Simultaneous Integrated Boost for Dose Escalation in Node-Positive Cervical Cancer: 5-Year Experience in a Single Institution
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Treatment Delivery
2.2.1. External Beam Radiotherapy
2.2.2. Brachytherapy
2.3. Follow-Up
2.4. Endpoints and Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Individual Nodal Characteristics
3.3. Treatment Characteristics
3.4. Treatment Efficacy
3.5. Failure Patterns
3.6. Toxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, D.; Vignat, J.; Lorenzoni, V.; Eslahi, M.; Ginsburg, O.; Lauby-Secretan, B.; Arbyn, M.; Basu, P.; Bray, F.; Vaccarella, S. Global estimates of incidence and mortality of cervical cancer in 2020: A baseline analysis of the WHO Global Cervical Cancer Elimination Initiative. Lancet Glob. Health 2023, 11, e197–e206. [Google Scholar] [CrossRef]
- Hong Kong Cancer Registry. Hospital Authority. 2020. Available online: https://www3.ha.org.hk/cancereg/pdf/factsheet/2020/cx_2020.pdf (accessed on 9 August 2023).
- Sturdza, A.; Pötter, R.; Fokdal, L.U.; Haie-Meder, C.; Tan, L.T.; Mazeron, R.; Petric, P.; Šegedin, B.; Jurgenliemk-Schulz, I.M.; Nomden, C.; et al. Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study. Radiother. Oncol. 2016, 120, 428–433. [Google Scholar] [CrossRef]
- Pötter, R.; Tanderup, K.; Schmid, M.P.; Jürgenliemk-Schulz, I.; Haie-Meder, C.; Fokdal, L.U.; Sturdza, A.E.; Hoskin, P.; Mahantshetty, U.; Segedin, B.; et al. MRI-guided adaptive brachytherapy in locally advanced cervical cancer (EMBRACE-I): A multicentre prospective cohort study. Lancet Oncol. 2021, 22, 538–547. [Google Scholar] [CrossRef]
- Charra-Brunaud, C.; Harter, V.; Delannes, M.; Haie-Meder, C.; Quetin, P.; Kerr, C.; Castelain, B.; Thomas, L.; Peiffert, D. Impact of 3D image-based PDR brachytherapy on outcome of patients treated for cervix carcinoma in France: Results of the French STIC prospective study. Radiother. Oncol. 2012, 103, 305–313. [Google Scholar] [CrossRef]
- Wu, P.Y.; Wong, T.P.W.; Yip, Y.Y.C.; Chang, T.Y.A.; Chan, L.K.L.; Lee, M.C.H.; Law, L.Y.A.; Yeung, M.W.R.; Soong, S.I. MRI-guided adaptive brachytherapy for locally advanced cervix cancer: Treatment outcomes from a single institution in Hong Kong. Brachytherapy 2019, 18, 171–179. [Google Scholar] [CrossRef]
- Rijkmans, E.C.; Nout, R.A.; Rutten, I.H.H.M.; Ketelaars, M.; Neelis, K.J.; Laman, M.S.; Coen, V.L.; Gaarenstroom, K.N.; Kroep, J.R.; Creutzberg, C.L. Improved survival of patients with cervical cancer treated with image-guided brachytherapy compared with conventional brachytherapy. Gynecol. Oncol. 2014, 135, 231–238. [Google Scholar] [CrossRef]
- Pötter, R.; Georg, P.; Dimopoulos, J.C.A.; Grimm, M.; Berger, D.; Nesvacil, N.; Georg, D.; Schmid, M.P.; Reinthaller, A.; Sturdza, A.; et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother. Oncol. 2011, 100, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.Z.; Li, P.; Li, J.P.; Bai, F.; Zhang, Y.; Mu, Y.F.; Li, W.-W.; Wei, L.C.; Shi, M. The Efficacy and Late Toxicities of Computed Tomography-based Brachytherapy with Intracavitary and Interstitial Technique in Advanced Cervical Cancer. J. Cancer 2018, 9, 1635–1641. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.-T.; Pötter, R.; Sturdza, A.; Fokdal, L.; Haie-Meder, C.; Schmid, M.; Gregory, D.; Petric, P.; Jürgenliemk-Schulz, I.; Gillham, C.; et al. Change in Patterns of Failure After Image-Guided Brachytherapy for Cervical Cancer: Analysis from the RetroEMBRACE Study. Int. J. Radiat. Oncol. 2019, 104, 895–902. [Google Scholar] [CrossRef]
- Nomden, C.N.; Pötter, R.; de Leeuw, A.A.C.; Tanderup, K.; Lindegaard, J.C.; Schmid, M.P.; Fortin, I.; Haie-Meder, C.; Mahantshetty, U.; Hoskin, P.; et al. Nodal failure after chemo-radiation and MRI guided brachytherapy in cervical cancer: Patterns of failure in the EMBRACE study cohort. Radiother. Oncol. 2019, 134, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Feijoo, B.; Acosta, Ú.; Torné, A.; Gil-Ibáñez, B.; Hernández, A.; Domingo, S.; Gil-Moreno, A. Laparoscopic Debulking of Enlarged Pelvic Nodes during Surgical Para-aortic Staging in Locally Advanced Cervical Cancer: A Retrospective Comparative Cohort Study. J. Minim. Invasive Gynecol. 2022, 29, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Olthof, E.P.; Wenzel, H.; van der Velden, J.; Spijkerboer, A.M.; Bekkers, R.; Beltman, J.J.; Nijman, H.W.; Slangen, B.; Smolders, R.; van Trommel, N.; et al. Treatment of bulky lymph nodes in locally advanced cervical cancer: Boosting versus debulking. Int. J. Gynecol. Cancer 2022, 32, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.H.; Kim, J.Y.; Lee, D.S.; Lee, Y.H.; Lee, S.-W.; Sung, S.; Park, H.H.; Yoon, S.-C.; Hur, S.Y.; Park, J.-S.; et al. Clinical impact of boost irradiation to pelvic lymph node in uterine cervical cancer treated with definitive chemoradiotherapy. Medicine 2018, 97, e0517. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.-Z.; Li, P.; Li, J.-P.; Zhang, Y.; Zhao, L.N.; Li, W.-W.; Wei, L.-C.; Shi, M. Efficacy and Toxicity of IMRT-Based Simultaneous Integrated Boost for the Definitive Management of Positive Lymph Nodes in Patients with Cervical Cancer. J. Cancer 2019, 10, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Wakatsuki, M.; Ohno, T.; Kato, S.; Ando, K.; Noda, S.E.; Kiyohara, H.; Shibuya, K.; Karasawa, K.; Kamada, T.; Nakano, T. Impact of boost irradiation on pelvic lymph node control in patients with cervical cancer. J. Radiat. Res. 2014, 55, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Sethi, R.; Mayadev, J.; Sethi, S.; Rash, D.; Chen, L.-M.; Brooks, R.; Ueda, S.; Hsu, I.-C. Patterns of Recurrence in Node-Positive Cervical Cancer Patients Treated with Contemporary Chemoradiation and Dose Escalation: A Multi-Institutional Study. Pract. Radiat. Oncol. 2019, 9, e180–e186. [Google Scholar] [CrossRef]
- Vargo, J.A.; Kim, H.; Choi, S.; Sukumvanich, P.; Olawaiye, A.B.; Kelley, J.L.; Edwards, R.P.; Comerci, J.T.; Beriwal, S. Extended Field Intensity Modulated Radiation Therapy with Concomitant Boost for Lymph Node–Positive Cervical Cancer: Analysis of Regional Control and Recurrence Patterns in the Positron Emission Tomography/Computed Tomography Era. Int. J. Radiat. Oncol. 2014, 90, 1091–1098. [Google Scholar] [CrossRef]
- Pötter, R.; Tanderup, K.; Kirisits, C.; De Leeuw, A.; Kirchheiner, K.; Nout, R.; Tan, L.T.; Haie-Meder, C.; Mahantshetty, U.; Segedin, B.; et al. The EMBRACE II study: The outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies. Clin. Transl. Radiat. Oncol. 2018, 9, 48–60. [Google Scholar] [CrossRef]
- Ramirez, P.T.; Jhingran, A.; Macapinlac, H.A.; Euscher, E.D.; Munsell, M.F.; Coleman, R.L.; Soliman, P.T.; Schmeler, K.M.; Frumovitz, M.; Ramondetta, L.M. Laparoscopic extraperitoneal para-aortic lymphadenectomy in locally advanced cervical cancer1: A prospective correlation of surgical findings with positron emission tomography/computed tomography findings. Cancer 2011, 117, 1928–1934. [Google Scholar] [CrossRef]
- Gouy, S.; Morice, P.; Narducci, F.; Uzan, C.; Gilmore, J.; Kolesnikov-Gauthier, H.; Querleu, D.; Haie-Meder, C.; Leblanc, E. Nodal-staging surgery for locally advanced cervical cancer in the era of PET. Lancet Oncol. 2012, 13, e212–e220. [Google Scholar] [CrossRef]
- Lee, J.; Lin, J.-B.; Chang, C.-L.; Jan, Y.-T.; Sun, F.-J.; Wu, M.-H.; Chen, Y.-J. Prophylactic lower para-aortic irradiation using intensity-modulated radiotherapy mitigates the risk of para-aortic recurrence in locally advanced cervical cancer: A 10-year institutional experience. Gynecol. Oncol. 2017, 146, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.C.; Muller, D.A.; Dutta, S.W.; Corriher, T.J.; Ring, K.L.; Showalter, T.N.; Romano, K.D. Para-Aortic Nodal Radiation in the Definitive Management of Node-Positive Cervical Cancer. Front. Oncol. 2021, 11, 664714. [Google Scholar] [CrossRef]
- Peters, M.; de Leeuw, A.A.C.; Nomden, C.N.; Tanderup, K.; Kirchheiner, K.; Lindegaard, J.C.; Kirisits, C.; Haie-Meder, C.; Sturdza, A.; Fokdal, L.; et al. Risk factors for nodal failure after radiochemotherapy and image guided brachytherapy in locally advanced cervical cancer: An EMBRACE analysis. Radiother. Oncol. 2021, 163, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Jürgenliemk-Schulz, I.-M.; Beriwal, S.; de Leeuw, A.A.C.; Lindegaard, J.C.; Nomden, C.N.; Pötter, R.; Tanderup, K.; Viswanathan, A.N.; Erickson, B. Management of Nodal Disease in Advanced Cervical Cancer. Semin. Radiat. Oncol. 2019, 29, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Raut, A.; Chopra, S.; Mittal, P.; Patil, G.; Mahantshetty, U.; Gurram, L.; Swamidas, J.; Ghosh, J.; Gulia, S.; Popat, P.; et al. FIGO Classification 2018: Validation Study in Patients with Locally Advanced Cervix Cancer Treated with Chemoradiation. Int. J. Radiat. Oncol. 2020, 108, 1248–1256. [Google Scholar] [CrossRef]
- Olawaiye, A.B.; Baker, T.P.; Washington, M.K.; Mutch, D.G. The new (Version 9) American Joint Committee on Cancer tumor, node, metastasis staging for cervical cancer. CA Cancer J. Clin. 2021, 71, 287–298. [Google Scholar] [CrossRef]
- Ramlov, A.; Assenholt, M.S.; Jensen, M.F.; Grønborg, C.; Nout, R.; Alber, M.; Fokdal, L.; Tanderup, K.; Lindegaard, J.C. Clinical implementation of coverage probability planning for nodal boosting in locally advanced cervical cancer. Radiother. Oncol. 2017, 123, 158–163. [Google Scholar] [CrossRef]
- EMBRACE II Study Protocol v.1.0 [Internet]. Available online: https://www.embracestudy.dk/UserUpload/PublicDocuments/Docs/EMBRACE_II_title_page_and_total_protocol_v15_151015.pdf (accessed on 9 August 2023).
- Haie-Meder, C.; Pötter, R.; Van Limbergen, E.; Briot, E.; De Brabandere, M.; Dimopoulos, J.; Dumas, I.; Hellebust, T.P.; Kirisits, C.; Lang, S.; et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group☆ (I): Concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother. Oncol. 2005, 74, 235–245. [Google Scholar] [CrossRef]
- Hellebust, T.P.; Kirisits, C.; Berger, D.; Pérez-Calatayud, J.; De Brabandere, M.; De Leeuw, A.; Dumas, I.; Hudej, R.; Lowe, G.; Wills, R.; et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: Considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother. Oncol. 2010, 96, 153–160. [Google Scholar] [CrossRef]
- Pötter, R.; Haie-Meder, C.; Van Limbergen, E.V.; Barillot, I.; De Brabandere, M.D.; Dimopoulos, J.; Dumas, I.; Erickson, B.; Lang, S.; Nulens, A.; et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy—3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother. Oncol. 2006, 78, 67–77. [Google Scholar] [CrossRef]
- National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 9 August 2023).
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Narayanan, G.S.; Reddy, V.P.; Vishwanathan, B.; Narayanan, S.; Venugopal, R. Impact of nodal boost irradiation and MR-based brachytherapy on oncologic outcomes in node-positive cervical cancer. Gynecol. Oncol. 2021, 163, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Jayatilakebanda, I.; Tsang, Y.M.; Hoskin, P. High dose simultaneous integrated boost for node positive cervical cancer. Radiat. Oncol. 2021, 16, 92. [Google Scholar] [CrossRef]
- Jethwa, K.R.; Jang, S.; Gonuguntla, K.; Evans, J.; Block, M.S.; Kumar, A.; Langstraat, C.; Whitaker, T.; Day, C.; Deufel, C.; et al. Lymph Node-Directed Simultaneous Integrated Boost in Patients with Clinically Lymph Node-Positive Cervical Cancer Treated with Definitive Chemoradiation: Clinical Outcomes and Toxicity. Int. J. Radiat. Oncol. 2018, 102, e625–e626. [Google Scholar] [CrossRef]
- Bacorro, W.; Dumas, I.; Escande, A.; Gouy, S.; Bentivegna, E.; Morice, P.; Haie-Meder, C.; Chargari, C. Dose-volume effects in pathologic lymph nodes in locally advanced cervical cancer. Gynecol. Oncol. 2018, 148, 461–467. [Google Scholar] [CrossRef]
- Boyle, J.; Craciunescu, O.; Steffey, B.; Cai, J.; Chino, J. Methods, safety, and early clinical outcomes of dose escalation using simultaneous integrated and sequential boosts in patients with locally advanced gynecologic malignancies. Gynecol. Oncol. 2014, 135, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Ramlov, A.; Kroon, P.S.; Jürgenliemk-Schulz, I.M.; De Leeuw, A.A.C.; Gormsen, L.C.; Fokdal, L.U.; Tanderup, K.; Lindegaard, J.C. Impact of radiation dose and standardized uptake value of (18)FDG PET on nodal control in locally advanced cervical cancer. Acta Oncol. 2015, 54, 1567–1573. [Google Scholar] [CrossRef]
- Kidd, E.A.; Siegel, B.A.; Dehdashti, F.; Grigsby, P.W. The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival. Cancer 2007, 110, 1738–1744. [Google Scholar] [CrossRef]
- Di Donato, V.; Bogani, G.; Casarin, J.; Ghezzi, F.; Malzoni, M.; Falcone, F.; Petrillo, M.; Capobianco, G.; Calò, F.; D’augè, T.G.; et al. Ten-year outcomes following laparoscopic and open abdominal radical hysterectomy for “low-risk” early-stage cervical cancer: A propensity-score based analysis. Gynecol. Oncol. 2023, 174, 49–54. [Google Scholar] [CrossRef]
- Ramirez, P.T.; Frumovitz, M.; Pareja, R.; Lopez, A.; Vieira, M.; Ribeiro, R.M.; Buda, A.; Yan, X.; Shuzhong, Y.; Chetty, N.; et al. Minimally Invasive versus Abdominal Radical Hysterectomy for Cervical Cancer. N. Engl. J. Med. 2018, 379, 1895–1904. [Google Scholar] [CrossRef]
- Uzan, C.; Souadka, A.; Gouy, S.; Debaere, T.; Duclos, J.; Lumbroso, J.; Haie-Meder, C.; Morice, P. Analysis of Morbidity and Clinical Implications of Laparoscopic Para-Aortic Lymphadenectomy in a Continuous Series of 98 Patients with Advanced-Stage Cervical Cancer and Negative PET–CT Imaging in the Para-Aortic Area. Oncologist 2011, 16, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Tozzi, R.; Lavra, F.; Cassese, T.; Campanile, R.G.; Pedicini, V.; Bignardi, M.; Scorsetti, M.; Bertuzzi, A. Laparoscopic debulking of bulky lymph nodes in women with cervical cancer: Indication and surgical outcomes. BJOG Int. J. Obstet. Gynaecol. 2009, 116, 688–692. [Google Scholar] [CrossRef]
- Marnitz, S.; Tsunoda, A.T.; Martus, P.; Vieira, M.A.; Junior, R.J.A.; Nunes, J.; Budach, V.; Hertel, H.; Mustea, A.; Sehouli, J.; et al. Surgical versus clinical staging prior to primary chemoradiation in patients with cervical cancer FIGO stages IIB–IVA: Oncologic results of a prospective randomized international multicenter (Uterus-11) intergroup study. Int. J. Gynecol. Cancer 2020, 30, 1855–1861. [Google Scholar] [CrossRef]
- Martinez, A.; Lecuru, F.; Bizzarri, N.; Chargari, C.; Ducassou, A.; Fagotti, A.; Fanfani, F.; Scambia, G.; Cibula, D.; Díaz-Feijoo, B.; et al. PARa-aOrtic LymphAdenectomy in locally advanced cervical cancer (PAROLA trial): A GINECO, ENGOT, and GCIG study. Int. J. Gynecol. Cancer 2023, 33, 293–298. [Google Scholar] [CrossRef]
- He, M.; Zhong, L.; Wang, H.; Tang, Y.; Zhou, Q.; Zou, D. EPV070/#401 Randomized controlled trial of the efficacy of lymph node dissection on stage IIICR of cervical cancer (CQGOG0103). In E-Posters [Internet]; BMJ Publishing Group Ltd.: London, UK, 2021; p. A57. Available online: https://ijgc.bmj.com/lookup/doi/10.1136/ijgc-2021-IGCS.138 (accessed on 19 August 2023).
- Beriwal, S.; Gan, G.N.; Heron, D.E.; Selvaraj, R.N.; Kim, H.; Lalonde, R.; Kelley, J.L.; Edwards, R.P. Early Clinical Outcome with Concurrent Chemotherapy and Extended-Field, Intensity-Modulated Radiotherapy for Cervical Cancer. Int. J. Radiat. Oncol. 2007, 68, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Mileshkin, L.R.; Moore, K.N.; Barnes, E.; Gebski, V.; Narayan, K.; Bradshaw, N.; Lee, Y.C.; Diamante, K.; Fyles, A.W.; Small, W.; et al. Adjuvant chemotherapy following chemoradiation as primary treatment for locally advanced cervical cancer compared to chemoradiation alone: The randomized phase III OUTBACK Trial (ANZGOG 0902, RTOG 1174, NRG 0274). J. Clin. Oncol. 2021, 39 (Suppl. S18), LBA3. [Google Scholar] [CrossRef]
- Gupta, S.; Maheshwari, A.; Parab, P.; Mahantshetty, U.; Hawaldar, R.; Sastri Chopra, S.; Kerkar, R.; Engineer, R.; Tongaonkar, H.; Ghosh, J.; et al. Neoadjuvant Chemotherapy Followed by Radical Surgery Versus Concomitant Chemotherapy and Radiotherapy in Patients with Stage IB2, IIA, or IIB Squamous Cervical Cancer: A Randomized Controlled Trial. J. Clin. Oncol. 2018, 36, 1548–1555. [Google Scholar] [CrossRef]
- Kenter, G.; Greggi, S.; Vergote, I.; Katsaros, D.; Kobierski, J.; Massuger, L.; van Doorn, H.C.; Landoni, F.; Van Der Velden, J.; Reed, N.S.; et al. Results from neoadjuvant chemotherapy followed by surgery compared to chemoradiation for stage Ib2-IIb cervical cancer, EORTC 55994. J. Clin. Oncol. 2019, 37 (Suppl. S15), 5503. [Google Scholar] [CrossRef]
- Schefter, T.; Winter, K.; Kwon, J.S.; Stuhr, K.; Balaraj, K.; Yaremko, B.P.; Small, W.; Sause, W., Jr.; Gaffney, D.; Radiation Therapy Oncology Group. RTOG 0417: Efficacy of Bevacizumab in Combination with Definitive Radiation Therapy and Cisplatin Chemotherapy in Untreated Patients with Locally Advanced Cervical Carcinoma. Int. J. Radiat. Oncol. 2014, 88, 101–105. [Google Scholar] [CrossRef]
- Lorusso, D.; Colombo, N.; Coleman, R.L.; Randall, L.M.; Duska, L.R.; Xiang, Y.; Hasegawa, K.; Rodrigues, A.N.; Cibula, D.; Mirza, M.R.; et al. ENGOT-cx11/KEYNOTE-A18: A phase III, randomized, double-blind study of pembrolizumab with chemoradiotherapy in patients with high-risk locally advanced cervical cancer. J. Clin. Oncol. 2020, 38 (Suppl. S15), TPS6096. [Google Scholar] [CrossRef]
- Jeannot, E.; Latouche, A.; Bonneau, C.; Calméjane, M.A.; Beaufort, C.; Ruigrok-Ritstier, K.; Bataillon, G.; Larbi Chérif, L.; Dupain, C.; Lecerf, C.; et al. Circulating HPV DNA as a marker for early detection of relapse in patients with cervical cancer. Clin. Cancer Res. 2021, 27, 5869–5877. [Google Scholar] [CrossRef] [PubMed]
Age, median (range), y | 56 (27–80) |
ECOG, n (%) | |
0 or 1 | 50 (93) |
≥2 | 4 (7) |
CCI, n (%) | |
≤2 | 44 (81) |
>2 | 10 (19) |
Histology, n (%) | |
SCC | 46 (85) |
Adenocarcinoma | 6 (11) |
Others 1 | 2 (4) |
FIGO stage, n (%) | |
IIIC1 | 31 (57) |
IIIC2 | 21 (39) |
IVA | 2 (4) |
TNM stage—T stage, n (%) | |
T1b3 | 1 (2) |
T2a | 6 (11) |
T2b | 28 (52) |
T3a | 3 (6) |
T3b | 14 (26) |
T4a | 2 (4) |
TNM stage—N stage, n (%) | |
N1 | 33 (61) |
N2 | 21 (39) |
Width of primary tumor, median (range), mm | 64 (41–105) |
Parametrial involvement, n (%) | 48 (89) |
PET-CT staging, n (%) | 41 (76) |
Primary tumor SUVmax 2, median (range) | 16.3 (5.8–61.9) |
Maximal nodal short axis 3, median (range), mm | 12 (6.3–49.0) |
Total no. of involved LN, median (range) | 3 (1–16) |
1–2 | 23 (43) |
3–5 | 14 (26) |
6–9 | 13 (24) |
≥10 | 4 (7) |
Nodal distribution | |
Pelvic—low pelvis | 54 (100) |
Pelvic—common iliac | 25 (46) |
PAO | 21 (39) |
Median follow-up (range), months | 19.6 (6.8–55.2) |
Total no. of pelvic LN, n (%) | 182 (78) |
Total no. of pelvic LN—low pelvic, n (%) | 140 (60) |
Total no. of pelvic LN—common iliac, n (%) | 42 (18) |
Total no. of PAO LN, n (%) | 52 (22) |
Nodal volume, cm3 | |
<3 | 164 (70) |
3–5 | 29 (12) |
>5 | 41 (18) |
Nodal SUVmax 1, median (range) | 3.9 (1.3–46) |
Presence of clustering, n (%) | 78 (33) |
Concurrent chemotherapy 1 | |
Yes | 47 (87) |
No | 7 (13) |
EBRT coverage | |
Pelvic | 17 (31) |
Pelvic + PAO | 30 (56) |
Pelvic + PAO + inguinofemoral | 7 (13) |
Intent of PAO irradiation 2 | |
Elective | 16 (43) |
Therapeutic | 21 (57) |
EBRT dosimetric parameters, median (range) | |
GTV-T vol, cm3 | 132.1 (24.2–593.7) |
ITV45 vol, cm3 | 1144.9 (730.3–2817.7) |
Bladder V30, cm3 | 95.9 (75.9–100) |
Bladder V40, cm3 | 64.8 (47.1–100) |
Rectum V30, cm3 | 99.6 (65.9–100) |
Rectum V40, cm3 | 90.8 (46.5–100) |
Bowel V30, cm3 | 459.8 (156.7–1075.7) |
Bowel V40, cm3 | 206.2 (56.2–558.0) |
Conformality V36/PTV | 1.50 (1.35–1.56) |
Conformality V43/PTV | 1.04 (0.98–1.10) |
Brachytherapy technique | |
IC + IS, n (%) | 53 (98) |
IC alone, n (%) | 1 (2) |
No. of IS needles loaded, median (range) | 7 (0–17) |
Brachytherapy dosimetric parameters, median (range), Gy | |
GTV D98 | 99.4 (78.1–135.6) |
HR CTV D90 | 94.2 (85.1–98.5) |
IR CTV D98 | 60.9 (55.4–62.9) |
D2cc bladder | 85.4 (63.7–94.7) |
D2cc rectum | 65.8 (51.6–75.0) |
D2cc sigmoid | 68.4 (49.9–78.9) |
D2cc small bowel | 59.4 (44.2–78.7) |
OTT, median (range), days | 44 (41–79) |
≤50, n (%) | 49 (91) |
>50, n (%) | 5 (9) |
Patient | Location | Size in Short Axis (mm) | GTV-N Volume (cm3) | Nodal SUVmax | Clustering | Boost Dose (Gy) | Time to Failure (month) |
---|---|---|---|---|---|---|---|
1 | External iliac | 27 | 37.31 | 12 | Yes | 55 | 25.6 |
2 | Internal iliac | 9 | 0.59 | 2.6 | No | 55 | 17.1 |
3 | Internal iliac | 17 | 4.15 | 6 | No | 55 | 6.8 |
External iliac | 13 | 5.17 | 7.5 | No | 55 | 6.8 |
Histology | TNM Stage | Nodal Distribution at Diagnosis (no. of LN) | PAO Irradiation | Recurrence Characteristics | |||
---|---|---|---|---|---|---|---|
Failure Pattern | No. of Pelvic LN (In/Out-Field) | No. of PAO LN (In/Out-Field) | Subsequent Treatment | ||||
SCC | T2bN1M0 | Pelvic (4) | Yes (Elective) | Pelvic nodal | 1 (in-field) | 0 | SBRT |
SCC | T2a2N2M0 | Pelvic (1) + PAO (1) | Yes (Therapeutic) | Pelvic nodal + Local | 1 (in-boost) | 0 | Chemo |
SCC | T2bN1M0 | Pelvic (3) | Yes (Elective) | PAO nodal + Distant | 0 | 6 (in-field) | Palliative RT |
ADC | T2bN1M0 | Pelvic (1) | No | Pelvic nodal + PAO nodal + Local + Distant | 5 (in-field) 1 (in-boost) | 9 (out-field) | None |
ADC | T2bN1M0 | Pelvic (2) | No | Pelvic nodal + PAO nodal + Local + Distant | 5 (in-field) 2 (in-boost) | 1 (out-field) | Chemo |
INC | RNC | PC | LRC | DFS | OS | |
---|---|---|---|---|---|---|
12 months | 99% | 98% | 94% | 94% | 88% | 91% |
18 months | 99% | 93% | 87% | 87% | 78% | 91% |
24 months | 99% | 93% | 87% | 87% | 78% | 85% |
36 months | 97% | 88% | 82% | 82% | 74% | 80% |
RNC | |||
---|---|---|---|
Variable | HR (95% CI) | p | |
Histology | SCC | Ref | |
ADC | 10.99 (1.51–79.88) | 0.02 | |
Others 1 | No event | ||
FIGO stage | IIIC1 | Ref | |
IIIC2 or above | 0.38 (0.04–3.49) | 0.40 | |
Concurrent chemotherapy | Yes | Ref | |
No | 0.76 (0.08–7.56) | 0.82 | |
Nodal distribution | Pelvic only | Ref | |
Pelvic + PAO | 0.42 (0.05–3.79) | 0.44 | |
Total no. of LN | 1–2 | Ref | |
≥3 | 0.51 (0.08–3.17) | 0.47 | |
Total nodal volume (cm3) | Continuous variable | 1.00 (0.97–1.03) | 1.00 |
Maximal nodal size in short axis (mm) | Continuous variable | 1.00 (0.89–1.13) | 0.94 |
Maximal nodal SUVmax 2 | Continuous variable | 1.02 (0.87–1.19) | 0.79 |
Width of primary tumor (mm) | Continuous variable | 1.01 (0.93–1.09) | 0.83 |
GTV-T volume (cm3) | Continuous variable | 1.00 (0.98–1.01) | 0.66 |
Primary tumor SUVmax 3 | Continuous variable | 1.03 (0.93–1.14) | 0.54 |
OTT | ≤50 days | Ref | |
>50 days | No event |
PC | LRC | ||||
---|---|---|---|---|---|
Variable | HR (95% CI) | p | HR (95% CI) | p | |
Histology | SCC | Ref | Ref | ||
ADC | 4.03 (0.77–20.99) | 0.10 | 4.03 (0.77–20.99) | 0.10 | |
Others 1 | No event | No event | |||
FIGO stage | IIIC1 | Ref | Ref | ||
IIIC2 or above | 1.27 (0.28–5.69) | 0.76 | 0.94 (0.22–3.99) | 0.94 | |
Parametrial involvement | No | Ref | Ref | ||
Yes | 2.85 (0.55–14.74) | 0.21 | 2.85 (0.55–14.74) | 0.21 | |
Concurrent chemotherapy | Yes | Ref | Ref | ||
No | No event | 0.52 (0.06–4.54) | 0.55 | ||
Nodal distribution | Pelvic only | Ref | Ref | ||
Pelvic + PAO | 1.42 (0.32–6.34) | 0.65 | 1.04 (0.25–4.40) | 0.96 | |
Total no. of LN | 1–2 | Ref | Ref | ||
≥3 | 0.67 (0.15–3.00) | 0.60 | 0.67 (0.15–3.00) | 0.60 | |
Total nodal volume (cm3) | Continuous variable | 1.00 (0.98–1.03) | 0.94 | 1.00 (0.98–1.03) | 0.97 |
Maximal nodal size in short axis (mm) | Continuous variable | 1.02 (0.94–1.11) | 0.61 | 1.02 (0.93–1.10) | 0.72 |
Maximal nodal SUVmax 2 | Continuous variable | 1.00 (0.86–1.17) | 1.00 | 1.00 (0.85–1.17) | 0.94 |
Width of primary tumor (mm) | Continuous variable | 1.05 (1.00–1.11) | 0.054 | 1.05 (1.00–1.10) | 0.08 |
GTV–T volume (cm3) | Continuous variable | 1.00 (1.00–1.01) | 0.28 | 1.00 (1.00–1.01) | 0.26 |
HR CTV D90 | Continuous variable | 0.91 (0.72–1.14) | 0.39 | 0.94 (0.75–1.19) | 0.61 |
Primary tumor SUVmax 3 | Continuous variable | 1.07 (1.00–1.15) | 0.04 | 1.07 (1.00–1.14) | 0.046 |
OTT | ≤50 days | Ref | Ref | ||
>50 days | No event | No event |
DFS | OS | ||||
---|---|---|---|---|---|
Variable | HR (95% CI) | p | HR (95% CI) | HR (95% CI) | |
Age | Continuous variable | 0.99 (0.94–1.04) | 0.72 | 0.95 (0.89–1.02) | 0.18 |
ECOG | 0 or 1 | ref | ref | ||
≥2 | 0.97 (0.20–4.78) | 0.98 | 1.64 (0.20–13.71) | 0.65 | |
CCI | 0 | ref | ref | ||
1–2 | 0.63 (0.15–2.61) | 0.52 | 0.50 (0.08– 3.01) | 0.44 | |
≥3 | 1.24 (0.27–5.65) | 0.78 | 0.90 (0.12–6.48) | 0.92 | |
Histology | SCC | ref | ref | ||
ADC | 2.30 (0.49–10.78) | 0.29 | 6.07 (1.05–35.09) | 0.04 | |
Others 1 | 1.61 (0.20–13.37) | 0.66 | 4.31 (0.48–38.76) | 0.19 | |
FIGO stage | IIIC1 | ref | ref | ||
IIIC2 or above | 1.95 (0.65–5.82) | 0.23 | 2.37 (0.53–10.60) | 0.26 | |
Concurrent chemotherapy | Yes | ref | ref | ||
No | 0.97 (0.26–3.64) | 0.96 | 0.79 (0.09–6.54) | 0.82 | |
Nodal distribution | Pelvic only | ref | ref | ||
Pelvic + PAO | 2.15 (0.72–6.42) | 0.17 | 2.56 (0.57–11.46) | 0.22 | |
Total no. of LN | 1–2 | ref | ref | ||
≥3 | 1.97 (0.61–6.38) | 0.26 | 1.10 (0.25–4.90) | 0.90 | |
Total nodal volume (cm3) | Continuous variable | 1.01 (1.00–1.03) | 0.04 | 1.00 (0.99–1.02) | 0.70 |
Maximal nodal size in short axis (mm) | Continuous variable | 1.06 (0.99–1.12) | 0.09 | 1.04 (0.97–1.11) | 0.32 |
Maximal nodal SUVmax 2 | Continuous variable | 1.00 (0.90–1.11) | 0.99 | 1.00 (0.83–1.19) | 0.93 |
Width of primary tumor (mm) | Continuous variable | 1.03 (0.99–1.08) | 0.10 | 1.02 (0.96–1.09) | 0.45 |
GTV-T volume (cm3) | Continuous variable | 1.00 (1.00–1.01) | 0.21 | 1.00 (0.99–1.01) | 0.67 |
Primary tumor SUVmax 3 | Continuous variable | 1.04 (0.99–1.09) | 0.13 | 1.04 (0.97–1.12) | 0.23 |
OTT | ≤50 days | ref | ref | ||
>50 days | 1.17 (0.15–9.19) | 0.88 | 2.03 (0.24–17.02) | 0.52 |
Acute Toxicity | |||
Any GU/GI | GU | GI | |
Grade 2 | 31% | 2% | 29% |
Grade 3 | 2% | 0% | 2% |
Late Toxicity | |||
Any GU/GI | GU | GI | |
Grade 2 | 6% | 2% | 4% |
Grade 3 | 4% | 2% | 2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheung, E.S.-N.; Law, F.C.-H.; Fung, N.T.-C.; Soong, I.S.; Hung, R.H.-M.; Tse, T.K.-H.; Wong, K.K.-S.; Wu, P.Y. Simultaneous Integrated Boost for Dose Escalation in Node-Positive Cervical Cancer: 5-Year Experience in a Single Institution. Cancers 2023, 15, 4647. https://doi.org/10.3390/cancers15184647
Cheung ES-N, Law FC-H, Fung NT-C, Soong IS, Hung RH-M, Tse TK-H, Wong KK-S, Wu PY. Simultaneous Integrated Boost for Dose Escalation in Node-Positive Cervical Cancer: 5-Year Experience in a Single Institution. Cancers. 2023; 15(18):4647. https://doi.org/10.3390/cancers15184647
Chicago/Turabian StyleCheung, Elki Sze-Nga, Frederick Chun-Him Law, Nelson Tsz-Cheong Fung, Inda Sung Soong, Rico Hing-Ming Hung, Teddy Ka-Ho Tse, Ken Ka-Shing Wong, and Philip Yuguang Wu. 2023. "Simultaneous Integrated Boost for Dose Escalation in Node-Positive Cervical Cancer: 5-Year Experience in a Single Institution" Cancers 15, no. 18: 4647. https://doi.org/10.3390/cancers15184647
APA StyleCheung, E. S. -N., Law, F. C. -H., Fung, N. T. -C., Soong, I. S., Hung, R. H. -M., Tse, T. K. -H., Wong, K. K. -S., & Wu, P. Y. (2023). Simultaneous Integrated Boost for Dose Escalation in Node-Positive Cervical Cancer: 5-Year Experience in a Single Institution. Cancers, 15(18), 4647. https://doi.org/10.3390/cancers15184647