Advancing Understanding of Non-Small Cell Lung Cancer with Multiplexed Antibody-Based Spatial Imaging Technologies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Literature Review
2.1. Prediction of Recurrence and Survival Following Curative-Intent Resection
2.2. Prediction of Benefit from Immunotherapy
2.3. Study of CD8+ T-Cells in Early-Stage Resected NSCLC
2.4. Other Multiplexed Antibody-Based Studies
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer Statistics, 2013. CA Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients with Non-Small Cell Lung Cancer in the US. JAMA Oncol. 2021, 7, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Uramoto, H.; Tanaka, F. Recurrence after Surgery in Patients with NSCLC. Transl. Lung Cancer Res. 2014, 3, 242–249. [Google Scholar] [CrossRef]
- Hansen, R.N.; Zhang, Y.; Seal, B.; Ryan, K.; Yong, C.; Darilay, A.; Ramsey, S.D. Long-Term Survival Trends in Patients with Unresectable Stage III Non-Small Cell Lung Cancer Receiving Chemotherapy and Radiation Therapy: A SEER Cancer Registry Analysis. BMC Cancer 2020, 20, 276. [Google Scholar] [CrossRef]
- Horinouchi, H.; Nogami, N.; Saka, H.; Nishio, M.; Tokito, T.; Takahashi, T.; Kasahara, K.; Hattori, Y.; Ichihara, E.; Adachi, N.; et al. Pembrolizumab plus Pemetrexed-Platinum for Metastatic Nonsquamous Non-Small-Cell Lung Cancer: KEYNOTE-189 Japan Study. Cancer Sci. 2021, 112, 3255–3265. [Google Scholar] [CrossRef]
- Sul, J.; Blumenthal, G.M.; Jiang, X.; He, K.; Keegan, P.; Pazdur, R. FDA Approval Summary: Pembrolizumab for the Treatment of Patients with Metastatic Non-Small Cell Lung Cancer Whose Tumors Express Programmed Death-Ligand 1. Oncologist 2016, 21, 643–650. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- O’Brien, M.; Paz-Ares, L.; Marreaud, S.; Dafni, U.; Oselin, K.; Havel, L.; Esteban, E.; Isla, D.; Martinez-Marti, A.; Faehling, M.; et al. Pembrolizumab versus Placebo as Adjuvant Therapy for Completely Resected Stage IB-IIIA Non-Small-Cell Lung Cancer (PEARLS/KEYNOTE-091): An Interim Analysis of a Randomised, Triple-Blind, Phase 3 Trial. Lancet Oncol. 2022, 23, 1274–1286. [Google Scholar] [CrossRef]
- Akinboro, O.; Drezner, N.; Amatya, A.; Runyan, J.; Fourie-Zirkelbach, J.; Zhao, M.; Bi, Y.; Korsah, K.; Mixter, B.; Tang, S.; et al. US Food and Drug Administration Approval Summary: Nivolumab Plus Platinum-Doublet Chemotherapy for the Neoadjuvant Treatment of Patients with Resectable Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2023, 41, 3249–3259. [Google Scholar] [CrossRef]
- Conroy, M.; Naidoo, J. Immune-Related Adverse Events and the Balancing Act of Immunotherapy. Nat. Commun. 2022, 13, 392. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; van der Merwe, P.A.; Sivakumar, S. Biomarkers of Response to PD-1 Pathway Blockade. Br. J. Cancer 2022, 126, 1663–1675. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Aminu, M.; Li, S.; Lu, X.; Petranovic, M.; Saad, M.B.; Chen, P.; Qin, K.; Varghese, S.; Rinsurongkawong, W.; et al. Efficacy and Clinicogenomic Correlates of Response to Immune Checkpoint Inhibitors Alone or with Chemotherapy in Non-Small Cell Lung Cancer. Nat. Commun. 2023, 14, 695. [Google Scholar] [CrossRef] [PubMed]
- Prelaj, A.; Tay, R.; Ferrara, R.; Chaput, N.; Besse, B.; Califano, R. Predictive Biomarkers of Response for Immune Checkpoint Inhibitors in Non-Small-Cell Lung Cancer. Eur. J. Cancer 2019, 106, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, H.; Pan, C.; Yi, J.; Cui, X.; Li, N.; Wang, J.; Gao, Z.; Wu, D.; Chen, J.; et al. Predicting Durable Responses to Immune Checkpoint Inhibitors in Non-Small-Cell Lung Cancer Using a Multi-Feature Model. Front. Immunol. 2022, 13, 829634. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Chow, A.; Perica, K.; Klebanoff, C.A.; Wolchok, J.D. Clinical Implications of T Cell Exhaustion for Cancer Immunotherapy. Nat. Rev. Clin. Oncol. 2022, 19, 775–790. [Google Scholar] [CrossRef]
- Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; et al. A Framework for Advancing Our Understanding of Cancer-Associated Fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186. [Google Scholar] [CrossRef]
- Li, K.; Shi, H.; Zhang, B.; Ou, X.; Ma, Q.; Chen, Y.; Shu, P.; Li, D.; Wang, Y. Myeloid-Derived Suppressor Cells as Immunosuppressive Regulators and Therapeutic Targets in Cancer. Signal Transduct. Target. Ther. 2021, 6, 362. [Google Scholar] [CrossRef]
- Yang, M.; McKay, D.; Pollard, J.W.; Lewis, C.E. Diverse Functions of Macrophages in Different Tumor Microenvironments. Cancer Res. 2018, 78, 5492–5503. [Google Scholar] [CrossRef]
- Etxeberria, I.; Olivera, I.; Bolaños, E.; Cirella, A.; Teijeira, Á.; Berraondo, P.; Melero, I. Engineering Bionic T Cells: Signal 1, Signal 2, Signal 3, Reprogramming and the Removal of Inhibitory Mechanisms. Cell. Mol. Immunol. 2020, 17, 576–586. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, L.; Li, D.; Andl, T.; Zhang, Y. Cancer-Associated Fibroblasts Build and Secure the Tumor Microenvironment. Front. Cell Dev. Biol. 2019, 7, 60. [Google Scholar] [CrossRef]
- Joyce, J.A.; Fearon, D.T. T Cell Exclusion, Immune Privilege, and the Tumor Microenvironment. Science 2015, 348, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Wolf, Y.; Anderson, A.C.; Kuchroo, V.K. TIM3 Comes of Age as an Inhibitory Receptor. Nat. Rev. Immunol. 2019, 20, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.; et al. Immune Evasion in Cancer: Mechanistic Basis and Therapeutic Strategies. Semin. Cancer Biol. 2015, 35, S185–S198. [Google Scholar] [CrossRef] [PubMed]
- Capece, D.; Verzella, D.; Fischietti, M.; Zazzeroni, F.; Alesse, E. Targeting Costimulatory Molecules to Improve Antitumor Immunity. J. Biomed. Biotechnol. 2012, 2012, 926321. [Google Scholar] [CrossRef] [PubMed]
- Gocher, A.M.; Workman, C.J.; Vignali, D.A.A. Interferon-γ: Teammate or Opponent in the Tumour Microenvironment? Nat. Rev. Immunol. 2022, 22, 158–172. [Google Scholar] [CrossRef]
- Curtsinger, J.M.; Lins, D.C.; Mescher, M.F. Signal 3 Determines Tolerance versus Full Activation of Naive CD8 T Cells: Dissociating Proliferation and Development of Effector Function. J. Exp. Med. 2003, 197, 1141–1151. [Google Scholar] [CrossRef]
- Chung, J.Y.-F.; Chan, M.K.-K.; Li, J.S.-F.; Chan, A.S.-W.; Tang, P.C.-T.; Leung, K.-T.; To, K.-F.; Lan, H.-Y.; Tang, P.M.-K. TGF-β Signaling: From Tissue Fibrosis to Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 7575. [Google Scholar] [CrossRef]
- Crespo, J.; Sun, H.; Welling, T.H.; Tian, Z.; Zou, W. T Cell Anergy, Exhaustion, Senescence, and Stemness in the Tumor Microenvironment. Curr. Opin. Immunol. 2013, 25, 214–221. [Google Scholar] [CrossRef]
- Stack, E.C.; Wang, C.; Roman, K.A.; Hoyt, C.C. Multiplexed Immunohistochemistry, Imaging, and Quantitation: A Review, with an Assessment of Tyramide Signal Amplification, Multispectral Imaging and Multiplex Analysis. Methods 2014, 70, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Engel, J.; Teichmann, S.A.; Lönnberg, T. A Practical Guide to Single-Cell RNA-Sequencing for Biomedical Research and Clinical Applications. Genome Med. 2017, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Galon, J.; Bruni, D. Approaches to Treat Immune Hot, Altered and Cold Tumours with Combination Immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef] [PubMed]
- Angell, H.; Galon, J. From the Immune Contexture to the Immunoscore: The Role of Prognostic and Predictive Immune Markers in Cancer. Curr. Opin. Immunol. 2013, 25, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Mlecnik, B.; Tosolini, M.; Kirilovsky, A.; Berger, A.; Bindea, G.; Meatchi, T.; Bruneval, P.; Trajanoski, Z.; Frid-man, W.H.; Pagès, F.; et al. Histopathologic-Based Prognostic Factors of Colorectal Cancers Are Associated with the State of the Local Immune Reaction. J. Clin. Oncol. 2011, 29, 610–618. [Google Scholar] [CrossRef]
- Argilés, G.; Tabernero, J.; Labianca, R.; Hochhauser, D.; Salazar, R.; Iveson, T.; Laurent-Puig, P.; Quirke, P.; Yoshino, T.; Taieb, J.; et al. Localised Colon Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2020, 31, 1291–1305. [Google Scholar] [CrossRef]
- Corredor, G.; Wang, X.; Zhou, Y.; Lu, C.; Fu, P.; Syrigos, K.; Rimm, D.L.; Yang, M.; Romero, E.; Schalper, K.A.; et al. Spatial Architecture and Arrangement of Tumor-Infiltrating Lymphocytes for Predicting Likelihood of Recurrence in Early-Stage Non–Small Cell Lung Cancer. Clin. Cancer Res. 2019, 25, 1526–1534. [Google Scholar] [CrossRef]
- Guo, H.; Diao, L.; Zhou, X.; Chen, J.-N.; Zhou, Y.; Fang, Q.; He, Y.; Dziadziuszko, R.; Zhou, C.; Hirsch, F.R. Artificial Intelligence-Based Analysis for Immunohistochemistry Staining of Immune Checkpoints to Predict Resected Non-Small Cell Lung Cancer Survival and Relapse. Transl. Lung Cancer Res. 2021, 10, 2452–2474. [Google Scholar] [CrossRef]
- Fonseca, V.R.; Ribeiro, F.; Graca, L. T Follicular Regulatory (Tfr) Cells: Dissecting the Complexity of Tfr-Cell Compartments. Immunol. Rev. 2019, 288, 112–127. [Google Scholar] [CrossRef]
- Czekay, R.-P.; Cheon, D.-J.; Samarakoon, R.; Kutz, S.M.; Higgins, P.J. Cancer-Associated Fibroblasts: Mechanisms of Tumor Progression and Novel Therapeutic Targets. Cancers 2022, 14, 1231. [Google Scholar] [CrossRef]
- Kok, L.; Masopust, D.; Schumacher, T.N. The Precursors of CD8+ Tissue Resident Memory T Cells: From Lymphoid Organs to Infected Tissues. Nat. Rev. Immunol. 2022, 22, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Rojas, F.; Hernandez, S.; Lazcano, R.; Laberiano-Fernandez, C.; Parra, E.R. Multiplex Immunofluorescence and the Digital Image Analysis Workflow for Evaluation of the Tumor Immune Environment in Translational Research. Front. Oncol. 2022, 12, 889886. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.M.; Ospina, O.E.; Townsend, M.K.; Nguyen, J.; Moran Segura, C.; Schildkraut, J.M.; Tworoger, S.S.; Peres, L.C.; Fridley, B.L. Challenges and Opportunities in the Statistical Analysis of Multiplex Immunofluorescence Data. Cancers 2021, 13, 3031. [Google Scholar] [CrossRef]
- Hickey, J.W.; Neumann, E.K.; Radtke, A.J.; Camarillo, J.M.; Beuschel, R.T.; Albanese, A.; McDonough, E.; Hat-ler, J.; Wiblin, A.E.; Fisher, J.; et al. Spatial Mapping of Protein Composition and Tissue Organization: A Primer for Multiplexed Antibody-Based Imaging. Nat. Methods 2022, 19, 284–295. [Google Scholar] [CrossRef]
- Taube, J.M.; Akturk, G.; Angelo, M.; Engle, E.L.; Gnjatic, S.; Greenbaum, S.; Greenwald, N.F.; Hedvat, C.V.; Hollmann, T.J.; Juco, J.; et al. The Society for Immunotherapy of Cancer Statement on Best Practices for Multiplex Immunohistochemistry (IHC) and Immunofluorescence (IF) Staining and Validation. J. Immunother. Cancer 2020, 8, e000155. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.C.C.; Nerurkar, S.N.; Cai, H.Y.; Ng, H.H.M.; Wu, D.; Wee, Y.T.F.; Lim, J.C.T.; Yeong, J.; Lim, T.K.H. Overview of Multiplex Immunohistochemistry/Immunofluorescence Techniques in the Era of Cancer Immunotherapy. Cancer Commun. 2020, 40, 135–153. [Google Scholar] [CrossRef]
- Jhaveri, N.; Nikulina, N.; Zong, H.; Ma, N.; Cheikh, B.B.; Pratapa, A.; Kassim, Y.; Anand, B.; Prater, M.; Basu, S.; et al. Abstract 3877: Deep Ultrahigh-Plex Spatial Phenotyping of Human Cancer Tissues. Cancer Res. 2022, 82, 3877. [Google Scholar] [CrossRef]
- Hernandez, S.; Lazcano, R.; Serrano, A.; Powell, S.; Kostousov, L.; Mehta, J.; Khan, K.; Lu, W.; Solis, L.M. Challenges and Opportunities for Immunoprofiling Using a Spatial High-Plex Technology: The NanoString GeoMx® Digital Spatial Profiler. Front. Oncol. 2022, 12, 890410. [Google Scholar] [CrossRef]
- Marcus, L.; Fashoyin-Aje, L.A.; Donoghue, M.; Yuan, M.; Rodriguez, L.; Gallagher, P.S.; Philip, R.; Ghosh, S.; Theoret, M.R.; Beaver, J.A.; et al. FDA Approval Summary: Pembrolizumab for the Treatment of Tumor Mutational Burden-High Solid Tumors. Clin. Cancer Res. 2021, 27, 4685–4689. [Google Scholar] [CrossRef]
- Twomey, J.D.; Zhang, B. Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Com-panion Diagnostics. AAPS J. 2021, 23, 39. [Google Scholar] [CrossRef]
- Lu, S.; Stein, J.E.; Rimm, D.L.; Wang, D.W.; Bell, J.M.; Johnson, D.B.; Sosman, J.A.; Schalper, K.A.; Anders, R.A.; Wang, H.; et al. Comparison of Biomarker Modalities for Predicting Response to PD-1/PD-L1 Checkpoint Blockade: A Systematic Review and Meta-Analysis. JAMA Oncol. 2019, 5, 1195–1204. [Google Scholar] [CrossRef]
- Barua, S.; Fang, P.; Sharma, A.; Fujimoto, J.; Wistuba, I.; Rao, A.U.K.; Lin, S.H. Spatial Interaction of Tumor Cells and Regulatory T Cells Correlates with Survival in Non-Small Cell Lung Cancer. Lung Cancer 2018, 117, 73–79. [Google Scholar] [CrossRef]
- Monkman, J.; Taheri, T.; Ebrahimi Warkiani, M.; O’Leary, C.; Ladwa, R.; Richard, D.; O’Byrne, K.; Kulasinghe, A. High-Plex and High-Throughput Digital Spatial Profiling of Non-Small-Cell Lung Cancer (NSCLC). Cancers 2020, 12, 3551. [Google Scholar] [CrossRef]
- Lin, T.C.; Yang, C.H.; Cheng, L.H.; Chang, W.T.; Lin, Y.R.; Cheng, H.C. Fibronectin in Cancer: Friend or Foe. Cells 2019, 9, 27. [Google Scholar] [CrossRef]
- Lee, Y.R.; Chen, M.; Pandolfi, P.P. The Functions and Regulation of the PTEN Tumour Suppressor: New Modes and Prospects. Nat. Rev. Mol. Cell Biol. 2018, 19, 547–562. [Google Scholar] [CrossRef]
- Kumar, V.; Patel, S.; Tcyganov, E.; Gabrilovich, D.I. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends Immunol. 2016, 37, 208–220. [Google Scholar] [CrossRef]
- Keane, C.; Law, S.C.; Gould, C.; Birch, S.; Sabdia, M.B.; de Long, L.M.; Thillaiyampalam, G.; Abro, E.; Tobin, J.W.; Tan, X.; et al. LAG3: A Novel Immune Checkpoint Expressed by Multiple Lymphocyte Subsets in Diffuse Large B-Cell Lymphoma. Blood Adv. 2020, 4, 1367–1377. [Google Scholar] [CrossRef] [PubMed]
- Backman, M.; Strell, C.; Lindberg, A.; Mattsson, J.S.M.; Elfving, H.; Brunnström, H.; O’Reilly, A.; Bosic, M.; Gulyas, M.; Isaksson, J.; et al. Spatial Immunophenotyping of the Tumour Microenvironment in Non-Small Cell Lung Cancer. Eur. J. Cancer 2023, 185, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Sorin, M.; Rezanejad, M.; Karimi, E.; Fiset, B.; Desharnais, L.; Perus, L.J.M.; Milette, S.; Yu, M.W.; Maritan, S.M.; Doré, S.; et al. Single-Cell Spatial Landscapes of the Lung Tumour Immune Microenvironment. Nature 2023, 614, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Saini, M.; Szczerba, B.M.; Aceto, N. Circulating Tumor Cell-Neutrophil Tango along the Metastatic Process. Cancer Res. 2019, 79, 6067–6073. [Google Scholar] [CrossRef] [PubMed]
- Zugazagoitia, J.; Gupta, S.; Liu, Y.; Fuhrman, K.; Gettinger, S.; Herbst, R.S.; Schalper, K.A.; Rimm, D.L. Biomarkers Associated with Beneficial PD-1 Checkpoint Blockade in Non-Small Cell Lung Cancer (NSCLC) Identified Using High-Plex Digital Spatial Profiling. Clin. Cancer Res. 2020, 26, 4360–4368. [Google Scholar] [CrossRef] [PubMed]
- Aldea, M.; Benitez, J.C.; Mezquita, L. The Lung Immune Prognostic Index (LIPI) Stratifies Prognostic Groups in Advanced Non-Small Cell Lung Cancer (NSCLC) Patients. Transl. Lung Cancer Res. 2020, 9, 967–970. [Google Scholar] [CrossRef] [PubMed]
- Moutafi, M.; Martinez-Morilla, S.; Divakar, P.; Vathiotis, I.; Gavrielatou, N.; Aung, T.N.; Yaghoobi, V.; Fernandez, A.I.; Zugazaoitia, J.; Herbst, R.S.; et al. Discovery of Biomarkers of Resistance to Immune Check-point Blockade in NSCLC Using High-Plex Digital Spatial Profiling. J. Thorac. Oncol. 2022, 17, 991–1001. [Google Scholar] [CrossRef] [PubMed]
- Moutafi, M.K.; Molero, M.; Martinez Morilla, S.; Baena, J.; Vathiotis, I.A.; Gavrielatou, N.; Castro-Labrador, L.; De Garibay, G.R.; Adradas, V.; Orive, D.; et al. Spatially Resolved Proteomic Profiling Identifies Tumor Cell CD44 as a Biomarker Associated with Sensitivity to PD-1 Axis Blockade in Advanced Non-Small-Cell Lung Cancer. J. Immunother. Cancer 2022, 10, e004757. [Google Scholar] [CrossRef]
- Kong, T.; Ahn, R.; Yang, K.; Zhu, X.; Fu, Z.; Morin, G.; Bramley, R.; Cliffe, N.C.; Xue, Y.; Kuasne, H.; et al. CD44 Promotes PD-L1 Expression and Its Tumor-Intrinsic Function in Breast and Lung Cancers. Cancer Res. 2020, 80, 444–457. [Google Scholar] [CrossRef]
- Song, X.; Xiong, A.; Wu, F.; Li, X.; Wang, J.; Jiang, T.; Chen, P.; Zhang, X.; Zhao, Z.; Liu, H.; et al. Spatial Multi-Omics Revealed the Impact of Tumor Ecosystem Heterogeneity on Immunotherapy Efficacy in Patients with Advanced Non-Small Cell Lung Cancer Treated with Bispecific Antibody. J. Immunother. Cancer 2023, 11, e006234. [Google Scholar] [CrossRef]
- Sandström Gerdtsson, A.; Knulst, M.; Botling, J.; Mezheyeuski, A.; Micke, P.; Ek, S. Phenotypic Characterization of Spatial Immune Infiltration Niches in Non-Small Cell Lung Cancer. Oncoimmunology 2023, 12, 2206725. [Google Scholar] [CrossRef]
- Rotondo, R.; Barisione, G.; Mastracci, L.; Grossi, F.; Orengo, A.M.; Costa, R.; Truini, M.; Fabbi, M.; Ferrini, S.; Barbieri, O. IL-8 Induces Exocytosis of Arginase 1 by Neutrophil Polymorphonuclears in Nonsmall Cell Lung Cancer. Int. J. Cancer 2009, 125, 887–893. [Google Scholar] [CrossRef]
- Miret, J.J.; Kirschmeier, P.; Koyama, S.; Zhu, M.; Li, Y.Y.; Naito, Y.; Wu, M.; Malladi, V.S.; Huang, W.; Walker, W.; et al. Suppression of Myeloid Cell Arginase Activity Leads to Therapeutic Response in a NSCLC Mouse Model by Activating Anti-Tumor Immunity. J. Immunother. Cancer 2019, 7, 32. [Google Scholar] [CrossRef]
- Raskov, H.; Orhan, A.; Christensen, J.P.; Gögenur, I. Cytotoxic CD8+ T Cells in Cancer and Cancer Immuno-therapy. Br. J. Cancer 2021, 124, 359–367. [Google Scholar] [CrossRef]
- Sanmamed, M.F.; Nie, X.; Desai, S.S.; Villaroel-Espindola, F.; Badri, T.; Zhao, D.; Kim, A.W.; Ji, L.; Zhang, T.; Quinlan, E.; et al. A Burned-Out CD8+ T-Cell Subset Expands in the Tumor Microenvironment and Curbs Cancer Immunotherapy. Cancer Discov. 2021, 11, 1700–1715. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Han, L.; Chen, Z.; Li, Y.; Zhou, B.; Hu, R.; Chen, S.; Xiao, H.; Ma, Y.; Xie, G.; et al. PD-L1+CD8+ T Cells Enrichment in Lung Cancer Exerted Regulatory Function and Tumor-Promoting Tolerance. iScience 2022, 25, 103785. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Cai, S.; Hu, M.; Li, C.; Yang, L.; Zhang, W.; Sun, J.; Sun, F.; Xing, L.; Sun, X. Functional Status and Spatial Architecture of Tumor-Infiltrating CD8+ T Cells Are Associated with Lymph Node Metastases in Non-Small Cell Lung Cancer. J. Transl. Med. 2023, 21, 320. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, H.; Liu, C.; Xiang, X.; Wang, S.; Wu, A.; Shen, Y.; Li, G. Prognostic Value of the Common Tumour-Infiltrating Lymphocyte Subtypes for Patients with Non-Small Cell Lung Cancer: A Meta-Analysis. PLoS ONE 2020, 15, e0242173. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lin, Y.; Wang, Y.; Wang, S.; Yang, Y.; Mu, X.; Chen, Y.; Gao, Z. Characterization of the Tumor Immune Microenvironment in Lung Squamous Cell Carcinoma Using Imaging Mass Cytometry. Front. Oncol. 2021, 11, 620989. [Google Scholar] [CrossRef] [PubMed]
- Bekiaris, V.; Šedý, J.R.; Rossetti, M.; Spreafico, R.; Sharma, S.; Rhode-Kurnow, A.; Ware, B.C.; Huang, N.; Macauley, M.G.; Norris, P.S.; et al. Human CD4+CD3- Innate-like T Cells Provide a Source of TNF and Lympho-toxin-Aβ and Are Elevated in Rheumatoid Arthritis. J. Immunol. 2013, 191, 4611–4618. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Zhang, T.; Meng, X.; Lin, Z.; Lin, J.; Gong, Y.; Liu, X.; Yu, Y.; Zhao, G.; Ding, X.; et al. Lymphocyte Mass Cytometry Identifies a CD3-CD4+ Cell Subset with a Potential Role in Psoriasis. JCI Insight 2019, 4, e125306. [Google Scholar] [CrossRef]
- Parra, E.R.; Zhang, J.; Jiang, M.; Tamegnon, A.; Pandurengan, R.K.; Behrens, C.; Solis, L.; Haymaker, C.; Hey-mach, J.V.; Moran, C.; et al. Immune Cellular Patterns of Distribution Affect Outcomes of Patients with Non-Small Cell Lung Cancer. Nat. Commun. 2023, 14, 2364. [Google Scholar] [CrossRef]
- Wharton, K.A.; Wood, D.; Manesse, M.; Maclean, K.H.; Leiss, F.; Zuraw, A. Tissue Multiplex Analyte Detection in Anatomic Pathology—Pathways to Clinical Implementation. Front. Mol. Biosci. 2021, 8, 6725311. [Google Scholar] [CrossRef]
- Lee, H.; Marco Salas, S.; Gyllborg, D.; Nilsson, M. Direct RNA Targeted in Situ Sequencing for Transcriptomic Profiling in Tissue. Sci. Rep. 2022, 12, 7976. [Google Scholar] [CrossRef]
- Merlos Rodrigo, M.A.; Zitka, O.; Krizkova, S.; Moulick, A.; Adam, V.; Kizek, R. MALDI-TOF MS as Evolving Cancer Diagnostic Tool: A Review. J. Pharm. Biomed. Anal. 2014, 95, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Abdo, R.; Iosef, C.; Kaneko, T.; Cecchini, M.; Han, V.K.; Li, S.S.C. The Spatial Transcriptomic Landscape of Non-Small Cell Lung Cancer Brain Metastasis. Nat. Commun. 2022, 13, 5983. [Google Scholar] [CrossRef] [PubMed]
- Neumann, J.M.; Freitag, H.; Hartmann, J.S.; Niehaus, K.; Galanis, M.; Griesshammer, M.; Kellner, U.; Bednarz, H. Subtyping Non-Small Cell Lung Cancer by Histology-Guided Spatial Metabolomics. J. Cancer Res. Clin. Oncol. 2022, 148, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Ben-Chetrit, N.; Niu, X.; Swett, A.D.; Sotelo, J.; Jiao, M.S.; Stewart, C.M.; Potenski, C.; Mielinis, P.; Roelli, P.; Stoeckius, M.; et al. Integration of whole transcriptome spatial profiling with protein markers. Nat. Biotechnol. 2023, 41, 788–793. [Google Scholar] [CrossRef]
Widely Expressed Cell Surface Markers | ||||
---|---|---|---|---|
FAS | MHC-I | |||
T-cell markers | ||||
CD3 | CD4 | CD8 | CD45RA | CD45RO |
CD103 | CD127 | FoxP3 | LAG-3 | |
Co-inhibitory molecules | ||||
B7-H3 | B7-H4 | CTLA-4 | IDO-1 | PD-1 |
PD-L1 | PD-L2 | TIM-3 | VISTA | |
Co-stimulatory molecules | ||||
CD27 | CD28 | CD40 | CD80 | CD86 |
ICOS | OX40 | |||
M2-like macrophage markers | ||||
CD163 | CD168 | |||
Secreted pro-inflammatory molecules | ||||
IFN-γ | TNF-α | GZMB | ||
Secreted tolerance-promoting molecules | ||||
IL-6 | IL-10 | TGF-β | ARG-1 | |
Other immune cell markers | ||||
CD11b (myeloid cells; NK cells) | CD11c (DCs; NK cells; activated T- or B-cells) | |||
CD25 (DCs) | CD45 (pan-leucocyte) | CD56 (NK cells) | ||
CD66b (TANs) | CD68 (pan-macrophage) | |||
Other cell surface markers | ||||
CD34 (CAFs; endothelial cells) | CD44 (CSCs; CAFs) | |||
Cytokeratins (tumour cells) | Ki-67 (proliferating cells) |
Reference; Multiplexing Method | Setting | Finding | Outcome Predicted | Reported Measure of Predictive Value |
---|---|---|---|---|
Barua et al. [52]; TSA | Post curative-intent resection | Tumour cell/T-reg interactions | Inferior OS | Greater AUC of cross-G function: HR 1.52; 95%CI 1.11–2.07, p = 0.009 |
CD8+T/T-reg interactions | Superior OS | Greater AUC of cross-G function: HR 0.96; 95%CI 0.92–0.99, p = 0.042 | ||
Backman et al. [58]; mIF | Post curative-intent resection | Greater CD8+ effector/ tumour cell proximity | Superior OS | Stepwise Cox regression: HR 0.29, p <0.05 |
Greater M2 macrophage/ M1 macrophage proximity | Inferior OS | Stepwise Cox regression: HR 2.33, p <0.05 | ||
Greater B-cell/ CD4+ T-reg proximity | Superior OS | Stepwise Cox regression: HR 0.59, p <0.05 | ||
Greater CD8+ T-reg/ B-cell proximity | Superior OS | Stepwise Cox regression: HR 0.46, p <0.01 | ||
Sorin et al. [59]; IMC | Adenocarcinoma (mixed-stage) | Frequent ‘B-cell-enriched’ CNs | Superior OS | Log-rank test: p = 0.001 |
Frequent ‘lymphoid enriched’ CNs | Superior OS | Log-rank test: p = 0.039 | ||
Frequent ‘pan-immune hotspot 1’ CNs | Superior OS | Log-rank test: p = 0.026 | ||
Frequent ‘undefined’ CNs | Inferior OS | Log-rank test: p = 0.006 | ||
Adenocarcinoma (stage I) | Deep learning signature lineage marker model | Recurrence | Prediction score: 95.9% (vs 80.55% with clinical variables), p = 0.0343. Validation cohort: Accuracy 94.2% (vs 75% baseline prediction score). | |
Zugazagoitia et al. [61]; DSP | ICI-treated (stage III-IV) | Frequent CD56+ cells in the leucocyte compartment | Superior PFS | Log-rank test: HR 0.24, p = 0.006 |
Superior OS | Log-rank test: HR 0.26, p = 0.014 | |||
Frequent CD4+ cells in the leucocyte compartment | Superior PFS | Log-rank test: HR 0.31, p = 0.006 | ||
Superior OS | Log-rank test: HR 0.23, p = 0.0.007 | |||
Moutafi et al. [63]; DSP | ICI-treated (advanced-stage) | Frequent CD66b+ cells in the leucocyte compartment | Inferior OS | Log-rank test: HR 1.31, p = 0.016 |
Moutafi et al. [64]; DSP | ICI-treated (advanced-stage) | Frequent CD44+ cells in the tumour compartment | Superior PFS | Discovery cohort: log-rank test HR 0.68, p = 0.043 Validation cohort: log-rank test: HR 0.62, p = 0.03 |
Song et al. [66]; DSP | ICI bispecific Ab-treated (advanced-stage); validation set was ICI mAb-treated | Stromal signature | Treatment response | Training set: AUROC 0.838 Validation set: AUROC 0.776 |
Superior PFS | Log-rank test: HR 2.90, p = 0.013 in validation set | |||
Superior OS | Validation set: log-rank test HR 3.44, p = 0.04 | |||
Tumour signature | Treatment response | Training set: AUROC 0.786 | ||
Gerdtsson et al. [67]; DSP | Post curative-intent resection | High B7-H3 expression | Superior OS | Log-rank test: HR 0.60, p = 0.008 |
Sanmamed et al. [71]; IMC, mIF | Post curative-intent resection | Low proportion of CD8+ T-cells with ‘Ebo’ phenotype | Durable clinical benefit | Student’s t-test: p < 0.001 |
ICI-treated (advanced-stage) | Low proportion of CD8+ T-cells with ‘Ebo’ phenotype | Superior OS | Log-rank test: HR 2.66, 95%CI 1.17–6.01, p = 0.03 | |
Yang et al. [73]; mIF | Post curative-intent resection | Low density of ‘pre-dysfunctional’ CD8+ T-cells in tumour centre | Superior RFS | Log-rank test: HR 0.55, 95%CI 0.34–0.89; p = 0.014 |
High density of ‘dysfunctional’ CD8+ T-cells in invasive margin | Inferior RFS | Log-rank test: HR 2.49, 95%CI 1.60–4.13; p = 0.012 | ||
Shorter mNND between CD8+ T-cells and T-regs in invasive margin | Inferior RFS | Log-rank test: HR 1.72, 95%CI 1.26–2.92; p = 0.024 | ||
Shorter mNND between CD8+ T-cells and CAFs in invasive margin | Inferior RFS | Log-rank test: HR 1.57, 95%CI 1.11–2.43; p = 0.024 | ||
Parra et al. [78]; mIF | Adenocarcinoma post curative-intent resection | Greater CD66b+ cell/ tumour cell proximity | Superior RFS | Log-rank test: p = 0.028 |
Greater CD3+CD8+ cell/ tumour cell proximity | Superior RFS | Log-rank test: p = 0.041 | ||
Greater CD68+ cell/ tumour cell proximity | Superior RFS | Log-rank test: p = 0.021 | ||
Greater CD3+B7-H3+ cell/ tumour cell proximity | Inferior RFS | Log-rank test: p = 0.022 | ||
Squamous cell carcinoma post curative-intent resection | Greater CD3+PD-L1+ cell/ tumour cell proximity | Inferior RFS | Log-rank test: p = 0.012 | |
Greater CD3+ICOS+ T-cell/ tumour cell proximity | Superior RFS | Log-rank test: p = 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gray, S.; Ottensmeier, C.H. Advancing Understanding of Non-Small Cell Lung Cancer with Multiplexed Antibody-Based Spatial Imaging Technologies. Cancers 2023, 15, 4797. https://doi.org/10.3390/cancers15194797
Gray S, Ottensmeier CH. Advancing Understanding of Non-Small Cell Lung Cancer with Multiplexed Antibody-Based Spatial Imaging Technologies. Cancers. 2023; 15(19):4797. https://doi.org/10.3390/cancers15194797
Chicago/Turabian StyleGray, Simon, and Christian H. Ottensmeier. 2023. "Advancing Understanding of Non-Small Cell Lung Cancer with Multiplexed Antibody-Based Spatial Imaging Technologies" Cancers 15, no. 19: 4797. https://doi.org/10.3390/cancers15194797
APA StyleGray, S., & Ottensmeier, C. H. (2023). Advancing Understanding of Non-Small Cell Lung Cancer with Multiplexed Antibody-Based Spatial Imaging Technologies. Cancers, 15(19), 4797. https://doi.org/10.3390/cancers15194797