Predicting Risk of Severe Toxicity and Early Death in Older Adult Patients Treated with Chemotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Scheme
2.2. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.1.1. Geriatric Assessment
3.1.2. Toxicity of Chemotherapy and Early Death
3.1.3. Variables Predicting Grade 3–5 Toxicity and Early Death
3.1.4. Predictive Models for Grade 3–5 Toxicity and Early Death
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin. 2015, 65, 5–29. [Google Scholar] [CrossRef]
- Soubeyran, P.; Fonck, M.; Blanc-Bisson, C.; Blanc, J.F.; Ceccaldi, J.; Mertens, C.; Imbert, Y.; Cany, L.; Vogt, L.; Dauba, J.; et al. Predictors of early death risk in older patients treated with first-line chemotherapy for cancer. J. Clin. Oncol. 2012, 30, 1829–1834. [Google Scholar] [CrossRef]
- Feliu, J.; Heredia-Soto, V.; Gironés, R.; Jiménez-Munarriz, B.; Saldaña, J.; Guillén-Ponce, C.; Molina-Garrido, M.J. Management of the toxicity of chemotherapy and targeted therapies in elderly cancer patients. Clin. Transl. Oncol. 2020, 22, 457–467. [Google Scholar] [CrossRef]
- Feliu, J.; Jiménez-Munárriz, B.; Basterrexea, L.; Paredero, I.; Llabres, E.; Antonio-Rebollo, M.; Losada, B.; Espinosa, E.; Gironés, R.; Custodio, A.B.; et al. Predicting Chemotherapy Toxicity in Older Patients with Cancer: A Multicenter Prospective Study. Oncologist 2020, 25, e1516–e1524. [Google Scholar] [CrossRef]
- Kim, J.W.; Lee, Y.G.; Hwang, I.G.; Song, H.S.; Koh, H.S.; Ko, Y.H.; Shin, S.H.; Woo, I.S.; Hong, S.; Kim, T.Y.; et al. Predicting cumulative incidence of adverse events in older patients with cancer undergoing first-line palliative chemotherapy: Korean Cancer Study Group (KCSG) multicentre prospective study. Br. J. Cancer 2018, 118, 1169–1175. [Google Scholar] [CrossRef]
- Mohile, S.G.; Dale, W.; Somerfield, M.R.; Schonberg, M.A.; Boyd, C.M.; Burhenn, P.S.; Canin, B.; Chen, H.J.; Holmes, H.M.; Hopkins, J.O.; et al. Practical Assessment and Management of Vulnerabilities in Older Patients Receiving Chemotherapy: ASCO Guideline for Geriatric Oncology. J. Clin. Oncol. 2018, 36, 2326–2347. [Google Scholar] [CrossRef]
- Li, D.; Sun, C.L.; Kim, H.; Soto-Perez-de-Celis, E.; Chung, V.; Koczywas, M.; Fakih, M.; Chao, J.; Chien, L.C.; Charles, K.; et al. Geriatric assessment-driven intervention (GAIN) on chemotherapy-related toxic effects in older adults with cancer: A randomized clinical trial. JAMA Oncol. 2021, 7, e214158. [Google Scholar] [CrossRef]
- Mohile, S.G.; Mohamed, M.R.; Xu, H.; Culakova, E.; Poh, K.L.; Magnuson, A.; Flannery, M.A.; Obrecht, S.; Gilmore, N.; Ramsdale, E.; et al. Evaluation of geriatric assessment and management on the toxic effects of cancer treatment (GAP70+): A cluster-randomised study. Lancet 2021, 398, 1894–1904. [Google Scholar] [CrossRef]
- Lee, L.; Cheung, W.Y.; Atkinson, E.; Krzyzanowska, M. Impact of comorbidity on chemotherapy use and outcomes in solid tumors: A systematic review. J. Clin. Oncol. 2011, 29, 106–117. [Google Scholar] [CrossRef]
- Von Gruenigen, V.E.; Huang, H.Q.; Beumer, J.H.; Lankes, H.A.; Tew, W.; Herzog, T.; Hurria, A.; Mannel, R.S.; Rizack, T.; Landrum, L.M.; et al. Chemotherapy completion in elderly women with ovarian, primary peritoneal or fallopian tube cancer—An NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol. 2017, 144, 459–467. [Google Scholar] [CrossRef]
- Dotan, E.; Tew, W.P.; Mohile, S.G.; Ma, H.; Kim, H.; Sun, C.L.; Caan, B.; Dale, W.; Gajra, A.; Klepin, H.D.; et al. Associations between nutritional factors and chemotherapy toxicity in older adults with solid tumors. Cancer 2020, 126, 1708–1716. [Google Scholar] [CrossRef]
- Hurria, A.; Togawa, K.; Mohile, S.G.; Owusu, C.; Klepin, H.D.; Gross, C.P.; Lichtman, S.M.; Gajra, A.; Bhatia, S.; Katheria, V.; et al. Predicting chemotherapy toxicity in older adults with cancer: A prospective multicenter study. J. Clin. Oncol. 2011, 29, 3457–3465. [Google Scholar] [CrossRef]
- Aparicio, T.; Jouve, J.L.; Teillet, L.; Gargot, D.; Subtil, F.; Le Brun-Ly, V.; Cretin, J.; Locher, C.; Bouché, O.; Breysacher, G.; et al. Geriatric factors predict chemotherapy feasibility: Ancillary results of FFCD 2001-02 phase III study in first-line chemotherapy for metastatic colorectal Cancer in elderly patients. J. Clin. Oncol. 2013, 31, 1464–1470. [Google Scholar] [CrossRef]
- Extermann, M.; Boler, I.; Reich, R.R.; Lyman, G.H.; Brown, R.H.; DeFelice, J.; Levine, R.M.; Lubiner, E.T.; Reyes, P.; Schreiber, F.J., 3rd; et al. Predicting the risk of chemotherapy toxicity in older patients: The chemotherapy risk assessment Scale for high-age patients (CRASH) score. Cancer 2012, 118, 3377–3386. [Google Scholar] [CrossRef]
- Hurria, A.; Mohile, S.; Gajra, A.; Klepin, H.; Muss, H.; Chapman, A.; Feng, T.; Smith, D.; Sun, C.L.; De Glas, N.; et al. Validation of a prediction tool for chemotherapy toxicity in older adults with cancer. J. Clin. Oncol. 2016, 34, 2366–2371. [Google Scholar] [CrossRef]
- Nishijima, T.F.; Deal, A.M.; Williams, G.R.; Sanoff, H.K.; Nyrop, K.A.; Muss, H.B. Chemotherapy toxicity risk score for treatment decisions in older adults with advanced solid tumors. Oncologist 2018, 23, 573–579. [Google Scholar] [CrossRef]
- Frelaut, M.; Paillaud, E.; Beinse, G.; Scain, A.L.; Culine, S.; Tournigand, C.; Poisson, J.; Bastuji-Garin, S.; Canoui-Poitrine, F.; Caillet, P. External Validity of Two Scores for Predicting the Risk of Chemotherapy Toxicity Among Older Patients With Solid Tumors: Results From the ELCAPA Prospective Cohort. Oncologist 2023, 28, e341–e349. [Google Scholar] [CrossRef]
- Feliu, J.; Pinto, A.; Basterretxea, L.; López-San Vicente, B.; Paredero, I.; Llabrés, E.; Jiménez-Munárriz, B.; Antonio-Rebollo, M.; Losada, B.; Espinosa, E.; et al. Development and validation of an early mortality risk score for older patients treated with chemotherapy for cancer. J. Clin. Med. 2021, 10, 1615. [Google Scholar] [CrossRef]
- Boulahssass, R.; Gonfrier, S.; Ferrero, J.M.; Sanchez, M.; Mari, V.; Moranne, O.; Guerin, O.; Rambaud, C.; Auben, F.; Levi, J.M.H.; et al. Predicting early death in older adults with cancer. Eur. J. Cancer 2018, 100, 65–74. [Google Scholar] [CrossRef]
- Angeli, E.; Chouahnia, K.; Canoui-Poitrine, F.; Duchemann, B.; Aparicio, T.; Paillaud, E.; Zelek, L.; Bousquet, G.; Pamoukdjian, F. Development, validation and clinical impact of a prediction model for 6-month mortality in older cancer patients: The GRADE. Aging 2020, 12, 4230–4246. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, T.; Pang, L.; Sharma, S.V.; Li, R.; Nyitray, A.G.; Edwards, B.J. Malnutrition and overall survival in older adults with cancer: A systematic review and meta-analysis. J. Geriatr. Oncol. 2019, 10, 874–883. [Google Scholar] [CrossRef]
- Nishikawa, H.; Goto, M.; Fukunishi, S.; Asai, A.; Nishiguchi, S.; Higuchi, K. Cancer Cachexia: Its Mechanism and Clinical Significance. Int. J. Mol. Sci. 2021, 22, 8491. [Google Scholar] [CrossRef]
- Williams, G.R.; Al-Obaidi, M.; Dai, C.; Mir, N.; Challa, S.A.; Daniel, M.; Patel, H.; Barlow, B.; Young-Smith, C.; Gbolahan, O.; et al. Association of malnutrition with geriatric assessment impairments and health-related quality of life among older adults with gastrointestinal malignancies. Cancer 2020, 126, 5147–5155. [Google Scholar] [CrossRef]
- Caillet, P.; Liuu, E.; Raynaud, A.; Raynaud Simon, A.; Bonnefoy, M.; Guerin, O.; Lesourd, B.; Jeandel, C.; Ferry, M.; Rolland, Y.; et al. Association between cachexia, chemotherapy and outcomes in older cancer patients: A systematic review. Clin. Nutr. 2017, 36, 1473–1482. [Google Scholar] [CrossRef]
- Bouillanne, O.; Morineau, G.; Dupont, C.; Coulombel, I.; Vincent, J.P.; Nicolis, I.; Benazeth, S.; Cynober, L.; Aussel, C. Geriatric Nutritional Risk Index: A new index for evaluating at-risk elderly medical patients. Am. J. Nutr. 2005, 82, 777–783. [Google Scholar] [CrossRef]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. first validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Linn, B.S.; Linn, M.W.; Gurel, L. Cumulative illness rating scale. J. Am. Geriatr. Soc. 1968, 16, 622–626. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Roila, F.; Lupattelli, M.; Sassi, M.; Basurto, C.; Bracarda, S.; Picciafuoco, M.; Del Favero, A. Intra and interobserver variability in cancer patients’ performance status assessed according to Karnofsky and ECOG scales. Ann. Oncol. 1991, 2, 437–439. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, 85–94. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-extremity function in persons over the age of 70 years as a predictor of subsequent disability. N. Engl. J. Med. 1995, 332, 556–561. [Google Scholar] [CrossRef]
- Pfeiffer, E.A. A short portable mental status questionnaire for the assessment of organic brain deficits in elderly patients. J. Am. Geriatr. Soc. 1975, 22, 433. [Google Scholar] [CrossRef]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of illness in the aged: The index of ADL—A standardized measure of biological and psychosocial function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Zigmod, A.S.; Snaith, R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scan. 1983, 67, 361–370. [Google Scholar] [CrossRef]
- Ren, X.S.; Skinner, K.; Lee, A.; Kazis, L. Social support, social selection and self-assessed health status: Results from the veterans health study in the United States. Soc. Sci. Med. 1999, 48, 1721–1734. [Google Scholar] [CrossRef]
- Costa-Requena, G.; Salamero, M.; Gil, F. Validity of the questionnaire MOS-SSS of social support in neoplastic patients. Med. Clin. 2007, 128, 687–691. [Google Scholar]
- Luciani, A.; Ascione, G.; Bertuzzi, C.; Marussi, D.; Codecà, C.; Di Maria, G.; Caldiera, S.E.; Floriani, I.; Zonato, S.; Ferrari, D.; et al. Detecting Disabilities in Older Patients with Cancer: Comparison between Comprehensive Geriatric Assessment and Vulnerable Elders Survey-13. J. Clin. Oncol. 2010, 28, 2046–2050. [Google Scholar] [CrossRef]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Extermann, M.; Chen, H.; Cantor, A.B.; Corcoran, M.B.; Meyer, J.; Grendys, E.; Cavanaugh, D.; Antonek, S.; Camarata, A.; Haley, W.E.; et al. Predictors of tolerance to chemotherapy in older cancer patients: A prospective pilot study. Eur. J. Cancer 2002, 38, 1466–1473. [Google Scholar] [CrossRef]
- ESMO. Clinical Practice Guideliness. Available online: https://www.esmo.org/guidelines/guidelines-by-topic (accessed on 30 May 2023).
- National Comprehenive Cancer Network NCCN. Clinical Practice Guidelines in Oncology. Available online: http://www.nccn.org/guidelines/category_1 (accessed on 30 May 2023).
- Feliu, J.; Espinosa, E.; Basterretxea, L.; Paredero, I.; Llabrés, E.; Jiménez-Munárriz, B.; Antonio-Rebollo, M.; Losada, B.; Pinto, A.; Gironés, R.; et al. Undertreatment and overtreatment in older patients treated with chemotherapy. J. Geriatr. Oncol. 2021, 12, 381–387. [Google Scholar] [CrossRef]
- Common Terminology Criteria for Adverse Events (CTCAE), Version 4.0. Available online: https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_8.5x11.pdf (accessed on 4 April 2013).
- Hosmer, D.W.; Lemeshow, S. (Eds.) Applied Logistic Regression; John Wiley and Sons: New York, NY, USA, 1989. [Google Scholar]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Concato, J.; Feinstein, A.R.; Holford, T.R. The risk of determining risk with multivariable models. Ann. Intern. Med. 1993, 118, 201–210. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. (Eds.) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Ruan, G.T.; Zhang, Q.; Zhang, X.; Tang, M.; Song, M.M.; Zhang, X.W.; Li, X.R.; Zhang, K.P.; Ge, Y.Z.; Yang, M.; et al. Geriatric Nutrition Risk Index: Prognostic factor related to inflammation in elderly patients with cancer cachexia. J. Cachexia Sarcopenia Muscle 2021, 12, 1969–1982. [Google Scholar] [CrossRef]
- Lim, S.L.; Ong, K.C.; Chan, Y.H.; Loke, W.C.; Ferguson, M.; Daniels, L. Malnutrition and its impact on cost of hospitalization, length of stay, readmission and 3-year mortality. Clin. Nutr. 2012, 31, 345–350. [Google Scholar] [CrossRef]
- Boudou-Rouquette, P.; de Moura, A.; Martinez-Tapia, C.; Serrano, A.G.; Chahwakilian, A.; Jouinot, A.; Ulmann, G.; Orvoën, G.; Chambraud, C.; Durand, J.P.; et al. ELCAPA Study Energy expenditure profiles and the risk of early limiting toxicity in older patients with cancer: The ELCAPA-25 prospective cohort survey. Clin. Nutr. 2022, 41, 1073–1108. [Google Scholar] [CrossRef]
- Evans, D.C.; Corkins, M.R.; Malone, A.; Miller, S.; Mogensen, K.M.; Guenter, P.; Jensen, G.L. The use of visceral proteins as nutrition markers: An ASPEN position paper. Nutr. Clin. Pract. 2021, 36, 22–28. [Google Scholar] [CrossRef]
- Lichtman, S.M. Chemotherapy in the elderly. Semin. Oncol. 2004, 31, 160–174. [Google Scholar] [CrossRef]
- Yang, W.; Bai, Y.; Xiong, Y.; Zhang, J.; Chen, S.; Zheng, X.; Meng, X.; Li, L.; Wang, J.; Xu, C.; et al. Potentiating the antitumor response of CD8(+) T cells by modulating cholesterol metabolism. Nature 2016, 531, 651–655. [Google Scholar] [CrossRef]
- Buck, I.; Morceau, F.; Grigorakaki, C.; Dicato, M.; Diederich, M. Linking anemia to inflammation and cancer: The crucial role of TNFalpha. Biochem. Pharmacol. 2009, 77, 1572–1579. [Google Scholar] [CrossRef]
- Biesma, B.; Wymenga, A.N.; Vincent, A.; Dalesio, O.; Smit, H.J.; Stigt, J.A.; Smit, E.F.; van Felius, C.L.; van Putten, J.W.G.; Slaets, J.P.J.; et al. Quality of life, geriatric assessment and survival in elderly patients with non-small cell lung cancer treated with carboplatin-gemcitabine or carboplatin-paclitaxel: NVALT-3 a phase III study. Ann. Oncol. 2011, 22, 1520–1527. [Google Scholar] [CrossRef]
- Extermann, M.; Reich, R.R.; Sehovic, M. Chemotoxicity recurrence in older patients: Risk factors and effectiveness of preventive strategies-a prospective study. Cancer 2015, 121, 2984–2992. [Google Scholar] [CrossRef]
- Lewis, A.; Reed, M.; Walde, N.; Voutsadakis, I.A. An evaluation of the Index4 tool for chemotherapy toxicity prediction in cancer patients older than 70 years old. Sci Rep. 2023, 13, 1082. [Google Scholar] [CrossRef]
- Suto, H.; Inui, Y.; Okamura, A. Validity of the Cancer and Aging Research Group Predictive Tool in Older Japanese Patients. Cancers 2022, 14, 2075. [Google Scholar] [CrossRef]
- Lee, J.S.; Choi, H.S.; Ko, Y.G.; Yun, D.H. Performance of the Geriatric Nutritional Risk Index in predicting 28-day hospital mortality on older adults patients with sepsis. Clin. Nutr. 2013, 32, 843–848. [Google Scholar] [CrossRef]
- Matsumura, T.; Mitani, Y.; Oki, Y.; Fujimoto, Y.; Ohira, M.; Kaneko, H.; Kawashima, T.; Nishio, M.; Ishikawa, A. Comparison of Geriatric Nutritional Risk Index scores on physical performance among elderly patients with chronic obstructive pulmonary disease. Heart Lung 2015, 44, 534–538. [Google Scholar] [CrossRef]
- Yamada, K.; Furuya, R.; Takita, T.; Maruyama, Y.; Yamaguchi, Y.; Ohkawa, S.; Kumagai, H. Simplified nutritional screening tools for patients on maintenance hemodialysis. Am. J. Clin. Nutr. 2018, 87, 106–113. [Google Scholar] [CrossRef]
- Kinugasa, Y.; Kato, M.; Sugihara, S.; Hirai, M.; Yamada, K.; Yanagihara, K.; Yamamoto, K. Geriatric nutritional risk index predictsfunctional dependency and mortality in patients with heart failure with preserved ejection fraction. Circ. J. 2013, 77, 705–711. [Google Scholar] [CrossRef]
- Lidoriki, I.; Schizas, D.; Frountzas, M.; Machairas, N.; Prodromidou, A.; Kapelouzou, A.; Karavokyros, I.; Pikoulis, E.; Kales, S.N.; Liakakos, T. GNRI as a Prognostic Factor for Outcomes in Cancer Patients: A Systematic Review of the Literature. Nutr. Cancer 2021, 73, 391–403. [Google Scholar] [CrossRef]
- Shinko, D.; Diakos, C.I.; Clarke, S.J.; Charles, K.A. Cancer-Related Systemic Inflammation: The Challenges and Therapeutic Opportunities for Personalized Medicine. Clin. Pharmacol. Ther. 2017, 102, 599–610. [Google Scholar] [CrossRef]
- Liu, T.; Liu, C.; Deng, L.; Song, M.; Lin, S.; Shi, H. The prognostic effect of sixteen malnutrition/inflammation-based indicators on the overall survival of chemotherapy patients. Front. Immunol. 2023, 14, 1117232. [Google Scholar] [CrossRef]
Characteristics | Total (n = 234) |
---|---|
Age, median (SD) years | 78 (5.1) |
Sex | |
Male | 144 (62%) |
Female | 90 (38%) |
Type of cancer | |
Gastrointestinal | 134 (57%) |
Lung | 28 (12%) |
Genitourinary | 24 (10%) |
Breast | 14 (6%) |
Other | 34 (15%) |
Metastatic status | |
M0 | 106 (45%) |
M1 | 128 (55%) |
Chemotherapy | |
Standard therapy | 153 (65%) |
Reduced therapy or monotherapy | 81 (35%) |
MAX2 Index | |
0 | 74 (32%) |
1 | 122 (52%) |
2 | 38 (16%) |
Granulocyte colony-stimulating factors | |
Yes | 11 (5%) |
No | 223 (95%) |
ECOG PS | |
0 | 61 (26%) |
1 | 152 (65%) |
2 | 21 (9%) |
Charlson comorbid index | |
0 | 104 (44%) |
1 | 58 (25%) |
≥2 | 72 (31%) |
ADL | |
6 | 190 (81%) |
≤5 | 44 (18%) |
IADL | |
8 | 124 (53%) |
≤7 | 110 (47%) |
SPPB | |
>7 | 185 (79%) |
≤6 | 49 (21%) |
No. falls in the last 6 months | |
None | 199 (85%) |
≥1 | 35 (15%) |
Pfeiffer test | |
0–2 errors | 213 (91%) |
≥3 | 21 (9%) |
VES 13 | |
0–2 | 88 (38%) |
≥3 | 146 (62%) |
Unintentional weight loss % | |
< 5% | 161 (69%) |
≥5% | 73 (31%) |
Body Mass Index | |
<20 | 26 (11%) |
20–30 | 174 (75%) |
>30 | 34 (14%) |
Cachexia | |
Yes | 78 (34%) |
No | 156 (66%) |
GNRI score | |
≤98 | 108 (46%) |
>98 | 126 (54%) |
PNI score | |
≤45 | 110 (47%) |
>45 | 124 (53%) |
CONUT score | |
0 | 88 (38%) |
>1 | 146 (62%) |
Toxicity | |
Grade 0–2 | 159 (68%) |
Grade 3–5 | 75 (32%) |
Early death (<6 months from diagnosis) | |
Yes | 52 (22%) |
No | 182 (78%) |
Variable | Toxicity | Early Death | ||||
---|---|---|---|---|---|---|
No | Yes | p Value | No | Yes | p Value | |
ECOG PS | ||||||
2 | 12 | 9 | 0.266 | 13 | 8 | 0.067 |
0–1 | 147 | 66 | 169 | 44 | ||
ADL | ||||||
≤5 | 24 | 20 | 0.034 | 28 | 16 | 0.012 |
6 | 135 | 55 | 154 | 36 | ||
IADL | ||||||
≤7 | 72 | 38 | 0.441 | 77 | 33 | 0.006 |
8 | 87 | 37 | 105 | 19 | ||
VES-13 | ||||||
≥3 | 94 | 52 | 0.132 | 108 | 38 | 0.071 |
0–2 | 65 | 23 | 74 | 14 | ||
Cachexia | ||||||
Yes | 50 | 28 | 0.372 | 52 | 26 | 0.008 |
No | 109 | 47 | 120 | 26 | ||
GNRI score | ||||||
≤98 | 71 | 37 | 0.502 | 71 | 37 | 0.000 |
>98 | 88 | 38 | 111 | 15 | ||
PNI score | ||||||
≤41 | 68 | 42 | 0.058 | 72 | 38 | 0.0000 |
>41 | 91 | 33 | 110 | 14 | ||
CONUT score | ||||||
>1 | 90 | 56 | 0.007 | 106 | 40 | 0.014 |
0 | 69 | 19 | 76 | 12 | ||
Creatinine Clearance mL/min | ||||||
<60 | 60 | 37 | 0.093 | 68 | 29 | 0.017 |
≥60 | 99 | 38 | 114 | 23 | ||
Hemoglobin g/dL | ||||||
<12.5 | 60 | 47 | 0.000 | 74 | 33 | 0.004 |
≥12.5 | 99 | 28 | 108 | 19 | ||
Albumin g/dL | ||||||
≤35 | 28 | 18 | 0.251 | 23 | 23 | 0.000 |
>35 | 131 | 57 | 158 | 29 | ||
MAX2 index | ||||||
≥0.45 | 100 | 60 | 0.009 | 126 | 34 | 0.599 |
0–0.44 | 59 | 15 | 56 | 18 | ||
Metastatic status | ||||||
M1 | 87 | 41 | 0.994 | 86 | 42 | 0.000 |
M0 | 72 | 37 | 96 | 10 | ||
GGT (IU/L) | ||||||
>125 | 30 | 17 | 0.498 | 29 | 18 | 0.003 |
≤125 | 129 | 58 | 153 | 34 | ||
Alkaline Phosphatase (IU/L) | ||||||
>150 | 30 | 18 | 0.364 | 31 | 17 | 0.014 |
≤150 | 129 | 57 | 151 | 35 |
Variable | β | SE | p * | OR (95% CI) | Score |
---|---|---|---|---|---|
CONUT score ≥ 1 | 0.711 | 0.335 | 0.034 | 2.036 (1.056–3.926) | 1 |
MAX2 index > 0.45 | 1.145 | 0.373 | 0.002 | 3.143 (1.514–6.525) | 1 |
Hemoglobin ≤ 12.5 g/dL | 1.109 | 0.373 | 0.000 | 3.033(1.631–5.639) | 1 |
ADL ≤ 5 | 1.171 | 0.398 | 0.003 | 3.225 (1.477–7.045) | 1 |
Variable | β | SE | p * | OR (95% CI) | Score |
---|---|---|---|---|---|
Stage IV | 1.412 | 0.402 | 0.000 | 4.102 (1.866–9.019) | 1 |
GNRI score | 1.028 | 0.215 | 0.000 | 2.795 (1.833–4.263) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feliu, J.; Custodio, A.B.; Pinto-Marín, A.; Higuera, O.; Pérez-González, M.; del Pino, L.; Ruiz-Jiménez, L.; Sánchez-Cabero, D.; Viera, I.; Jurado, A.; et al. Predicting Risk of Severe Toxicity and Early Death in Older Adult Patients Treated with Chemotherapy. Cancers 2023, 15, 4670. https://doi.org/10.3390/cancers15184670
Feliu J, Custodio AB, Pinto-Marín A, Higuera O, Pérez-González M, del Pino L, Ruiz-Jiménez L, Sánchez-Cabero D, Viera I, Jurado A, et al. Predicting Risk of Severe Toxicity and Early Death in Older Adult Patients Treated with Chemotherapy. Cancers. 2023; 15(18):4670. https://doi.org/10.3390/cancers15184670
Chicago/Turabian StyleFeliu, Jaime, Ana Belén Custodio, Alvaro Pinto-Marín, Oliver Higuera, Miriam Pérez-González, Laura del Pino, Leticia Ruiz-Jiménez, Darío Sánchez-Cabero, Isabel Viera, Ana Jurado, and et al. 2023. "Predicting Risk of Severe Toxicity and Early Death in Older Adult Patients Treated with Chemotherapy" Cancers 15, no. 18: 4670. https://doi.org/10.3390/cancers15184670
APA StyleFeliu, J., Custodio, A. B., Pinto-Marín, A., Higuera, O., Pérez-González, M., del Pino, L., Ruiz-Jiménez, L., Sánchez-Cabero, D., Viera, I., Jurado, A., & Espinosa, E. (2023). Predicting Risk of Severe Toxicity and Early Death in Older Adult Patients Treated with Chemotherapy. Cancers, 15(18), 4670. https://doi.org/10.3390/cancers15184670