E.M.; Horowitz, H.I. Bleeding syndrome in a patient with IgA myeloma: Interaction of protein and connective tissue. Blood 1967, 29, 823–836. [Google Scholar] [CrossRef] [Green Version]
- Caimi, G.; Lo Presti, R.; Carlisi, M. Reflections on the unexpected laboratory finding of hemorheological alterations observed in some haematological disorders. Microvasc. Res. 2021, 136, 104171. [Google Scholar] [CrossRef]
- Kwaan, H.C. Hyperviscosity in plasma cell dyscrasias. Clin. Hemorheol. Microcirc. 2013, 55, 75–83. [Google Scholar] [CrossRef]
- Caimi, G.; Hopps, E.; Carlisi, M.; Montana, M.; Galla, E.; Lo Presti, R.; Siragusa, S. Hemorheological parameters in Monoclonal Gammopathy of Undetermined Significance (MGUS). Clin. Hemorheol. Microcirc. 2018, 68, 51–59. [Google Scholar] [CrossRef]
- Meletis, J.; Terpos, E.; Samarkos, M.; Meletis, C.; Apostolidou, E.; Komninaka, V.; Korovesis, K.; Anargyrou, K.; Benopoulou, O.; Mavrogianni, D.; et al. Detection of CD55- and/or CD59-deficient red cell populations in patients with plasma cell dyscrasias. Int. J. Hematol. 2002, 75, 40–44. [Google Scholar] [CrossRef]
- Fukumoto, J.S.; Gotlib, J. A patient with paroxysmal nocturnal hemoglobinuria, T cell large granular lymphocyte clonal expansion, and monoclonal gammopathy of undetermined significance. Am. J. Hematol. 2006, 81, 870–874. [Google Scholar] [CrossRef]
- Chakraborty, R.; Rybicki, L.; Valent, J.; Garcia, A.V.M.; Faiman, B.M.; Khouri, J.; Rosko, N.; Samaras, C.J.; Kalaycio, M.; Anwer, F.; et al. Abnormal Metaphase Cytogenetics Adds to Currently Known Risk-Factors for Venous Thromboembolism in Multiple Myeloma: Derivation of the PRISM score. Blood 2020, 136, 29–30. [Google Scholar] [CrossRef]
- Chakraborty, R.; Rybicki, L.A.; Wei, W.; Valent, J.; Faiman, B.M.; Samaras, C.; Anwer, F.; Khorana, A.A. Abnormal Metaphase Cytogenetics Predicts Venous Thromboembolism in Myeloma: Derivation and Validation of the PRISM Score. Blood 2022, 140, 2443–2450. [Google Scholar] [CrossRef] [PubMed]
- Merz, M.; Hielscher, T.; Hoffmann, K.; Seckinger, A.; Hose, D.; Raab, M.S.; Hillengass, J.; Jauch, A.; Goldschmidt, H. Cytogenetic abnormalities in monoclonal gammopathy of undetermined significance. Leukemia 2018, 32, 2717–2719. [Google Scholar] [CrossRef]
- Cui, X.; Yang, K.; Myklebust, J.; Munthe, L.; Shjesvold, F.; Tjшnnfjord, B.; Stavik, B.; Sandset, P. Low expression of coagulation inhibitors in the immune microenvironment in precursor stages of multiple myeloma [abstract]. In Proceedings of the ISTH 2022, London, UK, 9–13 July 2022. [Google Scholar]
- Napodano, C.; Gulli, F.; Rapaccini, G.L.; Marino, M.; Basile, U. Cryoglobulins: Identification, classification, and novel biomarkers of mysterious proteins. Adv. Clin. Chem. 2021, 104, 299–340. [Google Scholar] [CrossRef]
- Sidana, S.; Rajkumar, S.V.; Dispenzieri, A.; Lacy, M.Q.; Gertz, M.A.; Buadi, F.K.; Hayman, S.R.; Dingli, D.; Kapoor, P.; Gonsalves, W.I.; et al. Clinical presentation and outcomes of patients with type 1 monoclonal cryoglobulinemia. Am. J. Hematol. 2017, 92, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Terrier, B.; Karras, A.; Kahn, J.E.; Le Guenno, G.; Marie, I.; Benarous, L.; Lacraz, A.; Diot, E.; Hermine, O.; de Saint-Martin, L.; et al. The spectrum of type I cryoglobulinemia vasculitis: New insights based on 64 cases. Medicine 2013, 92, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Harel, S.; Mohr, M.; Jahn, I.; Aucouturier, F.; Galicier, L.; Asli, B.; Malphettes, M.; Szalat, R.; Brouet, J.C.; Lipsker, D.; et al. Clinico-biological characteristics and treatment of type I monoclonal cryoglobulinaemia: A study of 64 cases. Br. J. Haematol. 2015, 168, 671–678. [Google Scholar] [CrossRef]
- Terrier, B.; Launay, D.; Kaplanski, G.; Hot, A.; Larroche, C.; Cathebras, P.; Combe, B.; de Jaureguiberry, J.P.; Meyer, O.; Schaeverbeke, T.; et al. Safety and efficacy of rituximab in nonviral cryoglobulinemia vasculitis: Data from the French Autoimmunity and Rituximab registry. Arthritis Care Res. 2010, 62, 1787–1795. [Google Scholar] [CrossRef]
- Terrier, B.; Cacoub, P. Cryoglobulinemia vasculitis: An update. Curr. Opin. Rheumatol. 2013, 25, 10–18. [Google Scholar] [CrossRef] [Green Version]
- De Vita, S.; Quartuccio, L.; Isola, M.; Mazzaro, C.; Scaini, P.; Lenzi, M.; Campanini, M.; Naclerio, C.; Tavoni, A.; Pietrogrande, M.; et al. A randomized controlled trial of rituximab for the treatment of severe cryoglobulinemic vasculitis. Arthritis Rheum. 2012, 64, 843–853. [Google Scholar] [CrossRef] [Green Version]
- Stathakis, N.E.; Karamanolis, D.; Koukoulis, G.; Tsianos, E. Characterization of cryofibrinogen isolated from patients plasma. Haemostasis 1981, 10, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Moiseev, S.; Luqmani, R.; Novikov, P.; Shevtsova, T. Cryofibrinogenaemia-a neglected disease. Rheumatology 2017, 56, 1445–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blain, H.; Cacoub, P.; Musset, L.; Costedoat-Chalumeau, N.; Silberstein, C.; Chosidow, O.; Godeau, P.; Frances, C.; Piette, J.C. Cryofibrinogenaemia: A study of 49 patients. Clin. Exp. Immunol. 2000, 120, 253–260. [Google Scholar] [CrossRef]
- Saadoun, D.; Elalamy, I.; Ghillani-Dalbin, P.; Sene, D.; Delluc, A.; Cacoub, P. Cryofibrinogenemia: New insights into clinical and pathogenic features. Am. J. Med. 2009, 122, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Amdo, T.D.; Welker, J.A. An approach to the diagnosis and treatment of cryofibrinogenemia. Am. J. Med. 2004, 116, 332–337. [Google Scholar] [CrossRef]
- Euler, H.H.; Zeuner, R.A.; Beress, R.; Gutschmidt, H.J.; Christophers, E.; Schroeder, J.O. Monoclonal cryo-antifibrinogenemia. Arthritis Rheum. 1996, 39, 1066–1069. [Google Scholar] [CrossRef]
- Dotten, D.A.; Pruzanski, W.; Olin, J.; Brown, T.C. Cryocrystalglobulinemia. Can. Med. Assoc. J. 1976, 114, 909–912. [Google Scholar]
- Gupta, V.; El Ters, M.; Kashani, K.; Leung, N.; Nasr, S.H. Crystalglobulin-induced nephropathy. J. Am. Soc. Nephrol. 2015, 26, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Leung, N.; Buadi, F.K.; Song, K.W.; Magil, A.B.; Cornell, L.D. A case of bilateral renal arterial thrombosis associated with cryocrystalglobulinaemia. NDT Plus 2010, 3, 74–77. [Google Scholar] [CrossRef]
- Leung, N.; Bridoux, F.; Batuman, V.; Chaidos, A.; Cockwell, P.; D’Agati, V.D.; Dispenzieri, A.; Fervenza, F.C.; Fermand, J.P.; Gibbs, S.; et al. The evaluation of monoclonal gammopathy of renal significance: A consensus report of the International Kidney and Monoclonal Gammopathy Research Group. Nat. Rev. Nephrol. 2019, 15, 45–59, Erratum in Nat. Rev. Nephrol. 2019, 15, 121. [Google Scholar] [CrossRef] [Green Version]
- Usuda, H.; Emura, I.; Naito, M. Crystalglobulin-induced vasculopathy accompanying ischemic intestinal lesions of a patient with myeloma. Pathol. Int. 1996, 46, 165–170. [Google Scholar] [CrossRef]
- Ball, N.J.; Wickert, W.; Marx, L.H.; Thaell, J.F. Crystalglobulinemia syndrome. A manifestation of multiple myeloma. Cancer 1993, 71, 1231–1234. [Google Scholar] [CrossRef] [PubMed]
- Leflot, S.; Vekemans, M.-C.; Lambert, C.; Demoulin, N.; Aydin, S.; Leroy, P.; Morelle, J. Crystalcryoglobulinemia-induced kidney disease. Clin. Lymphoma Myeloma Leuk. 2019, 19, E235–E326. [Google Scholar] [CrossRef]
- Gupta, R.K.; Arend, L.J.; Bk, A.; Narsipur, S.; Bhargava, R. Crystalglobulin-associated nephropathy presenting as MGRS in a case of monoclonal B-cell lymphocytosis: A case report. BMC Nephrol. 2020, 21, 184. [Google Scholar] [CrossRef] [PubMed]
- Hill, Q.A.; Hill, A.; Berentsen, S. Defining autoimmune hemolytic anemia: A systematic review of the terminology used for diagnosis and treatment. Blood Adv. 2019, 3, 1897–1906. [Google Scholar] [CrossRef]
- Berentsen, S.; Tjonnfjord, G.E. Diagnosis and treatment of cold agglutinin mediated autoimmune hemolytic anemia. Blood Rev. 2012, 26, 107–115. [Google Scholar] [CrossRef]
- Jager, U.; Barcellini, W.; Broome, C.M.; Gertz, M.A.; Hill, A.; Hill, Q.A.; Jilma, B.; Kuter, D.J.; Michel, M.; Montillo, M.; et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the First International Consensus Meeting. Blood Rev. 2020, 41, 100648. [Google Scholar] [CrossRef]
- Silberstein, L.E.; Berkman, E.M.; Schreiber, A.D. Cold hemagglutinin disease associated with IgG cold-reactive antibody. Ann. Intern. Med. 1987, 106, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Mazzara, R.; Escoda, L.; Alcorta, I.; Nomdedeu, B.; Roelcke, D. Anti-Sa cold agglutinin of IgA class requiring plasma-exchange therapy as early manifestation of multiple myeloma. Ann. Hematol. 1993, 66, 315–318. [Google Scholar] [CrossRef]
- Berentsen, S.; Ulvestad, E.; Langholm, R.; Beiske, K.; Hjorth-Hansen, H.; Ghanima, W.; Sorbo, J.H.; Tjonnfjord, G.E. Primary chronic cold agglutinin disease: A population based clinical study of 86 patients. Haematologica 2006, 91, 460–466. [Google Scholar]
- Sefland, O.; Randen, U.; Berentsen, S. Development of Multiple Myeloma of the IgA Type in a Patient with Cold Agglutinin Disease: Transformation or Coincidence? Case Rep. Hematol. 2019, 2019, 1610632. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Rose, E.L.; Singh, A.; Hussain, S.; Stagliano, N.E.; Parry, G.C.; Panicker, S. TNT003, an inhibitor of the serine protease C1s, prevents complement activation induced by cold agglutinins. Blood 2014, 123, 4015–4022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berentsen, S. New Insights in the Pathogenesis and Therapy of Cold Agglutinin-Mediated Autoimmune Hemolytic Anemia. Front. Immunol. 2020, 11, 590. [Google Scholar] [CrossRef] [PubMed]
- Broome, C.M.; Cunningham, J.M.; Mullins, M.; Jiang, X.; Bylsma, L.C.; Fryzek, J.P.; Rosenthal, A. Increased risk of thrombotic events in cold agglutinin disease: A 10-year retrospective analysis. Res. Pract. Thromb. Haemost. 2020, 4, 628–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rother, R.P.; Bell, L.; Hillmen, P.; Gladwin, M.T. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: A novel mechanism of human disease. JAMA 2005, 293, 1653–1662. [Google Scholar] [CrossRef]
- Zhong, H.; Yazdanbakhsh, K. Hemolysis and immune regulation. Curr. Opin. Hematol. 2018, 25, 177–182. [Google Scholar] [CrossRef]
- L’Acqua, C.; Hod, E. New perspectives on the thrombotic complications of haemolysis. Br. J. Haematol. 2015, 168, 175–185. [Google Scholar] [CrossRef]
- Weitz, I.C. Complement the hemostatic system: An intimate relationship. Thromb. Res. 2014, 133 (Suppl 2), S117–S121. [Google Scholar] [CrossRef]
- Berentsen, S. How I treat cold agglutinin disease. Blood 2021, 137, 1295–1303. [Google Scholar] [CrossRef]
- Jager, U.; D’Sa, S.; Schorgenhofer, C.; Bartko, J.; Derhaschnig, U.; Sillaber, C.; Jilma-Stohlawetz, P.; Fillitz, M.; Schenk, T.; Patou, G.; et al. Inhibition of complement C1s improves severe hemolytic anemia in cold agglutinin disease: A first-in-human trial. Blood 2019, 133, 893–901. [Google Scholar] [CrossRef]
- Roth, A.; Barcellini, W.; D’Sa, S.; Miyakawa, Y.; Broome, C.M.; Michel, M.; Kuter, D.J.; Jilma, B.; Tvedt, T.H.A.; Weitz, I.C.; et al. Complement C1s inhibition with sutimlimab results in durable response in cold agglutinin disease: CARDINAL study 1-year interim follow-up results. Haematologica 2022, 107, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- Roth, A.; Bommer, M.; Huttmann, A.; Herich-Terhurne, D.; Kuklik, N.; Rekowski, J.; Lenz, V.; Schrezenmeier, H.; Duhrsen, U. Eculizumab in cold agglutinin disease (DECADE): An open-label, prospective, bicentric, nonrandomized phase 2 trial. Blood Adv. 2018, 2, 2543–2549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Landenberg, P.; Scholmerich, J.; Andreesen, R.; Vogelhuber, M.; Lackner, K.J. A case of Waldenstroem’s disease with a monoclonal IgM antiphospholipid antibody. Rheumatol. Int. 2002, 22, 129–131. [Google Scholar] [CrossRef]
- Hara, Y.; Makita, M.; Ishikawa, T.; Saeki, K.; Yamamoto, K.; Imajo, K.; Shima, M.; Ieko, M. Lupus anticoagulant hypoprothrombinemia syndrome in Bence-Jones protein kappa-type multiple myeloma patient with phosphatidylserine-dependent antiprothrombin antibody. Ann. Hematol. 2013, 92, 563–564. [Google Scholar] [CrossRef] [Green Version]
- Tait, R.C.; Oogarah, P.K.; Houghton, J.B.; Farrand, S.E.; Haeney, M.R. Waldenstrom’s macroglobulinaemia secreting a paraprotein with lupus anticoagulant activity: Possible association with gastrointestinal tract disease and malabsorption. J. Clin. Pathol. 1993, 46, 678–680. [Google Scholar] [CrossRef] [PubMed]
- Takamiya, O.; Machida, S.; Okuda, M.; Nojima, J.; Koreeda, C.; Kubara, K. A non-immunological phospholipid-dependent coagulation inhibitor associated with IgGlambda-type multiple myeloma. Am. J. Hematol. 2004, 75, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.Y.; Yin, Y.F.; Teng, J.L.; Zhang, L.W.; Yang, C.D. IgMk paraprotein from gammopathy patient can bind to cardiolipin and interfere with coagulation assay: A case report. BMC Immunol. 2017, 18, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, J.J.; Ng, R.H.; Triplett, D.A.; McIntyre, J.A. Incidence of antiphospholipid antibodies in patients with monoclonal gammopathy of undetermined significance. Am. J. Clin. Pathol. 1994, 101, 471–474. [Google Scholar] [CrossRef]
- Yasin, Z.; Quick, D.; Thiagarajan, P.; Spoor, D.; Caraveo, J.; Palascak, J. Light-chain paraproteins with lupus anticoagulant activity. Am. J. Hematol. 1999, 62, 99–102. [Google Scholar] [CrossRef]
- Zangari, M.; Saghafifar, F.; Anaissie, E.; Badros, A.; Desikan, R.; Fassas, A.; Mehta, P.; Morris, C.; Toor, A.; Whitfield, D.; et al. Activated protein C resistance in the absence of factor V Leiden mutation is a common finding in multiple myeloma and is associated with an increased risk of thrombotic complications. Blood Coagul. Fibrinolysis 2002, 13, 187–192. [Google Scholar] [CrossRef]
- Cini, M.; Zamagni, E.; Valdre, L.; Palareti, G.; Patriarca, F.; Tacchetti, P.; Legnani, C.; Catalano, L.; Masini, L.; Tosi, P.; et al. Thalidomide-dexamethasone as up-front therapy for patients with newly diagnosed multiple myeloma: Thrombophilic alterations, thrombotic complications, and thromboprophylaxis with low-dose warfarin. Eur. J. Haematol. 2010, 84, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Elice, F.; Fink, L.; Tricot, G.; Barlogie, B.; Zangari, M. Acquired resistance to activated protein C (aAPCR) in multiple myeloma is a transitory abnormality associated with an increased risk of venous thromboembolism. Br. J. Haematol. 2006, 134, 399–405. [Google Scholar] [CrossRef]
- Zamagni, E.; Brioli, A.; Tacchetti, P.; Zannetti, B.; Pantani, L.; Cavo, M. Multiple myeloma, venous thromboembolism, and treatment-related risk of thrombosis. Semin. Thromb. Hemost. 2011, 37, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Reece, E.A.; Clyne, L.P.; Romero, R.; Hobbins, J.C. Spontaneous factor XI inhibitors. Seven additional cases and a review of the literature. Arch. Intern. Med. 1984, 144, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Deitcher, S.R.; Erban, J.K.; Limentani, S.A. Acquired free protein S deficiency associated with multiple myeloma: A case report. Am. J. Hematol. 1996, 51, 319–323. [Google Scholar] [CrossRef]
- Gruber, A.; Blasko, G.; Sas, G. Functional deficiency of protein C and skin necrosis in multiple myeloma. Thromb. Res. 1986, 42, 579–581. [Google Scholar] [CrossRef]
- George, J.N.; Nester, C.M. Syndromes of thrombotic microangiopathy. N. Engl. J. Med. 2014, 371, 1847–1848. [Google Scholar] [CrossRef] [Green Version]
- Ravindran, A.; Go, R.S.; Fervenza, F.C.; Sethi, S. Thrombotic microangiopathy associated with monoclonal gammopathy. Kidney Int. 2017, 91, 691–698. [Google Scholar] [CrossRef]
- Yui, J.C.; Garceau, D.; Jhaveri, K.D.; Wanchoo, R.; Bijol, V.; Glezerman, I.; Hassoun, H.; Dispenzieri, A.; Russell, S.J.; Leung, N. Monoclonal gammopathy-associated thrombotic microangiopathy. Am. J. Hematol. 2019, 94, E250–E253. [Google Scholar] [CrossRef] [Green Version]
- Hofmeister, C.C.; Jin, M.; Cataland, S.R.; Benson, D.M.; Wu, H.M. TTP disease course is independent of myeloma treatment and response. Am. J. Hematol. 2010, 85, 304–306. [Google Scholar] [CrossRef] [Green Version]
- Schurder, J.; Rafat, C.; Vigneron, C. Complement-dependent, monoclonal gammapathy-associated thrombotic microangiopathy. Kidney Int. 2017, 92, 516. [Google Scholar] [CrossRef] [PubMed]
- Filippone, E.J.; Newman, E.D.; Li, L.; Gulati, R.; Farber, J.L. Thrombotic Microangiopathy, an Unusual Form of Monoclonal Gammopathy of Renal Significance: Report of 3 Cases and Literature Review. Front. Immunol. 2021, 12, 780107. [Google Scholar] [CrossRef] [PubMed]
- Greinacher, A.; Langer, F.; Schonborn, L.; Thiele, T.; Haddad, M.; Renne, T.; Rollin, J.; Gruel, Y.; Warkentin, T.E. Platelet-activating anti-PF4 antibodies mimicking VITT antibodies in an unvaccinated patient with monoclonal gammopathy. Haematologica 2022, 107, 1219–1221. [Google Scholar] [CrossRef] [PubMed]
Type of Study | Population | Outcomes | Independent * Risk Factors for Thrombosis | Strengths | Weaknesses | |
---|---|---|---|---|---|---|
1 |
|
| VTE in 7.5% MGUS and 10% in MM pts (increased compared to VTE rates in the general population) |
|
|
|
2 |
|
| VTE in 6.1% MGUS (increased compared to VTE rates in the general population) |
|
|
|
3 | Inpatients in veteran’s hospitals Kristinsson et al., 2008 [17] | 2374 MGUS and 6192 MM among 4,196,197 Veterans |
| x |
|
|
4 |
|
| At 1, 5, and 10 years after MGUS diagnosis:
| IgG/IgA M-protein: HR at 1-year follow-up
|
|
|
5 |
|
|
| Personal history of VTE (HR 3.33; 95% CI 1.26–8.8) Albumin level (HR 0.22; 95% CI 0.1–0.45) |
|
|
6 |
| 112 MGUS pts | VTE incidence: 8% (increased compared to VTE rates in the general population) | x | Exclusion of pts with VTE risk factors |
|
7 |
|
|
| x | Screened population | Disease definition based on diagnostic codes |
8 |
Gregersen et al., 2011 [22] |
|
| x |
|
|
9 |
| 1491 MGUS pts (1238 with a follow up >12 months) | Thrombotic Incidence *: 4.49 per 1000 patient-years (2.59 for arterial events and 1.90 for venous events) |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkalea, V.; Fotiou, D.; Dimopoulos, M.A.; Kastritis, E. Monoclonal Gammopathy of Thrombotic Significance. Cancers 2023, 15, 480. https://doi.org/10.3390/cancers15020480
Gkalea V, Fotiou D, Dimopoulos MA, Kastritis E. Monoclonal Gammopathy of Thrombotic Significance. Cancers. 2023; 15(2):480. https://doi.org/10.3390/cancers15020480
Chicago/Turabian StyleGkalea, Vasiliki, Despina Fotiou, Meletios Athanasios Dimopoulos, and Efstathios Kastritis. 2023. "Monoclonal Gammopathy of Thrombotic Significance" Cancers 15, no. 2: 480. https://doi.org/10.3390/cancers15020480
APA StyleGkalea, V., Fotiou, D., Dimopoulos, M. A., & Kastritis, E. (2023). Monoclonal Gammopathy of Thrombotic Significance. Cancers, 15(2), 480. https://doi.org/10.3390/cancers15020480